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Abstract

We propose a unified approach to simultaneously address-
ing the conventional setting of binary deepfake classification
and a more challenging scenario of uncovering what facial
components have been forged as well as the exact order of
the manipulations. To solve the former task, we consider mul-
tiple instance learning (MIL) that takes each image as a bag
and its patches as instances. A positive bag corresponds to
a forged image that includes at least one manipulated patch
(i.e., a pixel in the feature map). The formulation allows us
to estimate the probability of an input image being a fake
one and establish the corresponding contrastive MIL loss.
On the other hand, tackling the component-wise deepfake
problem can be reduced to solving multi-label prediction, but
the requirement to recover the manipulation order further
complicates the learning task into a multi-label ranking prob-
lem. We resolve this difficulty by designing a tailor-made
loss term to enforce that the rank order of the predicted
multi-label probabilities respects the ground-truth order of
the sequential modifications of a deepfake image. Through
extensive experiments and comparisons with other relevant
techniques, we provide extensive results and ablation studies
to demonstrate that the proposed method is an overall more
comprehensive solution to deepfake detection.

1. Introduction

With the rapid growth of face-swapping techniques, deep
forgery has become a concern on social media. An effective
solution to address the matter is to utilize neural network-
based approaches to decide the authenticity of given im-
ages. The task of deepfake classification is usually formu-
lated as a binary classification problem. Recent research
efforts on deepfake classification have delivered saturated
performances [2, 5, 34, 40, 41]. Nevertheless, owing to the
impressive development of generative networks, e.g., Style-
GAN [17] and diffusion models [18, 19, 29], deep forgery is
no longer limited to face-to-face interchange. In particular,
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Figure 1. Overview. While addressing the conventional binary
deepfake detection that dichotomies the images into genuine/fake,
this work also focuses on the subtle scenario that forged images via
deepfake mechanisms may be locally manipulated by one or more
than one facial component/attribute. We introduce a multi-label
ranking approach to tackling the “fine-grained” deepfake task (i.e.,
to localize the modified facial components and to identify the order
of manipulations) and develop a contrastive multi-instance learning
(MIL) framework to solve the binary classification. It is noteworthy
to mention that manipulating the same regions in different orders
could result in distinct manipulated images.

Shao et al. [32] propose a sequential facial manipulation
dataset, Seq-DeepFake, in which the fake facial images are
manipulated with the requested sequential constraints from
the source (e.g., components and attributes) by StyleMap-
GAN [19]. Take, for example, in Figure 1, the annotation of
“Eyebrow-Hair-Lip” indicates that the resulting facial image
has been successively manipulated with the eyebrow, hair
and lip in the specified order. The sequential manipulations
can be treated as a multi-label “localization” problem to de-
cide not only which facial components have been forged but
also what the manipulation order is. The latter task further
complicates the localization scenario into a ranking problem,
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which poses significant challenges and opens a new frontier
for deepfake-related research.

Detecting sequential facial manipulations is more chal-
lenging than conventional deepfake classification. This
causes most of the existing deepfake solutions to be no
longer applicable. For example, the success of Face X-
ray [20] is based on the observation that a fake facial image
must have an essential blending operator to smooth the face
boundary to make the forged image more natural during
the face-swapping process. The particular method then fo-
cuses on learning how to capture the blending region from
the paired source and target images. However, the tactic
apparently does not work well on the sequential facial ma-
nipulation dataset, SeqDeepFake [32, 33]. The inefficiency
is caused by two main factors. First, the paired source and
target information of each manipulated image in SeqDeep-
Fake is not available. Second, the resulting classifier from
adversarial learning is often highly related to the generator.
Therefore, it is hard to generalize the method to distinguish
sequentially manipulated images without completely updat-
ing the generative model in [20]. The inadequacy in handling
component-wise deepfake is indeed a common issue across
many related methods,e.g., [4, 5, 13, 34, 41]. After all, they
are developed to solve a binary classification problem, rather
than dealing with the sequential deepfake manipulations.

