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Figure 1. Single-view textured human reconstruction. SiTH is a novel pipeline for creating high-quality and fully textured 3D human
meshes from single images. We first hallucinate back-view appearances through an image-conditioned diffusion model, followed by the
reconstruction of full-body textured meshes using both the front and back-view images. Our pipeline enables the creation of lifelike and
diverse 3D humans from unseen photos (left) and Al-generated images (right).

Abstract

A long-standing goal of 3D human reconstruction is to cre-
ate lifelike and fully detailed 3D humans from single-view
images. The main challenge lies in inferring unknown body
shapes, appearances, and clothing details in areas not visi-
ble in the images. To address this, we propose SiTH, a novel
pipeline that uniquely integrates an image-conditioned dif-
fusion model into a 3D mesh reconstruction workflow. At
the core of our method lies the decomposition of the chal-
lenging single-view reconstruction problem into generative
hallucination and reconstruction subproblems. For the for-
mer, we employ a powerful generative diffusion model to
hallucinate unseen back-view appearance based on the in-
put images. For the latter, we leverage skinned body meshes
as guidance to recover full-body texture meshes from the in-
put and back-view images. SiTH requires as few as 500 3D
human scans for training while maintaining its generality
and robustness to diverse images. Extensive evaluations on
two 3D human benchmarks, including our newly created
one, highlighted our method’s superior accuracy and per-
ceptual quality in 3D textured human reconstruction.

1. Introduction

With the growing popularity of 3D and virtual reality ap-
plications, there has been increasing interest in creating re-
alistic 3D human models. In general, crafting 3D humans
is labor-intensive, time-consuming, and requires collabora-
tion from highly skilled professionals. To bring lifelike 3D
humans to reality and to support both expert and amateur
creators in this task, it is essential to enable users to create
textured 3D humans from simple 2D images or photos.
Reconstructing a fully textured human mesh from a
single-view image presents an ill-posed problem with two
major challenges. Firstly, the appearance information re-
quired for generating texture in unobserved regions is miss-
ing. Secondly, 3D information for mesh reconstruction,
such as depth, surface, and body pose, becomes ambigu-
ous in a 2D image. Previous efforts [4, 60, 79] attempted to
tackle these challenges in a data-driven manner, focusing on
training neural networks with image-mesh pairs. However,
these approaches struggle with images featuring unseen ap-
pearances or poses, due to limited 3D human training data.
More recent studies [61, 73, 79] introduced additional 3D
reasoning modules to enhance robustness against unseen
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poses. Yet, generating realistic and full-body textures from
unseen appearances still remains an unsolved problem.

To address the above challenges, we propose SiTH, a
novel pipeline that integrates an image-conditioned diffu-
sion model to reconstruct lifelike 3D textured humans from
monocular images. At the core of our approach is the de-
composition of the challenging single-view problem into
two subproblems: generative back-view hallucination and
mesh reconstruction. This decomposition enables us to ex-
ploit the generative capability of pretrained diffusion mod-
els to guide full-body mesh and texture reconstruction. The
workflow is depicted in Fig. 1. Given a front-view image,
the first stage involves hallucinating a perceptually consis-
tent back-view image using image-conditioned diffusion.
The second stage reconstructs full-body mesh and texture,
utilizing both the front and back-view images as guidance.

More specifically, we employ the generative capabilities
of pretrained diffusion models (e.g. Stable Diffusion [57])
to infer unobserved back-view appearances for full-body
3D reconstruction. The primary challenge in ensuring the
realism of 3D meshes lies in generating images that depict
spatially aligned body shapes and perceptually consistent
appearances with the input images. While diffusion models
demonstrate impressive generative abilities with text condi-
tioning, they are limited in producing desired back-view im-
ages using the frontal images as image conditions. To over-
come this, we adapt the network architecture to enable con-
ditioning on frontal images and introduce additional train-
able components following ControlNet [77] to provide pose
and mask control. To fully tailor this model to our task
while retaining its original generative power, we carefully
fine-tune the diffusion model using multi-view images ren-
dered from 3D human scans. Complementing this gener-
ative model, we develop a mesh reconstruction module to
recover full-body textured mesh from front and back-view
images. We follow prior work in handling 3D ambiguity
through normal [61] and skinned body [73, 79] guidance.
It is worth noting that the models for both subproblems
are trained using the same public THuman2.0 [75] dataset,
which consists of as few as 500 scans.

