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Figure 1. Generated samples of size 512x512. Stable Diffusion conditions on text caption only, while GLIGEN conditions on extra layout
input. Our proposed InteractDiffusion conditions on extra interaction label and its location shown by the shaded area.

Abstract

Large-scale text-to-image (T2I) diffusion models have
showcased incredible capabilities in generating coherent
images based on textual descriptions, enabling vast appli-
cations in content generation. While recent advancements
have introduced control over factors such as object local-
ization, posture, and image contours, a crucial gap remains
in our ability to control the interactions between objects
in the generated content. Well-controlling interactions in
generated images could yield meaningful applications,
such as creating realistic scenes with interacting charac-
ters. In this work, we study the problems of conditioning
T21 diffusion models with Human-Object Interaction
(HOI) information, consisting of a triplet label (person,
action, object) and corresponding bounding boxes. We
propose a pluggable interaction control model, called
InteractDiffusion that extends existing pre-trained T21 dif-

B4 corresponding authors

fusion models to enable them being better conditioned on
interactions. Specifically, we tokenize the HOI information
and learn their relationships via interaction embeddings.
A conditioning self-attention layer is trained to map HOI
tokens to visual tokens, thereby conditioning the visual
tokens better in existing T2I diffusion models. Our model
attains the ability to control the interaction and location on
existing T2I diffusion models, which outperforms existing
baselines by a large margin in HOI detection score, as
well as fidelity in FID and KID. Project page: https:
//jiuntian.github.io/interactdiffusion.

1. Introduction

The advent of diffusion generative models recently opens
up new creative task opportunities. While diffusion mod-
els could generate diverse high quality images that re-
construct the original data distributions, it is important to
control the content generated. Numerous literatures have
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since extensively studied how to control the image gener-
ation of the diffusion models via e.g. class [10, 37], text
[24, 26, 27, 29], image (including edge, line, scribble and
skeleton) [2, 16, 36] and layout [2, 7, 19, 34, 38]. However,
these are insufficient to effectively express the nuanced in-
tentions and desired outcomes, especially the interactions
between objects. Our work introduces another important
control in image generation: interaction.

Interaction refers to a reciprocal action between two en-
tities or individuals. Without a doubt, interaction is an inte-
gral part of describing our daily activities. However, we find
that existing diffusion models work well on static images
such as paintings or scenic photos but face great challenges
in generating images involving interactions. For instance,
GLIGEN [19] adds layout as a condition to help specify the
location of objects, but controlling the relationship or inter-
action between the objects remains an open difficult prob-
lem, as shown in Fig. 1. Control at the interaction level in
text-to-image (T2I) diffusion models has countless applica-
tions, e.g. e-commerce, gaming, interactive storytelling etc.

This paper studies the interaction-conditioned image
generation, i.e. how to specify the interaction in the image
generation process. It faces three main challenges:

a) Interaction representation: How to represent interac-
tion information in a meaningful token representation.

b) Intricate interaction relationship: The relationship
among objects with interaction is complex, and gener-
ating coherent images remains a great challenge.

c) Integrating conditions into existing models: Current
T2I diffusion models excel in image generation quality
but lack interaction control. A pluggable module that
can be seamlessly integrated into them is imperative.

To address the aforementioned issues, we propose an in-
teraction control model called InteractDiffusion as a plug-
gable module to existing T2I diffusion model as illustrated
in Fig. 2, aiming to impose interaction control. First, to pro-
vide conditioning information to the diffusion model, we
treat each interacting pair as a HOI triplet and transform
its information into a meaningful token representation that
contains information about position, size, and category la-
bel. Particularly, we generate three different tokens for each
HOI triplet, i.e. subject, action, and object tokens. While
both subject and object tokens contain information about lo-
cation, size, and object category, the action token includes
the location of the interaction and its category label.