Aiming to establish a unified approach to deepfake detec-
tion, we decompose the underlying problem into three sub-
tasks, including deepfake classification, deepfake localiza-
tion, and manipulation order. In resolving the first subtask,
we propose contrastive multiple instance learning (MIL) that
treats an image as a bag and the spatial features as instances
to tackle deepfake classification via minimizing a contrastive
MIL loss. We then establish a multi-label ranking formula-
tion to address the other two subtasks. Concerning the ability
to identify which facial components have been forged, we
loosely term the process as deepfake localization. In addi-
tion, it is reasonable to incorporate ranking reasoning into
the stage so that the ranked list of multi-label probabilities
can reflect the sequential modification order. As such, train-
ing the network model can be done via multi-task learning,
and results in an effective deepfake detection model capa-
ble of accomplishing the three aforementioned tasks. We
characterize our main contributions as follows.

• We decompose the general deepfake problem into three
parts, deepfake classification, deepfake localization, and
manipulation order which leads to a systematic view of
solving the deepfake problem comprehensively.

• We propose a contrastive multi-instance learning formu-
lation for binary deepfake classification. The synergy
between the two learning paradigms improves the model
learning effectively, and more importantly, it gives rise to
a well-established concept of how to define the probability
of a given image being deepfake.

• We develop a multi-label ranking approach to coupling
multi-label predictions with ranking reasoning. In infer-
ence, the sequential order of deepfake manipulations can
be readily obtained from the rank order of the output multi-
label probabilities.

• We establish a unified approach to deepfake classification
and localization, and achieve state-of-the-art performances
on popular benchmark datasets.

2. Related work
Deepfake detection. Owing to the active development of
face manipulation technology and the upsurge of people’s
awareness about multimedia security, more research efforts
have been paid to develop all sorts of deepfake detection
methods in recent years. Deepfake detection can be catego-
rized into two types of approaches based on the underlying
data format: image-based [2, 5, 13, 20, 24, 34, 40, 41, 43]
and video-based [8, 14, 21, 42]. For image-based deepfake
detection, Zhu et al. [43] propose a two-stream architec-
ture to enrich the face feature for detection. One is a con-
ventional network, and the other is a 3D decomposition
framework that aims to find more clues and details on the
face image. Chen et al. [5] fuse the RGB and frequency
features with a cross-attention module to learn an artifact
mask decoder from the fake images. The decoder uses the
source and target information from the manipulated image
to generate the mask as a ground-truth label. Cao et al.
[2] regard the detection problem as anomaly detection and
utilize an encoder-decoder framework for real-fake represen-
tation learning. Liu et al. [24] determine the forgery image
from the phase spectrum variation between the original and
up-sampled images. Zhao et al. [40] introduce multiple at-
tention modules to capture different discriminative locations
and insert a texture enhancement block into the backbone
to extract high-frequency features. Several other methods
attempt to capture the artifacts generated by swapping faces
from two images. Li et al. [20] propose Face X-ray to find
the blended region from the forgery image. Moreover, Zhao
et al. [41] exploit the fact that the forgery faces are manipu-
lated from two different sources and propose an inconsistent
image generator to support the classifier in learning the con-
sistency mask. Based on a similar entry point, Dong et al.
[13] utilize the self-attention mechanism to form an identity
consistency transformer to detect a forgery image. To extend
the above concepts, Shiohara and Yamasaki [34] introduce
a self-blended framework that can learn the blended clues
from the proposed augmentation technique.

For video-based deepfake detection, Cozzolino et al.
[8] use a three-dimensional morphable model to generate
deepfake video and learn a temporal network to embed the
sequence features for the video classifier. Zhou and Lim [42]
present a two-plus-one joint detection model for tackling
both manipulated visual and auditory modalities.
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More recently, Shao et al. [32, 33] generalize the image-
based deepfake detection from a binary classification prob-
lem to a multi-label classification problem. Specifically, the
image is manipulated from sequential components/attributes,
dramatically increasing the detection challenge.
Multiple instance learning. Following [11], the multiple in-
stance learning (MIL) paradigm defines a “bag” as positive
if it contains at least one positive instance. In other words, all
instances in a negative bag are assumed to be negative. An
earlier approach by Chen et al. [6] transforms each sample
bag into a high-dimensional feature space and adopts the
Support Vector Machine (SVM) to determine the essential
features and construct the classifier simultaneously. Ilse
et al. [16] introduce MIL attention pooling that leverages
neural networks to parameterize the distribution of instances
in a bag to detect predefined positive instances. In medi-
cal imaging, several approaches regard MIL-related tasks
on histopathology datasets as weakly supervised learning.
Zhang et al. [39] introduce the pseudo-bag concept to enrich
the sample bags to address the insufficiency of whole slide
images. Furthermore, Thandiackal et al. [36] present Zoom-
MIL which utilizes multi-level zooming to fuse multiple
magnifications and reduce the computation cost.
Ranking mechanism. A ranking scheme is designed to
find the optimal sorting function that can rank the sequential
input. Although early efforts [1, 23] propose the bitonic
sorting network to solve the rank issue, most current tech-
niques rely on the neural network to achieve the differential
ranking operation. Petersen et al. [27] first present Differ-
entiable Sorting Networks and take it as an extension by
enforcing monotonicity and limiting the bound of approx-
imation error. They subsequently introduce a differential
top-k network [28] to address the multi-class problem via
the ranking mechanism.