To advance research in single-view human reconstruc-
tion, we created a new benchmark based on the high-quality
CustomHumans [22] dataset and conducted comprehen-
sive evaluations against state-of-the-art methods. Compared
to existing end-to-end methods [4, 60, 79], our two-stage
pipeline can recover full-body textured meshes, including
back-view details, and demonstrates robustness to unseen
images. In contrast to time-intensive diffusion-based opti-
mization methods [24, 35, 41], our pipeline efficiently pro-
duces high-quality textured meshes in under two minutes.
Moreover, we explored applications combining text-guided
diffusion models, showing SiTH’s versatility in 3D human
creation. Our contributions are summarized as follows:

* We introduce SiTH, a single-view human reconstruction
pipeline capable of producing high-quality, fully textured
3D human meshes within two minutes.

* Through decomposing the single-view reconstruction
task, SiTH can be efficiently trained with public 3D hu-
man scans and is more robust to unseen images.

* We establish a new benchmark featuring more diverse
subjects for evaluating textured human reconstruction.

2. Related Work

Single-view human mesh reconstruction. Reconstruct-
ing 3D humans from monocular inputs [14, 17, 26, 28,
29, 62, 67, 71] has gained more popularity in research.
In this context, we focus on methods that recover 3D
human shapes, garments, and textures from a single im-
age. As a seminal work, Saito er al. [60] first proposed
a data-driven method with pixel-aligned features and neu-
ral fields [72]. Tts follow-up work PIFuHD [61] fur-
ther improved this framework with high-res normal guid-
ance. Later approaches extended this framework with ad-
ditional human body priors. For instance, PaMIR [79]
and ICON [73] utilized skinned body models [42, 51] to
guide 3D reconstruction. ARCH [25], ARCH++ [21], and
CAR [39] transformed global coordinates into the canoni-
cal coordinates to allow for reposing. PHOHRUM [4] and
S3F [12] further disentangled shading and albedo to enable
relighting. Another line of work replaced the neural rep-
resentations with conventional Poisson surface reconstruc-
tion [33, 34]. ECON [74] and 2K2K [18] trained normal
and depth predictors to generate front and back 2.5D point
clouds. The human mesh is obtained by fusing these point
clouds with body priors and 3D heuristics. However, none
of these methods produce realistic full-body texture and ge-
ometry in the unobserved regions. Our pipeline addresses
this problem by incorporating a generative diffusion model
into the 3D human reconstruction workflow.

3D generation with 2D diffusion models. Diffusion
models [52, 56, 57, 59] trained with large collections of im-
ages have demonstrated unprecedented capability in creat-
ing 3D objects from text prompts. Most prior work [11, 19,
40,47, 53, 68] followed an optimization workflow to update
3D representations (e.g. NeRF [48], SDF tetrahedron [63])
via neural rendering [66] and a score distillation sampling
(SDS) [53] loss. While some methods [3, 10, 24, 27, 64, 76]
applied this workflow to human bodies, they cannot produce
accurate human bodies and appearances due to the ambigu-
ity of text-conditioning. More recent work [41, 54] also
tried to extend this workflow with more accurate image-
conditioning. However, we show that they struggle to re-
cover human clothing details and require a long optimiza-
tion time. Most related to our work is Chupa [35], which
also decomposes its pipeline into two stages. Note that
Chupa is an optimization-based approach that relies on texts
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Figure 2. Method overview. SiTH is a two-stage pipeline composed of back-view hallucination and mesh reconstruction. The back-view
hallucination module samples perceptually consistent back-view images through an iterative denoising process conditioned on the input
image, UV map, and silhouette mask (Sec. 3.1). Based on the input and generated back-view images, the mesh reconstruction module
recovers a full-body mesh and textures leveraging a skinned body prior as guidance (Sec. 3.2). Note that both modules in the pipeline can
be trained with the same public 3D human dataset and generalize unseen images.