Secondly, the challenge of representing intricate interac-
tion lies in encoding the relationship between the tokens of
multiple interactions where tokens are from different inter-
action instances and have different role within an interaction
instance. To address this challenge, we propose instance
embedding and role embedding to group the tokens of the
same interaction and embed their role semantically. Thirdly,
as the existing transformer block consists of a self-attention

and a cross-attention layer [27], we add a new Interaction

Self-Attention layer in between to incorporate interaction

tokens into the existing T2I model. This helps to preserve

the original model during training, while simultaneously in-

corporating additional interaction conditioning information.
Our main contributions are summarized as follows:

(i) We address the interaction-mismatch problem in ex-
isting T2I models and raise a new challenge: con-
trolling interaction in T2I diffusion models. Our pro-
posed framework, InteractDiffusion, is pluggable
to existing T2I model. It incorporates interaction
information as additional conditions for training an
interaction-controllable T21I diffusion model, enhanc-
ing the precision of interactions in generated images.

(i) To effectively capture intricate interaction relation-
ships, we introduce a novel method where we to-
kenize the localization and category information of
(subject, action, object) into three distinct tokens.
These tokens are then grouped together and speci-
fied in their roles of interaction through an embed-
ding framework. This innovative approach enhances
the representation of complex interactions.

(iii) InteractDiffusion significantly outperforms the base-
line methods in HOI Detection Scores and maintains
generation quality with slight improvements in both
FID and KID metrics. To the best of our knowledge,
this work is the first attempt to introduce interaction
control to diffusion models.

2. Related Work

Human-Object Interactions Recent advancements in
Human-Object Interactions (HOI) have focused on detect-
ing HOISs in images. It aims to locate interacting human and
object pairs via bounding boxes and categorize these objects
and their interactions in a triplet form (e.g., person, feeding,
cat). While recent HOI detection works [6, 17, 21, 32, 35]
show promising results, data scarcity hampers detection
performance for rare interactions. Conversely, HOI im-
age synthesis, an inverse task of HOI detection, is rela-
tively underexplored. InteractGAN [12] proposed HOI im-
age generation via human pose and reference images of hu-
mans and objects. However, this approach is complicated
as it requires a pose-template pool and reference images of
humans and objects. A more closely related work is the
layout-proposal-based method [15], which focuses on scene
layout proposals according to HOI triplets to synthesize im-
ages but is limited to generating ’object placement” propos-
als. Our work focuses on a new problem, namely, control-
ling the interaction in existing T2I diffusion models using
simple bounding box and interaction relations in an end-
to-end manner, without human pose and reference images.
This approach efficiently addresses the data scarcity in HOI
detection tasks and opens a wide range of applications.
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Figure 2. The overall framework of InteractDiffusion. Our proposed pluggable Interaction Module I seamlessly incorporates interaction
information into an existing T2I diffusion model (left). The proposed module I (right) consists of Interaction Tokenizer (Sec. 3.2) that
transforms interaction information into meaningful tokens, Interaction Embedding (Sec. 3.3) that incorporates intricate interaction relation-
ship, and Interaction Self-Attention (Sec. 3.4) that integrates interaction control information into Visual Tokens of the existing T2I model.

Diffusion Models The diffusion probabilistic model was
first proposed in [30], and further improved in training and
sampling methods by [14, 31]. Training and evaluating dif-
fusion models in pixel space could be costly and slow, and
training on high-resolution images always requires calcu-
lating expensive gradients. Latent Diffusion Model (LDM)
[27] compresses the image into a latent representation of
lower dimensionality [11] and carries out the diffusion pro-
cess in latent space to reduce the computation which was
further extended to Stable Diffusion. Our work adds inter-
action control to the Stable Diffusion Model.

Controlling Image Generation T2I diffusion models [24,
26, 27, 29] often utilize a pretrained language model like
CLIP [25] to guide the image diffusion process. This al-
lows the generated image’s content to be controlled by a
provided text caption. However, a text caption alone of-
ten provides insufficient control over the generated content,
particularly when aiming to create specific content such as
object location and layout, scene depth maps, human poses,
boundary lines, and interactions. To address this issue, sev-
eral models have proposed different methods for controlling
the generated content, including object layout [19, 33, 38],
segmentation maps [1, 3, 8, 18] and images [23, 36]. Al-
though controlling image generation via object layout and
images can generally yield better results, one essential as-
pect of image has been largely ignored, namely, the interac-
tion between objects. Our work extends the capabilities of
the current T2I model by strengthening the control of inter-
actions in the generated content.