3. Method
We consider a general formulation of deep-fake detection
in which the underlying photorealistic manipulations can
be applied to either the whole facial region or some of the
predefined facial components. For the sake of discussion, we
categorize the former task as deepfake classification and the
latter as deepfake localization, where in this scenario we also
need to recover the sequential order of the component-wise
deepfake manipulations as described in [32].

Problem formulation. Suppose there are totally L facial
components to which photorealistic manipulations can be
applied. Since the exact order of modifying the facial com-
ponents does matter, we cast the task of deepfake local-
ization as a multi-label ranking problem [10]. Consider
now a deepfake dataset D = {(x, Y )}, where x is an im-
age and Y = {lj}kj=1 with k ≤ L is an ordered subset
of {1, 2, . . . , L}, indicating that the jth (j ≤ k) deepfake

modification has been performed on the lj th facial compo-
nent. When Y is an empty set, it implies that x is a genuine
facial image. It is convenient to generate from Y two L-
dimensional vectors y = (yi) and r = (ri) by

yi =

{
1, if i = lj ∈ Y ;
0, otherwise, (1)

and

ri =

{
j, if i = lj ∈ Y ;
L, otherwise, (2)

where y is the standard multi-label binary vector and r is the
corresponding rank vector. We realize the above definitions
with a hands-on example. Assume that totally five facial
components can be modified, i.e., L = 5, and a deepfake im-
age has been created by first manipulating facial component
4 and then facial component 2. Our definitions imply that
Y = {4, 2}, y = (0, 1, 0, 1, 0) and r = (5, 2, 5, 1, 5).

To train a deepfake detection model with the training data
D, we consider a CNN-transformer network, as illustrated
in Figure 2. For each training sample (x, Y ), the CNN+FPN
module transforms x into feature maps of size Rw×h×d,
which can be reshaped and row-wise ℓ2-normalized into a
token vector T ∈ RN×d and N = w × h is the spatial size.

We then form two vectors of tokens, including the patch
tokens U ∈ RN×d and the learnable class tokens, V ∈
RL×d. The two sets of tokens are passed through the trans-
former encoder ϕ, which performs self-attention to correlate
their features by

U
ϕ−−−→ Ũ ∈ RN×d , V

ϕ−−−→ Ṽ ∈ RL×d. (3)

We compute the similarity values of each patch token to all
other tokens by

S = max(Ũ Ũ⊤, 0) ∈ RN×N , (4)

where S is rectified into a nonnegative matrix such that all
of its elements are in [0, 1]. Since the similarity matrix is
symmetric and we are concerned only with the correlations
of each token to all other tokens, it suffices to focus on the
upper triangular part of S, excluding those on the diagonal.
We arrange these entries of interest in ascending order of
similarity value and denote them by

u = (u1, u2, . . . , un), (5)

where n = N(N − 1)/2, the size of upper triangle of S.

MIL deepfake classification. With the sorted list u of
similarity responses between patch tokens, we can consider
the task of deepfake detection from the multiple instance
learning (MIL) viewpoint. That is, we consider a face image
x as a bag and the positive label 1 indicates that x is indeed
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Figure 2. The model architecture of our method. There are two types of input tokens: patch tokens extracted from CNN+FPN and
learnable class tokens. The stage of model training is driven by three loss terms: LCLS, LBCE and LRank to achieve contrastive multiple
instance learning, multi-label localization and ranking, respectively. In the inference stage, the sequential order of deepfake manipulations
can be readily obtained from the rank order of the output multi-label probabilities.

fabricated as a deepfake one. In terms of the elements in
u, if x is a deepfake image, we expect to uncover that there
exists at least one ui (starting from the front end of u) with a
small value close to 0. On the other hand, a negative bag (i.e.,
x is not a deepfake image) implies all ui are close to 1. To
incorporate the above observations into the model learning
process, we introduce a contrastive formulation to realize the
MIL concept for deepfake detection. Assume that a deepfake
image x results in the k smallest similarity responses on the
front end of the sorted list u. We propose to compute its
probability of being deepfake by contrasting the average
responses from the positive and negative distributions:

P (x; k) = 2× exp(u+(k)/τ)

exp(u+(k)/τ) + exp(u−(k)/τ)
− 1 (6)

where τ is the temperature parameter,

u+(k) =
1

k

∑k

i=1
(a− ui), (7)

u−(k) =
1

n− k

∑n

i=k+1
(a− ui), (8)

and a is a scalar that is set to 1 in our implementation. The
contrastive ratio in (6) is expected to be close to 1 when x
is fake and 1/2, otherwise. After shifting and scaling as in
(6), it falls within [0, 1] and can be used to approximate the
probability of a given image x being a deepfake one by

P (x) = max
1≤k≤n

P (x; k), (9)

where the reason for seeking a maximum is supported by
the existence of at least one positive/fake instance. We thus
define the contrastive MIL loss for each (x, Y ) ∈ D as

ℓMIL(x) = −J(Y ) logP (x)− (1− J(Y )) log(1− P (x))
(10)

where J(Y ) = 1 if a sample (x, Y ) is a deepfake image,
and 0, otherwise. In addition, for an authentic image x, it

is reasonable to expect that all the similarity responses ui

should be close to 1. The useful observation motivates the
inclusion of the following regularization loss:

ℓReg(x) =

n∑
i=1

∥1− ui∥2, (11)

to ensure proper similarity responses for a real x. We can
then express the loss function for deepfake classification as

LCLS =
∑

(x,Y )∈D

ℓMIL(x) + (1− J(Y )) ℓReg(x). (12)

We are now ready to solve the multi-label ranking prob-
lem. To begin with, we average the patch-token and the
class-token logits to obtain f = (fi) = (fU + fV )/2. The
fusion between the two streams gives rise to multi-label
predictions {Pi(x)}Li=1, analogous to those from (16). The
main idea behind our formulation is as follows: by construct-
ing a rank-aware loss term, the learned network model is
expected to output multi-label predictions {Pi(x)}Li=1 that
respect the rank order r = (ri), implied by the given sample
(x, Y ) ∈ D. In other words, if i, j ∈ Y and ri < rj (i.e.,
facial component i is modified before facial component j
is manipulated), the network is trained to make multi-label
predictions with Pi(x) > Pj(x). To this end, we design the
following loss term for tackling multi-label ranking,

LRank =
∑

(x,Y )∈D
w(r, {Pi(x)}) · ℓ(x), (13)

where ℓ(x) ∈ RL is analogously defined as in (18) but
with multi-label predictions {Pi(x)}Li=1 based on the fused
logits f . To complete the explanation of (13), it remains to
elaborate how the rank-aware weight vector w(r, {Pi(x)})
is designed. As our aim is to preserve the rank order r in the
multi-label predictions {Pi(x)}Li=1, we let o = (oi) ∈ RL

to encode the rank order (nonincreasing order of probability
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values) among the multi-label predictions. We then define
the weight vector w(r, {Pi(x)}) = (wi) ∈ RL by

wi =

{
α, if i /∈ Y ∧ ri > |Y |;
α× |oi − ri|, otherwise, (14)

where α is a hyperparameter to our method. We now justify
the definition of w. Given a deepfake sample (x, Y ) ∈ D,
there are |Y | ≤ L components that have been modified. The
first condition in (14) indicates that the facial component i is
genuine and its corresponding prediction Pi(x) is not among
the |Y | largest outputs of {Pi(x)}Li=1. Such an outcome is
preferable, and thus wi is uniformly set to α. The second
condition includes two scenarios. The first is that i /∈ Y and
ri ≤ |Y |. This implies that the network model predicts a
high-rank deepfake probability to a genuine facial compo-
nent, which should be penalized with α × |oi − L|. (Note
that from (2), when i /∈ Y , we set ri = L.) The second
scenario concerns the case that i ∈ Y , i.e., facial compo-
nent i has been changed. We thus formulate the definition
of wi to enforce reducing the difference between oi and ri.
We conclude that by adding LRank to our formulation, the
learned network model can output multi-label predictions
{Pi(x)}Li=1 to detect which facial components have been
manipulated, and also the order of modifications, which is
implied by the resulting order of probability magnitudes.