and cannot model colors. We address these issues by in-
troducing an image-conditioning strategy and model. Most
importantly, our method swiftly reconstructs full-texture
human meshes without any optimization process.
Diffusion models adaptation. Foundation models [8, 13,
20, 36] trained on large-scale datasets have been shown to
be adaptable to various downstream tasks. Following this
trend, pretrained diffusion models [52, 56, 57, 59] have be-
come common backbones for generative modeling. For in-
stance, they can be customized by finetuning with a small
collection of images [23, 37, 58]. ControlNet [77] intro-
duced additional trainable plugins to enable image condi-
tioning such as body skeletons. While these strategies have
been widely adopted, none of them directly fit our objective.
More relevant to our task is DreamPose [31], which utilizes
DensePose [16] images as conditions to repose input im-
ages. However, it cannot handle out-of-distribution images
due to overfitting. Similarly, Zero-1-to-3 [41] finetunes a
diffusion model with multi-view images to allow for view-
point control. However, we show that viewpoint condition-
ing is not sufficient for generating consistent human bodies.
Our model addresses this issue by providing accurate body
pose and mask conditions for back-view hallucination.

3. Methodology

Method overview. Given an input image of a human body
and estimated SMPL-X [51] parameters, SiTH produces a
full-body textured mesh. This mesh not only captures the
observed appearances but also recovers geometric and tex-
tural details in unseen regions, such as clothing wrinkles on
the back. The pipeline is composed of two modules and is
summarized in Fig. 2. In the first stage, we hallucinate un-
observed appearances leveraging the generative power of an
image-conditioned diffusion model (Sec. 3.1). In the second

stage, we reconstruct a full-body textured mesh given the in-
put front-view image and the generated back-view image as
guidance (Sec. 3.2). Notably, both modules are efficiently
trained with 500 textured human scans in THuman2.0 [75].

3.1. Back-view Hallucination

Preliminaries. Given an input front-view image I7 ¢
RIXWX3 our goal is to infer a back-view image I” €
RIXWx3 which depicts unobserved body appearances.
This task is under-constrained since there are multiple pos-
sible solutions to the same input images. Taking this per-
spective into account, we leverage a latent diffusion model
(LDM) [57] to learn a conditional distribution of back-view
images given a front-view image. First, a VAE autoencoder,
consisting of an encoder £ and a decoder D, is pretrained on
a corpus of 2D natural images through image reconstruc-
tion, ie. I = D(E(I)). Afterwards, an LDM learns to
produce a latent code z within the VAE latent distribution
z = &(I) from randomly sampled noise. To sample an
image, a latent code Z is obtained by iteratively denoising
Gaussian noise. The final image is reconstructed through
the decoder, i.e., [ = D(2).

Image-conditioned diffusion model. Simply applying
the LDM architecture to our task is not sufficient since our
goal is to learn a conditional distribution of back-view im-
ages given an input conditional image. To this end, we
make several adaptations to allow for image-conditioning as
shown in Fig. 3. First, we utilize the pretrained CLIP [55]
image encoder and VAE encoder £ to extract image fea-
tures from the front-view image (i.e., I™). These image
features are used for conditioning the LDM, ensuring the
output image shares a consistent appearance with the input
image. Second, we follow the idea of ControlNet [77] and
propose to use a UV map (I, € R¥*W>3) and a silhou-
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Figure 3. Training of back-view hallucination module. We em-
ploy a pretrained LDM and ControlNet architecture to enable im-
age conditioning. To train our model, we render training pairs
of conditional images I” and ground-truth images I” from 3D
human scans. Given a noisy image latent z;, the model predicts
added noise e given the conditional image I, UV map I/, and
mask 1 ﬁ as conditions. We train the ControlNet model and cross-
attention layers while keeping other parameters frozen.

ette mask (15 € R¥*W) from the back view as additional
conditions. These conditional signals provide additional in-
formation that ensures the output image has a similar body
shape and pose to the conditional input image.