3. Method

We first formulate the problem and then detail our Inter-
actDiffusion model, as illustrated in Fig. 2. It comprises

four parts: (a) interaction tokenizer that transforms inter-
action conditions into tokens, (b) interaction embedding
that links the relationship between tokens of interacting
triplets, (c) interaction transformer that constructs attention
between image patches and interaction information, and (d)
interaction-conditional diffusion model that generates im-
ages with interaction conditions.

3.1. Preliminary

We study the problem of incorporating interaction condi-
tions d into existing T2I diffusion model alongside with text
caption condition c. Our aim is to train a diffusion model
fo(z,c,d) to generate images conditioned on interaction d
and text caption c, where z is the initial noise.

Stable Diffusion, one of the best models, is a scale-up
of the LDM [27] with a larger model and data size.
Unlike other diffusion models, LDM splits into two stages
to reduce computational complexity. It first learns a bi-
directional projection to project image x from pixel space to
a latent space as latent representation z and then trains a dif-
fusion model fy(z, c) in the latent space with latent z. Our
work focuses on the second stage as we are only interested
in conditioning the diffusion model with interaction.

LDM learns a reverse process of a fixed Markov Chain
of length T'. It can be interpreted as an equally weighted se-
quence of denoising autoencoders €y(z,t);t = 1,--- | T,
which are trained to predict a denoised version of their input
zt, where z; is a noisy version of the input z.

The unconditional objective can be viewed as

IHGiHLLDM =E.conony e — ez, t)3], (1)

with ¢ uniformly sampled from {1,---,7}. The model
iteratively produces less noisy samples from noise zp to
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Figure 3. “Between” operation obtains the action focus area (high-
lighted in orange) between subject and object bounding boxes.

Zr_1,27_9, " , %0, where the model €y(z, t) is realized
by a UNet [28]. The final image is obtained by projecting
z( in latent space back into image space in a single pass
through the decoder trained in the first stage.

Conditioning In LDM, to condition the diffusion model
with various modalities like text captions, a cross-attention
mechanism was added on top of the UNet backbone. The
conditional input of various modalities is denoted as y and
a domain specific encoder 7¢(-) is used to project y to an
intermediate token representation 7y (y ).

In StableDiffusion, text captions represented by y are
used to condition the model. It uses a CLIP encoder de-
noted as 74(+) to project the text caption y into 77 text em-
beddings, i.e. 79(y). In particular, the conditioned objective
for StableDiffusion can be viewed as

rr}gin Liom =E oo [lle — €o(ze: 1, 70()3] » (2)

where 74 (-) represents the CLIP text encoder and y repre-
sents the text caption.

3.2. Interaction Tokenizer (InToken)

We define interaction d as a triplet label consisting of (sub-
ject s, action a, and object o ), as well as their corresponding
bounding boxes denoted as (b, b,, and b, ), respectively.
We use the subject and object bounding boxes to describe
their location and sizes, and introduce an action bounding
box to specify the spatial location of the action. For exam-
ple, a subject (e.g. women, boy) performing a specific ac-
tion (e.g. carrying, kicking) toward a particular object (e.g.
handbag, ball).

To obtain the action bounding box, we define a “be-
tween” operation, applied to the subject and object bound-
ing boxes. Suppose b, and b, be specified by their corner
coordinates [a;, 3;],7 = 1,2, 3,4, the “between” operation
on b, and b, to obtain b, is:

b, = b, between b,
= [Ra(c), Ra(B:)], [Rs(cu), R3(Bi)], 3)

where Ry (-) is the k™ ascending rank of its arguments.
Some examples of the “between” operation results are
shown in Fig. 3. With this, our interaction condition inputs
of an image is:

D= [dla-“adN] = [(317a1701abs1aba1ab01)7"'a

(SNaaNaoNabsAmbaj\mboN)]v (4)

CLIP Text Encoder fyexe () Fourier Embedder Fr. (+)

“person” by “cat” b, “feeding” by

Figure 4. Interaction Tokenizer. View bottom-up.

where NN is the number of interaction instances.