Total loss. To train the proposed network model for si-
multaneously carrying out deepfake classification and lo-
calization, our method considers the following total loss:

LTotal = LCLS + λ1 LBCE + λ2 LRank, (15)

where λ1 and λ2 are parameters to weigh the effects of
specific loss terms, and LBCE = LU

BCE + LV
BCE. Note that

the two sets of multi-label probability predictions {PU
i } and

{PV
i } are computed only in the training stage so that LU

BCE

and LV
BCE can be utilized to achieve effective model training.

In inference, the multi-label prediction is provided solely
from the LRank head, as shown in Figure 2.

Finally, we emphasize that the proposed approach pro-
vides a unified solution to the deepfake problem. When
dealing with a classical task of binary deepfake classifica-
tion, it is convenient to exclude the LRank term from the
total loss in (15) and simply set the number of learnable
class tokens to one to achieve binary classification.

Multi-label localization and ranking. The contrastive
MIL formulation leads to a new loss term specified in (12)
for learning deepfake classification. To extend our method
for deepfake localization, we consider multi-label ranking to
uncover which facial components have been modified as well
as the underlying order of manipulations. The Transformer
encoder ϕ generates, for each sample (x, Y ), two sets of

features from the patch tokens, U ∈ RN×d and the class
tokens, V ∈ RL×d as in (3). Our network model applies
convolutions to U and then carries out average pooling to
obtain the patch-token logits fU = (fU

i ) ∈ RL. In a similar
way, we have the class-token logits fV = (fV

i ) ∈ RL. By
independently applying a sigmoid function σ to each logit,
we obtain two sets of multi-label predictions as

PX
i (x) = σ(fX

i ) ∈ [0, 1], i = 1, . . . , L, (16)

where X can be replaced by U or V to respectively imply
that the predictions are based on the features from patch
tokens or class tokens. Recall that the ground-truth label
vector Y yields the corresponding multi-label binary vector
y = (yi) and the rank vector r = (ri), which are both L-
dimensional. With the multi-label predictions given by (16),
we define the multi-label BCE loss as

LX
BCE =

∑
(x,Y )∈D

1 · ℓX (x), (17)

where “·” denotes inner product, 1 is all-ones vector, and the
ith element of ℓX (x) ∈ RL is defined by

ℓXi (x) = −yi logP
X
i (x)− (1−yi) log(1−PX

i (x)). (18)

It is worth mentioning that both the multi-label predictions
PU and PV from (16) are computed only during the training
stage. Including the two loss terms LU

BCE and LV
BCE helps

regulate model training and more critically align the class-
wise logits from the patch-token and class-token streams.

4. Experiments
We begin by detailing the experimental outcomes on the
sequential deepfake dataset [32]. Next, we present extensive
results within a multi-label context as well as in conventional
deepfake classification settings to illustrate the versatility of
our method. In addition, we conduct a thorough ablation
study to ascertain the contribution of each pivotal component
within our methodology. For clarity in comparative analysis,
techniques from other research that we include in our evalu-
ation will be highlighted in bold throughout the discussion.
Comprehensive dataset details are deferred to Appendix A.

Implementation details. For a fair comparison with the
SeqFakeFormer approach detailed by Shao et al. [32], regard-
ing the challenge of sequential facial manipulation detection,
we have configured our method to utilize ResNet-34 and
ResNet-50 architectures [15] as the convolutional neural net-
work (CNN) backbones for feature extraction. In addressing
the conventional deepfake classification task, facial frames
are first extracted from the source videos via RetinaFace [9]
and subsequently resized to a uniform resolution of 384×384
pixels. The training regimen for this task parallels that of the
sequential facial manipulation, with Swin Transformer as the
chosen backbone; however, we adjust the hyperparameters
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Method Seq-FaceComp Acc. Seq-FaceAttr Acc.