Learning hallucination from pretraining. Another
challenge in training an image-conditioned LDM is data.
Training the model from scratch is infeasible due to the
requirement of a large number of paired images rendered
from 3D textured human scans. Inspired by the concept
of learning from large-scale pretraining [13, 20], we build
our image-conditioned LDM on top of a pretrained diffu-
sion U-Net [57]. We utilize the finetuning strategy [37, 77]
to optimize cross-attention layers and ControlNet parame-
ters while keeping most of the other parameters frozen (see
Fig. 3). The design and training strategy of our image-
conditioned diffusion model enables hallucinating plausible
back-view images that are cosistent with the frontal inputs.

Training and inference. To generate pairwise training
images from 3D human scans, we sample camera view an-
gles and use orthographic projection to render RGBA im-
ages from 3D scans and UV maps from their SMPL-X fits.
Given a pair of images rendered by a frontal and its cor-
responding back camera, the first image serves as the con-
ditional input I while the other one is the ground-truth
image I®. During training, the ground-truth latent code
2o = E(IP) is perturbed by the diffusion process in t time
steps, resulting in a noisy latent z;. The image-conditoned
LDM model €y aims to predict the added noise € given the
noisy latent z;, the time step ¢ ~ [0, 1000], the conditional
image [ P the silhouette mask I I’f , and the UV map [, gv
(See Fig. 3). The objective function for fine-tuning can be
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Figure 4. Mesh reconstruction module. Given front and back-
view images (/ F IP) we predict their normal images (N P NB)
through a learned normal predictor. A 3D point x is projected onto
these images for querying pixel-aligned features (f4 ., fr ). To
leverage human body mesh as guidance, we embed the point x into
the local UV coordinates u., vector nc, distance d., and visibility
v.. Finally, two decoders (Hq4, H,) predict SDF and RGB values
at x given the positional embedding and pixel-aligned features.

represented as:

minE. e (1), t.enn(0,1) e — eo(zr,t, 17, 1B, IE)| 5.
)]
At test time, we obtain I, I% from an off-the-shelf pose
predictor [9] and segmentation model [36]. To infer a back-
view image, we sample a latent Z; by performing the it-
erative denoising process starting from a Gaussian noise
zr ~ N (0,1). The back-view image can obtained by:

I~B :D(Zo) :ID(fQ(ZTalFalgVallb\;[))a (2)

where fy is a function representing the iterative denoising
process of our image-conditioned LDM (See Fig. 2 left).

3.2. Human Mesh Reconstruction

After obtaining the back-view image, our goal is to con-
struct a full-body human mesh and its textures using the in-
put and back-view image as guidance. We follow the liter-
ature [60, 61] to model this task with a data-driven method.
Given pairwise training data (i.e., front/back-view images
and 3D scans), we learn a data-driven model that maps these
images to a 3D representation (e.g., a signed distance field
(SDF)). We define this mapping as below:

@:RHXWXBXRHXWXSXRS%RXRS

3)

(I7, 17,%) v dy, v,
where x is the 3D coordinate of a query point, and d,,r,
denote the signed distance and RGB color value at point x.
The network components we used for learning the mapping
function are depicted in Fig. 4.
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Figure 5. Qualitative comparison on CustomHumans. 7op: Results of methods generating mesh and texture. Bottom: Results of
methods generating mesh only. Note that single-view reconstruction is not possible to replicate exact back-view texture and geometry. Our
method generates realistic texture and clothing wrinkles perceptually close to the real scans while other baselines only produce smooth
colors and surfaces in the back regions. Best viewed in color and zoom in.