Subject and Object tokens We first pre-process the text
label and the bounding box into an intermediate representa-
tion. In particular, we use the pre-trained CLIP text encoder
to encode the text of subject, action and object as a repre-
sentative text embedding and use Fourier embedding [22] to
encode their respective bounding boxes following GLIGEN
[19]. To generate the subject and object tokens, h®, h°, we
use a multi-layer perceptron ObjectMLP(-) to fuse them as:

h® = ObjectMLP([ fiex(s), Fourier(bs)]) ®)
h? = ObjectMLP({ fiex(0), Fourier(b,)]). (6)

Action token For action token, we train a separate multi-
layer perceptron ActionMLP(-) since action is semantically
apart from the subject and object,

h* = ActionMLP({ fiex (@), Fourier (b, )]). (7

For each interaction, we transform the interaction condi-
tion input d into a triplet of tokens h:

h = (h*,h* h°) = InToken(s, a, 0, bs, by, b,),  (8)

where InToken(-) is a combination of Egs. (5) to (7) as
shown in Fig. 4.

3.3. Interaction Embedding (InBedding)

Interaction is an intricate relationship between subject, ob-
ject and their action. From Eq. (8), tokens h*, h®, h are in-
dividually embedded (as shown in Fig. 2). For multiple in-
teraction instances, all tokens hj, h{, h;7 =1,--- , N, are
individually embedded. Therefore, it is necessary to group
these tokens by interaction instance and specify different
role of tokens within the interaction instance. Segment Em-
bedding [9], has demonstrated its effectiveness in captur-
ing relationships between segments in a text sequence by
adding a learnable embedding to tokens to group a sequence
of words into segments. In our work, we extend this con-
cept to group the tokens into triplets. Specifically, we add
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Figure 5. Interaction Embeddings. Learnable instance embedding
q and role embedding r are added to tokens to represent intricate
interaction relationships between subject s, action a and object o.

a new instance embedding denoted as ¢ € {q1,...,qn} to
interaction instances h € {hy,--- ,hy} as:
e, = h; +gq, )

where all tokens in the same instance share the same in-
stance embedding. This groups all tokens into interaction
instances or triplets.

Besides, each token in the triplet has different role. So,
we embed their roles with three role embeddings r &
{r®,r® r°} to form final entity token e;:

e,=hi+q+r
= (hi +qi +7°, hi +q + 7%, h{ + ¢ +1°), (10)

where 7%, 7® and r° represent the role embeddings for sub-
ject, action and object respectively. From Eq. (10) we see
that tokens of the same role in all instances share the same
role embedding. Adding instance and role embedding to the
interaction entity token h; (as in Fig. 5) encodes the intri-
cate interaction relationship, i.e. specifies a token’s role and
interaction instance, which results in significantly improved
image generation, especially in scenarios with multiple in-
teraction instances.

3.4. Interaction Transformer (InFormer)

Large-scale T2I models such as Stable Diffusion have been
trained on massive-scale image-text pairs and demonstrated
remarkable capabilities in generating highly realistic im-
ages, owing to the knowledge acquired during large-scale
pre-training. In this paper, we aim to incorporate the in-
teraction control into these T2I models with minimal cost.
Therefore, it is crucial to preserve the valuable knowledge
embedded in them.

Lets denote v = [vy,--- ,vp] as the visual feature
tokens of an image, and ¢ as the caption tokens where
¢ = 7y(y). In LDM models, a Transformer block consists
of two attention layers, i.e. (i) self-attention layer for the
visual tokens and (ii) cross-attention layers that model the
attention between visual tokens and caption tokens:

v = v + SelfAttn(v); v = v + CrossAttn(v,c) (11)
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Figure 6. Interaction Transformer. An Interaction Self-Attention
is added between the visual token self-attention and the visual-
caption cross-attention to incorporate the interaction conditions.