Multi-label (%) Ranking (%) Multi-label (%) Ranking (%)

Multi-Cls [32]∗ 78.32 69.66 85.14 66.99
DETR [37]∗ - 69.87 - 67.93
SeqFakeFormer [32]∗ - 72.13 - 67.99
Ours∗ 82.31 ↑ 3.99 73.72 ↑ 4.06 86.42 ↑ 1.28 68.82 ↑ 1.83

Multi-Cls [32]† 79.54 69.75 88.23 66.66
DRN [37]† - 66.06 - 64.42
DETR [3]† - 69.75 - 67.62
MA [37]† - 71.31 - 67.58
Two-Stream [26]† - 71.92 - 66.77
SeqFakeFormer [32]† - 72.65 - 68.86
MMNet [38]† - 73.93 - 69.27
Ours† 84.12 ↑ 4.58 74.54 ↑ 4.79 90.45 ↑ 2.22 69.58 ↑ 2.92

Ours‡ 84.36 ↑ 4.82 74.97 ↑ 5.22 90.74 ↑ 2.51 70.02 ↑ 3.36

For feature extractor:
∗

: ResNet-34
†

: ResNet-50
‡

: Swin Transformer as the backbone.

Table 1. The experimental results with multi-label and ranking scenarios on the Seq-FaceComp and Seq-FaceAttr datasets. Bold texts
denote the best results. Note that the performance gains by ours are based on the baseline, Multi-Cls.

to L = 1 and λ2 = 0, underscoring the adaptability of our
method across different tasks. A crucial point to note is the
computational scale of n—representing the size of the upper
triangle of S in (5) which is on the order of O(N4), with
N signifying the feature map dimensions. Consequently,
a brute-force approach in determining k across the range
of 1 to n as shown in (9) and (10) could markedly impede
training efficiency. To sidestep this computational bottle-
neck, we employ a strategy of uniformly sampling k values
between 1 to n at 100 distinct points, in lieu of an exhaustive
enumeration. For additional details on the training process,
we refer the readers to Appendix B.

4.1. Sequential deepfake manipulation.

To address the challenge of sequential facial manipulation,
our focus was on benchmarking the presented approach
against SeqFakeFormer [32]. SeqFakeFormer integrates
CNNs and transformers with an autoregressive mechanism
to handle the sequential aspect of the problem. In a depar-
ture from this, the current method incorporates a ranking
mechanism to manage the multi-label scenario, streamlin-
ing both the training and inference processes. To assess the
efficacy of this novel approach, the fixed accuracy (Fixed-
Acc) metric from [32] is employed on the Seq-FaceComp
and Seq-FaceAttr datasets. Fixed-Acc quantitatively mea-
sures the sequence alignment of predictions and annota-
tions, taking their rank-wise dependencies into account. The
approach’s performance is contrasted with several estab-
lished methods, including simple multi-classifiers (Multi-
Cls), DRN [37], DETR [3], MA [37], Two-Stream [26],
SeqFakeFormer [32], and MMNet [38]. The comparative

results are summarized in Table 1. The approach has proven
not only practical but also superior in addressing the nuanced
complexities of sequential deepfake detection, outperform-
ing the referenced methodologies.

4.2. Binary deepfake classification.

In the domain of binary deepfake classification, the per-
formance of the proposed method was assessed through
both intra-testing and cross-testing scenarios. Contempo-
rary research in deepfake detection can generally be divided
into two primary categories. The initial category concen-
trates on classification tasks [3, 24, 40], employing exclu-
sively authentic and counterfeit annotations for training. The
latter category imposes no restrictions on the training pro-
cess [13, 20, 34, 41]. Researchers within this group often
integrate adversarial learning techniques to generate more
sophisticated fake samples, thereby enhancing the robust-
ness of the classifier. This study synthesizes the strengths
of both aforementioned categories, leveraging a novel data
augmentation strategy in conjunction with an end-to-end
training framework. We also furnish a comparative analy-
sis of the method’s performance against several established
works: Multi-Att [40], SPSL [24], RECCE [2], Face
X-Ray [20], LRL [5], and SBIs [34]. These comparisons
are drawn within the conventional scope of binary deepfake
detection and span two distinct scenarios.
Intra-testing. The experiment entailed both the training and
evaluation of a model on an identical dataset. As illustrated
in Table 2 under the ”Intra-testing” column, a majority of
the methodologies have effectively addressed the deepfake
classification challenge, with even fundamental models like
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Method Intra-testing AUC Cross-testing (Train on FF++ only) AUC

FF++ (%) CDF (%) CDF (%) WDF (%) DFDC (%) DFD (%)

Xception [7] 96.30 99.73 61.80 62.72 48.98 87.86
EifficientNet-B4 [35] 99.70 99.81 64.29 63.83 - -
Multi-Att [40]† 99.29 99.94 67.44 59.74 - -
SPSL [24]∗ 96.91 - 76.88 - 66.16 -
RECCE [2]∗ 99.32 99.94 68.71 64.31 69.06 -
Face X-Ray [20]∗ 99.17 - 80.58 - 80.92 95.40
LRL [5]∗ 99.46 - 78.26 - 76.53 89.24
SBIs [34]† 99.64 93.74 93.18 - 72.42 97.56
SBIs [34]‡ 99.72 95.68 89.12 70.56 71.08 97.34