Local feature querying. To learn a generic mapping
function that is robust to unseen images, it is important that
the model is conditioned solely on local image information
with respect to the position of x. Therefore, we employ
the idea of pixel-aligned feature querying [60, 61] and sep-
arate our model into two branches, i.e., color and geome-
try. Our model contains a normal predictor that converts
the RGB image pair (I¥, I®) into normal maps (NF,NB).
Two image feature encoders G4, G, then extract color and
geometry feature maps (f;, f,.) € R¥ "XW'XD from the im-
ages and normal maps respectively (for simplicity we de-
scribe the process for a single image and leave out the su-
perscripts, but both front and back images are treated the
same). Finally, we project the query point x onto the image
coordinate (Fig. 4 red points) to retrieve the local features
(fi0,f2) € RP:

fa,0 = B(fa, 7(x)) = B(Ga(N), 7(x)),

o= B(E7(x) =BG, (D r(x),

where B is a local feature querying operation using bilinear
interpolation and 7(-) denotes orthographic projection.

Local positional embedding with skinned body prior.

As mentioned in Sec. 1, a major difficulty in mesh recon-
struction is 3D ambiguity where a model has to infer un-
known depth information between the front and back im-
ages. To address this issue, we follow prior work [22, 73,
79] leveraging a skinned body mesh [51] for guiding the re-
construction task. This body mesh is regarded as an anchor
that provides an approximate 3D shape of the human body.

To exploit this body prior, we devise a local positional
embedding function that transforms the query point x into
the local body mesh coordinate system. We look for the
closest point x; on the body mesh (Fig. 4 blue point), i.e.,

x; = argmin || x — X¢||2, o)
Xe

where x. are points on the skinned body mesh M. Our
positional embedding p constitutes four elements: a signed
distance value d. between x: and x, a vector n. = (x—x7),
the UV coordinates u. € [0,1]? of the point x}, and
a visibility label v. € {1,—1,0} that indicates whether

x} is visible in the front/back image or neither. Finally,

C
two separate MLPs H, H,. take the positional embedding
p = [d¢,n., u., v ] and the local texture/geometry features
(fq,z, fr ) as inputs to predict the final SDF and RGB val-

ues at point x:

dy = Hd(f(fw,ffw,p),
r, = H. (£, £7 . p).

T,z

(6)

Training and inference. We used the same 3D dataset de-
scribed in Sec. 3.1 to render training image pairs (I, I?)
from the 3D textured scans. For each training scan, query
points x are sampled within a 3-dimensional cube [—1, 1]3.
For each point, we compute the ground-truth signed dis-
tance values d to the scan surface, closest texture RGB val-
ues r, and surface normal n. Finally, we jointly optimized
the normal predictors, the image encoders, and the MLPs in
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CAPE [45]

CustomHuman [22]

CD: P-to-S/ LPIPS: F CD: P-to-S/ LPIPS:F/B
Method S-to-P (cm)], NCt  f-Scoret (x107%) | | S-to-P (cm)) NCtT  f-Scoret (x1072) |
PIFu [60] 2.368/3.763 0.778  33.842 2.720 2.209/2.582 0.805  34.881 6.073 / 8.496
PIFuHD [61] | 2.401/3.522 0.772  35.706 - 2.107/2.228 0.804  39.076 -
PaMIR [79] 2.190/2.806 0.804  36.725 2.085 2.181/2.507 0.813  35.847 | 4.646/7.152
2K2K [18] 2.478/3.683 0.782  28.700 - 2488/3.292 0.796  30.186 -
FOF [15] 2.196/4.040 0.777  34.227 - 2.079/2.644 0.808  36.013 -
ICON [73] 2.516/3.079 0.786  29.630 - 2.256/2.795 0.791  30.437 -
ECON [74] 2475/2.970 0.788  30.488 - 2.483/2.680 0.797  30.894 -
SiTH (Ours) | 1.899 /2.261 0.816 37.763 1.977 1.871/2.045 0.826 37.029 | 3.929/6.803

Table 1. Single-view human reconstruction benchmarks. We report Chamfer distance (CD), normal consistency (NC), and f-score
between ground truth and predicted meshes. To evaluate texture reconstruction quality, we compute LPIPS between the image rendering
of GT and generated textures. The best and the second best methods are highlighted in bold and underlined respectively. Note that

gray color denotes models trained on more commercial 3D human scans while the others are trained on the public THuman2.0 dataset.

both branches with the following reconstruction losses:
Lq= Hd_dfv||1+>‘n(1_n'vxdm)7 (7N
Ly = |lr —reffs. ®)

Note that V indicates numerical finite differences for com-
puting local normals at point x and A, is a hyperparameter.