Interaction Self-Attention Following GLIGEN [19], we
freeze the two original attention layers and introduce a new
gated self-attention layer namely Interaction Self-Attention
(see Fig. 6) between them. This is to add the interaction
condition onto the existing Transformer block. Different
from [19], we perform self-attention over the concatenation
of visual and interaction tokens [v, e®, e®, e°], which fo-
cuses on the relationship of interactions as:

v = v + 7 - tanh~y - TS(SelfAttn([v, e®, e, €°])), (12)

where TS(+) is a Token Slicing operation to keep only the
output of visual tokens and slice off the others as shown in
Fig. 6, n is a hyper-parameter for scheduled sampling that
controls the activation of Interaction Self-Attention and v is
a zero-initialized learnable scale that gradually controls the
flow of the gate. Note that Eq. (12) performs in between the
two parts of Eq. (11). As a summary, our Interaction Self-
Attention layer transforms the interaction information, in-
cluding the interaction, subject and object bounding boxes,
into visual tokens.

Scheduled Sampling We set 7 = 1 in Eq. (12) during train-
ing and standard inference scheme as to [19]. However,
in some occasional situations, the newly added Interaction
Self-Attention layer could cause sub-optimal effects (poor
rendering of non-natural concepts) on existing T2I models.
Thus we include a control on sampling interval on the Inter-
action Self-Attention layer, which can balance out the level
of text caption and interaction control.

Technically, our scheduled sampling scheme is con-
trolled during the inference time by a hyper-parameter w €
[0, 1]. Tt defines the proportion of diffusion steps influenced
by the interaction control as follow:

RS t <wsxT #Text+ Interaction (13)
= 0, t>wx*T #Textonly

where 7' is total number of diffusion steps.
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3.5. Interaction-conditional Diffusion Model

We combine InToken, InBedding and InFormer to form the
pluggable Interaction Module, enabling interaction control
in existing T2I diffusion models. The LDM training objec-
tive (Eq. (2)) is adopted. Denoting the newly added param-
eters as ¢’, the diffusion model is now defined as €g ¢/ (-)
where the extra interaction information is processed by the
interaction tokenizer 74/ (). As such, the overall training
objective of our model is:

I’%i,l’l L:ImeractDiffusion = (14)

E.. o0 [II€ — €0,0/ (22, . 0(y), 7o/ (D))]3] -

4. Experiments

We train and evaluate models at 512x512 resolution. We
initialize our model with the pre-trained GLIGEN model
based on StableDiffusion v1.4. Training uses a constant
learning rate of 5e-5 with Adam optimization and a linear
warm-up for the initial 10k iterations. It ran for 500k itera-
tions with a batch size of 8 (= 106 epochs), taking around
160 hours on 2 NVIDIA GeForce RTX 4090 GPUs. We
use a gradient accumulate step of 2, resulting in an effective
batch size of 16. For inference, we employ diffusion sam-
pling steps of 50 with the PLMS [20] sampler. More details
are given in Sec. 6 of supplementary.

4.1. Datasets

Our experiments were conducted on the widely-used HICO-
DET dataset [5], which comprises 47,776 images: 38,118
for training and 9,658 for testing. The dataset includes
151,276 HOI annotations: 117,871 in training and 33,405 in
testing. HICO-DET includes 600 types of HOI triplets con-
structed from 80 object categories and 117 verb classes. We
extracted the annotations in the testing set as input to gen-
erate interaction images and subsequently performed HOI
detection on the generated images using FGAHOI [21].

Following the evaluation methodology outlined in
HICO-DET [5], we evaluated the generation results in both
Default and Known Object settings. In the Default setting,
the average precision (AP) is computed across all testing
images for each HOI class. The Known Object setting, on
the other hand, calculates the AP of an HOI class solely over
the images containing the object in the corresponding HOI
class (e.g., the AP of the HOI class ’riding bicycle’ is cal-
culated exclusively on the images containing the ’bicycle’
object). We reported the HOI detection results in the Full
and Rare subsets. The Full and Rare subsets consist of 600
and 138 HOI classes, respectively, with a rare class defined
as one represented by less than 10 training samples.