Ours‡ 99.82 ↑ 3.52 99.98 ↑ 0.25 91.56 ↑ 29.76 73.41 ↑ 10.69 75.17 ↑ 26.19 97.88 ↑ 10.02

For feature extractor:
∗

: Xception
†

: EifficientNet-B4
‡

: Swin Transformer as the backbone.

Table 2. The experimental results with intra-testing and cross-testing. The model for cross-testing is only trained on the FF++ dataset.
Bold texts denote the best results. Note that the performance gains in the last row are based on the baseline, Xception.

Model LU
BCE LV

BCE LU
CLS LU

Rank

Seq-FaceComp Acc.
Ranking (%)

I " 52.43
II " " 54.21
III " " 72.52
IV " " " 73.43
V " " " 72.87
VI " " " " 74.54

Table 3. Ablation study of the proposed losses on the Seq-
FaceComp with multi-label ranking setting (ResNet-50).

Xception [7] and EfficientNet-B4 [35] demonstrating impres-
sive accuracy. The method under discussion here exhibits
the highest accuracy, though the margin of improvement is
slight. Echoing the sentiments presented in the introduc-
tion, it appears that the intra-testing performance is nearing
a plateau. Consequently, the principal obstacle in deepfake
detection now lies in generalizing to cross-testing scenarios.

Cross-testing. The standard protocol was adhered to by
training each model exclusively on the FaceForensics++
(FF++) [30] dataset, followed by evaluating their perfor-
mance on the test sets of Celeb-DF (CDF) [22], WildDeep-
fake (WDF) [44], DeepFakeDetection (DFD) [30], and Deep-
Fake Detection Challenge (DFDC) [12].. The corresponding
outcomes are presented in the ”Cross-testing” column of Ta-
ble 2. To ensure equitable comparisons, the SBIs approach
was implemented using the Swin Transformer as a backbone,
denoted as SBIs‡ in Table 2. Our method yields substantial
performance gains, especially on the DFDC dataset, which
can be attributed to the implemented augmentation strategy
and the classification loss LCLS. This enhancement suggests
that harnessing the fine-grained information amongst patch
tokens is advantageous for deepfake detection.

Manipulation Components Nose Eye Eyebrow Lip Hair

Baseline (Multi-Cls) 0.41 0.38 0.35 0.46 0.42
Ours 0.72 0.61 0.66 0.75 0.74

Table 4. The correlation, quantified by coefficient of determination
R2, between manipulation components prediction and ordering.

4.3. Ablation study and analysis
Effect of each loss. In contrast to the Multi-Cls model de-
scribed in Table 1, the ResNet-50 model utilizing LU

BCE in
Table 3 exclusively generates multi-label predictions. These
predictions are then ranked by their respective probabili-
ties for each category before evaluation. Absent the LRank,
while the multi-label performance of ResNet-50 is notewor-
thy, there is a marked decrease in the Fixed-Acc metric,
attributable to the missequenced order of predictions. There-
fore, LRank plays an essential role in refining multi-label
predictions into ordered sequence predictions. Moreover, the
introduction of the contrastive Multiple Instance Learning
(MIL) loss, LCLS, markedly enhances model performance.
Correlation analysis. As outlined in Section 3, it is posited
that for any two facial components i and j included in Y ,
if ri < rj (indicating that facial component i is modified
prior to the manipulation of facial component j), the network
should be trained to predict labels such that Pi(x) > Pj(x).
To verify the association between the predictions and the or-
der of component alterations, the coefficient of determination,
denoted as R2, is calculated. The results in Table 4 reveal
a strengthened correlation between prediction and actual
order. This outcome validates the effectiveness of the pro-
posed method in addressing the ranking within multi-label
classification tasks, particularly through the use of LRank.
Qualitative results. The presentation of qualitative re-
sults continues with the use of Grad-CAM [31] on the Seq-
FaceComp dataset, as depicted in Figure 3. The heatmaps
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Manipulation Image 

(Eye-Nose)

Manipulation Image 

(Eyebrow)

(a) Baseline

(a) Baseline

(b) Ours

(b) Ours

Figure 3. Qualitative visualization. Grad-CAM results of two test
images from Seq-FaceComp.