During inference, we use the input image I*" and the
back-view image IB obtained from Sec. 3.1 to reconstruct
3D mesh and textures. First, we align both images with the
estimated body mesh M to ensure that image features can
be properly queried around the 3D anchor. We adopt a sim-
ilar strategy of SMPLIify [7] to optimize the scale and the
offset of the body mesh with silhouette and 2D joint errors.
Finally, we perform the marching cube algorithm [43] by
querying SDF and RGB values within a dense voxel grid
via Eq. (3) (see Fig. 2 right).

4. Experiments

4.1. Experimental Setup
Dataset. Previous work relied on training data from com-
mercial datasets such as RenderPeople [1]. While these
datasets offer high-quality textured meshes, they also limit
reproducibility due to limited accessibility. For fair com-
parisons, we follow ICON [73] by training our method
on the public 3D dataset THuman2.0 [75] and using the
CAPE [45] dataset for evaluation. However, we observed
potential biases in the evaluation due to the low-res ground-
truth meshes and image rendering defects in the CAPE
dataset (for a detailed discussion, please refer to Supp-
Sec. 6). Consequently, we further create a new benchmark
that evaluates the baselines on a higher-quality 3D human
dataset CustomHumans [22]. In the following, we provide
a summary of the datasets used in our experiments:
e THuman2.0 [75] contains approximately 500 scans of
humans wearing 150 different garments in various poses.
We use these 3D scans as the training data.

* CAPE [45] contains 15 subjects in 8 types of tight outfits.
The test set, provided by ICON, consists of 100 meshes.
We use CAPE for the quantitative evaluation (Sec. 4.2).

* CustomHumans [22] contains 600 higher-quality scans
of 80 subjects in 120 different garments and varied poses.
We selected 60 subjects for all quantitative experiments,
user studies, and ablation studies. (Sec. 4.2 - Sec. 4.4)

Evaluation protocol. We follow the evaluation protocol

in OccNet [46] and ICON [73] to compute 3D metrics

Chamfer distance (CD), normal consistency (NC), and f-

Score [65] on the generated meshes. To evaluate recon-

structed mesh texture, we report LPIPS [78] of front and

back texture rendering. In user studies, 30 participants rank
the meshes obtained by four different methods. We report
the average ranking ranging from 1 (best) to 4 (worst).

4.2. Single-view Human Reconstruction
Benchmark evaluation. We compared SiTH with state-
of-the-art single-view human reconstruction methods, in-
cluding PIFu [60], PIFuHD [61], PaMIR [79], FOF [15],
ICON [73], PHORHUM [4], 2K2K [18], and ECON [74]
on CAPE and CustomHumans. Note that PHORHUM
is only used for qualitative comparison since a different
camera system is used, leading to the misalignment with
ground-truth meshes. We visualize the generated mesh tex-
ture and normals in Fig. 5. Existing methods produce over-
smoothed texture and normals, particularly in the back. Our
method not only generates photorealistic and perceptually
consistent appearances in unobserved regions but also re-
covers underlying geometric details like clothing wrinkles.
The quantitative results are summarized in Tab. 1. It’s
worth noting that most methods are trained with commer-
cial datasets ( gray color in Tab. 1), while the others are
trained on the public THuman2.0 dataset. To evaluate
the methods leveraging a skinned body prior (i.e., PaMIR,
ICON, ECON, FOF, and SiTH), we use the same pose align-
ment procedure in their original implementations for a fair
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Figure 6. Qualitative comparison of back-view hallucination. We visualize back-view images generated by the baseline methods. Note
that the three different images are sampled from different random seeds. Our results are perceptually close to the ground-truth image in
terms of appearances and poses. Moreover, our method also preserves generative stochasticity for handling tiny wrinkle changes.
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a big coat and jeans”
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Figure 7. Comparison with optimization-based methods. Com-
pared to methods that utilize diffusion models for optimization,
our result is closer to the input image and contains local geometric
details. Note that Chupa is not conditioned on the image, and fails
to generate correct clothing from the text prompts.