4.2. Evaluation Metrics

We evaluate the quality and controllability of interaction in
generation with three metrics.
Fréchet Inception Distance [13] measures the Fréchet dis-
tance in distribution of Inception feature between the real-
images and the generated images (FID).
Kernel Inception Distance [4] measures the squared Maxi-
mum Mean Discrepancy (MMD) between the Inception fea-
tures of the real and generated images using a polynomial
kernel. It relaxes the Gaussian assumption in FID and re-
quires fewer samples.
HOI Detection Score is proposed as a measure of the con-
trollability of interaction in generation models. We utilize
the pretrained state-of-the-art HOI detector, FGAHOI [21],
to detect the HOI instances in generated images and com-
pare them against the ground truth from the original anno-
tations in HICO-DET. This process quantifies the models’
controllability in interaction generation. We report the HOI
Detection Score based on the FGAHOI protocol in two cat-
egories, namely Default and Known Object. Default setting
is more challenging as it requires distinguishing the non-
related images. FGAHOI is implemented with Swin-Tiny
and Swin-Large backbones, and we evaluate with the both.
In summary, FID and KID assess generation quality,
while HOI Det. Score evaluates interaction controllability.

4.3. Qualitative results

Fig. 7 presents a qualitative comparison with existing meth-
ods. The results demonstrate that our model renders the
interaction relationship between objects better than others,
aligning better with the provided interaction instructions.
Other models often exhibit either mismatched actions or in-
accurate interactions. For instance, while GLIGEN incor-
porates layout control to precisely position objects within an
image, it fails to capture their intricate interactions. Espe-
cially, when multiple interaction instances occur within an
image, GLIGEN’s rendering of interaction relationships is
often mismatched. This challenge persists even in the case
of GLIGEN* which is fine-tuned on HICO-DET. While the
individual placement (location) of objects is accurate, the
interactions between objects appear perplexing.

Our proposed method facilitates improved control over
object interaction in image generation. For instance, in
Fig. 7(a)-(c), although the interaction appears to be correct
in existing works, the interaction details are inaccurate. Our
method better renders these details. Moreover, when mul-
tiple interacting pairs are involved, as shown in Fig. 7(d),
only our method is capable of correctly rendering all pairs
of interactions. In Fig. 7(e)-(i), while the interactions (e.g.
directing airplane, sitting at the dining table, blowing cake,
eating pizza, flushing the toilet) in images were inaccurately
generated in existing works, our InteractDiffusion well ren-
ders these interactions. Our model’s capability stems from
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FID KID | Full Rare| Full Rare | Full Rare | Full  Rare StableDiffusion 35.85 0.01297] 0.63 0.68 | 0.66 0.70
StableDiffusion |35.85 0.01297[ 0.63 0.68 | 0.66 070 | 0.64 0.83 | 0.65 0.84 GLIGEN vE 29.35 0.01275|21.73 15.35|23.31 17.24
GLIGEN 29.35 0.01275|21.73 1535|2331 17.24 |23.99 19.56|24.99 2037 GLIGEN* v 18.82 0.0069425.23 17.45]26.66 18.78
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Table 1. Comparison between InteractDiffusion and existing baselines in
terms of generated image quality scores in FID and KID and HOI detection
score in mAP. GLIGEN* is HICO-DET fine-tuned GLIGEN model. The last

row shows the Detection Score from real images.
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Table 2. Ablation study of InteractDiffusion. Tr., To., and
Em. represent Interaction Transformer, Interaction Tok-
enizer, and Interaction Embedding respectively. v * indi-

cate Gated Self-Attention in GLIGEN.
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Figure 7. Visual comparison with existing baselines. In all methods, we use the text caption format of a person {action} a {object}”.
Input and Caption rows represent the interaction conditions, each interaction pair shown by a line link them and is colored differently. GT
represents the ground truth images. Ours gains better control to interaction, and renders images matching the text instructions better.

two key components: the InToken for translating interac-
tion conditions into meaningful tokens, and the InBedding
for modeling complex interaction relationships.