Manipulation Image

(Eye-Nose) Baseline OursSeqFormer

Figure 4. Qualitative visualizations comparison between baseline
(Multi-Cls), SeqFakeFormer, and ours.

are generated by backpropagating the logits for ”Eyebrow”
and ”Eye-Nose” categories. Thanks to the integration of the
contrastive and the ranking mechanisms, Figure 3(b) exhibits
a heatmap that is both more concentrated and precise in com-
parison to the baseline. To further manifest the influence of
the contrastive MIL loss, LCLS, mean self-similarity values
as defined in (4) are provided for each respective region.
As anticipated, a patch exhibiting a lower similarity score
relative to its counterparts is indicative of the manipulated
area. Also, a qualitative comparison is included to facilitate
a visual assessment of heatmaps generated by the baseline
(Multi-Cls), SeqFakeFormer [32], and our method in Fig-
ure 4. This comparison elucidates the enhanced localization
precision by our contrastive MIL-infused formulation.
Effectiveness of LCLS. The evaluation of the contrastive
MIL loss, denoted as LCLS, is a crucial aspect of the study.
For visual clarification, Figure 5 features a histogram that
represents the average distribution 1

|D|
∑

D u across the
FF++ test set. In Figure 5(a), the classifier demonstrates
an ability to discern between authentic and fabricated facial
imagery based on slight variations in the distribution—a task
that is typically challenging for human observers. The inte-
gration of the LCLS leads to a more distinct and simplified
distribution demarcation between genuine and manipulated
instances. An examination of Figure 5(b) from a different
angle reveals that counterfeit facial images often arise from
the combination of two authentic facial images. The regions
that most commonly betray alteration are those at the facial
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(a) Without LCLS

0.0 0.2 0.4 0.6 0.8 1.0
cosine similarity

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

Genuine

0.0 0.2 0.4 0.6 0.8 1.0
cosine similarity

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

Fake

(b) With LCLS

Figure 5. The histogram of averaged distribution 1
|D|

∑
D u. (a)

The histograms from the baseline are like an “U” shape, no matter
whether the images are genuine or fake. (b) With the contrastive
MIL loss LCLS, we regularize the u close to 1 in genuine images
and encourage the k values from u to approaching 0 in fake images.

boundaries or composite parts, with the central facial zones
and extremities usually retaining their authenticity. Conse-
quently, the extent of these altered regions is small in relation
to the entirety of the image. This observation aligns with the
MIL principle that a forged image will present falsification
in a minimal number of key points, where k ≪ n—meaning
the number of these points is significantly less than the total
number of points or regions in the image.

5. Conclusion

This work aims to develop a unified framework that compre-
hensively addresses both sequential deepfake manipulations
and binary deepfake classification. To this end, we pro-
pose to decompose the general deepfake problem into three
parts: deepfake classification, deepfake localization, and ma-
nipulation order. The proposed approach introduces novel
contrastive MIL learning and explores multi-label ranking
to elegantly tackle all three subtasks. The extended experi-
mental results demonstrate the effectiveness and flexibility
of the proposed formulation in dealing with the various deep-
fake application scenarios. The provided analyses are also
reasonable to support the usefulness of our method.
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Lozano-Pérez. Solving the multiple instance problem with
axis-parallel rectangles. Artif. Intell., 89(1-2):31–71, 1997. 3

[12] Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole Baram,
and Cristian Canton-Ferrer. The deepfake detection challenge
(DFDC) preview dataset. CoRR, abs/1910.08854, 2019. 7, 1

[13] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Ting Zhang,
Weiming Zhang, Nenghai Yu, Dong Chen, Fang Wen, and
Baining Guo. Protecting celebrities from deepfake with iden-
tity consistency transformer. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 9458–9468. IEEE,
2022. 2, 6

[14] Zhihao Gu, Taiping Yao, Yang Chen, Shouhong Ding, and
Lizhuang Ma. Hierarchical contrastive inconsistency learning
for deepfake video detection. In Computer Vision - ECCV
2022 - 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part XII, pages 596–613. Springer,
2022. 2

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
770–778. IEEE Computer Society, 2016. 5

[16] Maximilian Ilse, Jakub M. Tomczak, and Max Welling.
Attention-based deep multiple instance learning. In Proceed-
ings of the 35th International Conference on Machine Learn-
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