SiTH (Ours)

comparison. Results in Tab. | show that the method using
a body prior (PaMIR) outperformed the end-to-end method
(PIFuHD) on tight clothing and challenging poses in CAPE.
However, it falls short in handling diverse outfits in Cus-
tomHumans. Moreover, the methods trained on commercial
datasets achieve better performance than those trained with
public data (ICON, ECON). Notably, our method is robust
across both benchmarks, achieving performance compara-
ble to the methods trained on high-quality commercial data.

Compared with optimization-based methods. We com-
pared SiTH with methods that use pretrained diffusion mod-
els and a score distillation sampling loss [53] to optimize 3D
meshes. In the case of Zero-1-to-3 [41], we used the input
image to optimize an instant NGP [49] radiance field, and
for Magic-123 [54], we provided additional text prompts
to optimize an SDF tetrahedron [63]. From Fig. 7, we see
that while both methods can handle full-body textures, they
struggle with reasoning the underlying geometry and cloth-
ing details. It is worth noting that Zero-1-to-3 and Magic-
123 require 10 minutes and 6 hours in optimization, respec-
tively, while our method takes under 2 minutes to generate
a textured mesh with a marching cube of 5123 resolution.

ICON ECON PIFuHD Ours
Front Geometry  3.127  2.720 2.607 1.547
Back Geometry  3.193 2.513 3.093 1.200
Similarity 3.093  2.660 2.780 1.456

PIFu PaMIR PHOHRUM  Ours

Front Texture 3.067 2.153 3.450 1.327

Back Texture 3.450 2.355 3.140 1.054

Similarity 3.307 2.192 3.416 1.093
Chupa Ours

User Preference 36.0% 64.0%

Table 2. User study results. Top: 30 users are asked to rank the
quality of surface normal images from best (1) to worst (4). We
report the average ranking of each method. Middle: Similar to
the first task, users are asked to rank the quality of RGB textures.
Bottom: We ask users to choose the mesh with a better quality.

Additionally, more similar to our method is Chupa [35],
which generates front/back-view normals for mesh recon-
struction. Note that Chupa is not conditioned on images
and does not generate texture. Instead, we provided body
poses and text prompts generated by an image-to-text in-
terrogator [38] as their conditional inputs. From Fig. 7,
it’s clear that text-conditioning is less accurate than image-
conditioning, and the method struggles to generate unseen
clothing styles such as coats. By contrast, our method can
reconstruct correct clothing geometry and texture from un-
seen images. We present more discussions and comparisons
with optimization-based methods in Supp-Sec. 9.1.

User study. The above metrics may not fully capture the
quality of 3D meshes in terms of realism and local details.
To address this, we conducted a user study to compare the
texture and geometry quality among various baselines. We
invited 30 users to rank the front/back-view texture and
normal renderings of 3D meshes generated by four differ-
ent methods. Additionally, we asked the users to assess
the similarity between the input images and the generated
meshes. The results (Tab. 2) support our claim that existing
methods struggle to efficiently generate desirable back-view
texture/geometry from single-view images. Our method,
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Method CD (cm){ NCt  f-Scoret
W/o Body Mesh 2.471 0.801 33.244
W/o Hallucination 1.960 0.840 36.677
Full Pipeline 1.958 0.826  37.029
W/ GT Body Mesh 1.172 0.891 58.858
W/ GT Body and T2 1.059 0914  63.356

Table 3. Ablation study on CustomHumans. We ablate the
hallucination module and the skinned body mesh in our pipeline.
Please refer to our discussion in Sec. 4.4.

which leverages the generative capability of diffusion mod-
els, consistently outperforms each baseline. It also produces
more preferred front-view textures and geometries, as evi-
denced by higher user rankings. We also conducted a user
study with Chupa (in Tab. 2 bottom) which also indicates
more users prefer the 3D meshes generated by our method.