Fig. 8 shows how InteractDiffusion renders different ac-
tions with the same object, in comparison to StableDiffu-
sion and GLIGEN*. This shows that our model can gen-

erate various combinations of interactions that maintain the
coherence and naturalness of interactions between people
and objects. More qualitative results are shown in Sec. 8
and Figs. 13 and 14 of the supplementary, while user pref-
erence study is in Sec. 9.
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Figure 8. Visualization comparison between StableDiffusion
(top), GLIGEN* (middle), and InteractDiffusion (bottom) demon-
strates the generation of different actions for the same object.

4.4. Quantitative results

Tab. 1 compares our proposed with existing baselines in
terms of the quality and interaction controllability, specifi-
cally FID, KID, and HOI Detection Score. Compared to the
existing baselines, our proposed achieves the best result.

For image generation quality, our proposed produces
slightly higher quality than the baselines. It shows that
despite additional parameters incorporated into the original
model to control interactions, the image generation quality
remains unaffected. It is even improved marginally. GLI-
GEN* exhibits higher image generation quality than Sta-
bleDiffusion and GLIGEN because we fine-tuned it on the
HICO-DET dataset in the same way as InteractDiffusion.

In the HOI Detection Score benchmark, StableDiffusion
performs poorly because it does not consider the object’s
location and size. Comparing GLIGEN and GLIGEN* that
only consider the object’s location and size, our method en-
codes interaction control information along with localiza-
tion information, leading to a significant performance gain.

Using the Tiny backbone for detection, the slight dispar-
ity in mAP between the generated images by our method
and the real image dataset demonstrates that our approach
can generate realistic interactions nearly indistinguishable
from real-world interactions by a detection algorithm, such
as FGAHOI with a Swin-Tiny backbone. Yet, we have ob-
served that the gap between the real dataset and the gen-
erated samples widens when a detector of a large model is
used. This indicates that although our generation process
outperforms existing baselines, it still has room for further
improvement in rendering finer details.

Empirically, the results demonstrate that our proposed
enhances interaction controllability while maintaining high-
quality image generation capability, thereby significantly
outperforming the existing methods in all metrics. This su-

perior performance can be attributed to the proposed com-
ponents within InteractDiffusion, which include the InTo-
ken that incorporates new interaction conditions, InBed-
ding that encode intricate interaction relationships, and the
InFormer that injects interaction control into the existing
transformer blocks. Collectively, these components consti-
tute a pluggable Interaction Module seamlessly integrated
into existing T2I diffusion models.

4.5. Ablation studies

There are three key components that constitute the pro-
posed InteractDiffusion, namely, InToken, InBedding, and
InFormer. We conducted an ablation study on these com-
ponents and tabulated the results in Tab. 2. GLIGEN intro-
duced a gated self-attention layer into the transformer block
of the Stable Diffusion model to incorporate additional lay-
out conditions, resulting in a significant performance im-
provement from 0.63 to 21.73 in mAP. Upon further fine-
tuning on HICO-DET, it achieved an mAP of 25.23.

In InteractDiffusion, we include interaction conditions,
alongside layout conditions, to enable the interaction con-
trol. With InToken, we convert the interaction conditions
(consisting of bounding boxes, object labels, action labels,
and relationships) into meaningful interaction entity tokens.
Compared to GLIGEN, the incorporation of additional ac-
tion tokens introduces new information that enhances in-
teraction generation and provides greater interaction con-
trol. The inclusion of InToken as a key component further
improved the detection score from 25.23 to 28.73, thereby
demonstrating its effectiveness. Lastly, we include InBed-
ding to encode the complex interactions relationship, which
further improved detection score from 28.73 to 29.53. More
ablation studies are shown in Sec. 7 of the supplementary.

5. Conclusion

This paper proposes an interaction-conditioned T2I dif-
fusion model, namely InteractDiffusion, which addresses
problems of conditioning generated images beyond the text
caption. In existing T2I diffusion models, although several
controls (e.g. text, images, layout, etc) have been imposed,
controlling the interaction in the generated image remains a
formidable challenge. Our contributions can be unified as
a pluggable interaction module being seamlessly integrated
into existing T2I models. The quantitative and qualitative
evaluations demonstrate the effectiveness of our method in
controlling the interaction of generated content, which sig-
nificantly outperforms the state-of-the-art approaches.
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