4.3. Generative Capability

Image quality comparison. Our hallucination module is
a unique and essential component that generates spatially
aligned human images to guide 3D mesh reconstruction.
Given that our focus is on back-view hallucination, we
compare the quality of generated images with the rele-
vant generative methods in Fig. 6. We trained a baseline
Pix2PixHD [69] model, which produced smooth and blurry
results on unseen images due to overfitting to 500 subjects.
Another method closely related to ours is DreamPose [31],
which conditions the model with DensePose images and
finetunes the diffusion model with paired data. However,
their model failed to handle unseen images, in contrast to
our approach. While Zero-1-to-3 [41] can generalize to
unseen images, their method faces challenges in generat-
ing consistent body poses given the same back-view cam-
era. Moreover, we designed another baseline that provides
ControlNet [77] for corresponding text prompts using an
image-to-text interrogator [38]. However, without proper
image conditioning and fine-tuning, such a method cannot
generate images that faithfully match the input appearances.
Our method not only addresses these issues but also handles
stochastic appearances (e.g., tiny differences in wrinkles)
from different random seeds. We report 2D generative eval-
uation metrics and more results in Supp-Sec. 8.1.

4.4. Ablation Study

We conducted controlled experiments to validate the effec-
tiveness of our proposed modules. As shown in Fig. 8, the
skinned body mesh is a crucial component for 3D human
reconstruction. Without this body mesh as a 3D anchor, the
output mesh contains an incorrect body shape due to the
depth ambiguity issue. Conversely, removing the hallucina-
tion module has minimal impact on 3D reconstruction met-
rics, though it slightly degrades normal consistency. How-
ever, the overall quality in both texture and geometry is in-
comparable with our full model (see Fig. 8 right). This is

b &

ot

W/o Body Mesh

~ti—
Tl

W/o Hallucination

[

5

Full Model

sl ¥

Figure 8. Ablation study. We visualize back and side-view ren-
dering of the reconstructed meshes. Our full model produced a
correct body shape and more realistic clothing geometry.
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3D Textured Mesh

ControlNet

{ |
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Input Pose

“A man in a bule shirt
and shot pants”

Figure 9. Applications. Our pipeline can be incorporated with
text-to-image diffusion models for 3D human creation.

consistent with our findings in user studies, indicating that
3D metrics may not accurately reflect the perceptual quality
of 3D meshes. Finally, we tested two additional variants,
leveraging ground-truth body meshes and real back-view
images in our full pipeline, representing the upper bound
of our method. As shown in Tab. 3 bottom, this additional
information notably improves the 3D metrics. These re-
sults highlight the persistent challenges in the single-view
reconstruction problem, including pose ambiguity and the
stochastic nature of clothing geometry. For more experi-
ments on our design choices, please refer to Supp-Sec. 8.5.

4.5. Applications

Inheriting the generative capability of LDM, SiTH is ro-
bust to diverse inputs, such as out-of-distribution or Al-
generated images. We demonstrate a unique solution to
link photo-realistic Al photos and high-fidelity 3D humans.
In Fig. 9, we introduce a 3D creation workflow integrating
powerful text-to-image generative models. Given a body
pose, we generate a front-view image using Stable Diffu-
sion and ControlNet using text prompts. SiTH then creates
a full-body textured human from the Al-generated image.

5. Conclusion

We propose an innovative pipeline designed to create fully
textured 3D humans from single-view images. Our ap-
proach seamlessly integrates an image-conditioned diffu-
sion model into the existing data-driven 3D reconstruction
workflow. Leveraging the generative capabilities of the dif-
fusion model, our method efficiently produces lifelike 3D
humans from a diverse range of unseen images in under two
minutes. We expect our work will advance the application
of generative Al in 3D human creation.
Acknowledgements. This work was partially supported by
the Swiss SERI Consolidation Grant ”AI-PERCEIVE”.
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