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Abstract

Collaborative perception allows for information shar-
ing between multiple agents, such as vehicles and infras-
tructure, to obtain a comprehensive view of the environ-
ment through communication and fusion. Current research
on multi-agent collaborative perception systems often as-
sumes ideal communication and perception environments
and neglects the effect of real-world noise such as pose
noise, motion blur, and perception noise. To address this
gap, in this paper, we propose a novel motion-aware ro-
bust communication network (MRCNet) that mitigates noise
interference and achieves accurate and robust collabora-
tive perception. MRCNet consists of two main components:
multi-scale robust fusion (MRF) addresses pose noise by de-
veloping cross-semantic multi-scale enhanced aggregation
to fuse features of different scales, while motion enhanced
mechanism (MEM) captures motion context to compensate
for information blurring caused by moving objects. Exper-
imental results on popular collaborative 3D object detec-
tion datasets demonstrate that MRCNet outperforms com-
peting methods in noisy scenarios with improved perception
performance using less bandwidth. Our code will be re-
leased at https://github.com/IndigoChildren/collaborative-
perception-MRCNet.

1. Introduction
Collaborative perception enables information sharing

among multiple agents, including vehicles and infrastruc-
ture, to provide a comprehensive view of the environment
through information communication and fusion [37]. This
helps individual autonomous vehicles to tackle challenging
perception scenarios, such as physical occlusion or long-
range detection [27]. Collaborative perception technology
has gained significant attention due to its advantages [20].

Previous works on multi-agent collaborative perception

†Corresponding author: Yu Liu.

systems focus on improving perception performance by de-
signing superior fusion modules [2, 14, 29, 35] and effec-
tive communication strategies [8, 24, 33]. For example, the
CoBEVT [39] framework uses sparse transformers [32] to
capture local and global spatial interactions across agents.
The UMC [34] framework optimises communication by us-
ing a two-stage entropy-based selection mechanism. How-
ever, these frameworks assume ideal communication and
perception environments [7], while real-world scenarios are
affected by noise, such as pose noise in vehicle localiza-
tion, perception noise in raw data [21], and the motion blur
in fast-moving object detection. These noises cannot be ig-
nored for real-world applications of multi-agent collabora-
tive systems. Unfortunately, studies on robust collaborative
perception with real-world noise are largely limited.

In fact, different forms of noise in the real world can af-
fect the performance of collaborative perception systems in
different ways. For example, when noise interferes with the
positioning system, it affects the accuracy of pose informa-
tion. Pose information is vital for fusing the perception data
(e.g., raw data, intermediate features, or detection outputs)
of the collaborative agents in different coordinates [40].
Thus, pose noise can lead to information misalignment and
inconsistency among agents [26] during data fusion, result-
ing in a reduced system performance. Perception noise in-
troduces distortions into the sensor data, which affects the
final performance of the perception system. In addition, the
presence of motion blur due to rapid object movement af-
fects the accuracy of target detection [1, 9, 15, 30].

However, the development of a robust collaborative per-
ception system against real-world noise is complicated by
the following challenges. First, a robust fusion strategy that
adequately processes the multi-source perception data is re-
quired to deal with the perceptual misalignment caused by
pose noise. Second, a feature selection strategy that filters
out highly informative features is crucial to reduce band-
width consumption and improve the efficiency of multi-
agent collaboration [28]. Finally, it is desirable to find a sta-
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Figure 1. The overview of our proposed MRCNet framework. In MRCNet, agents exchange highly informative semantic features in two
stages through multiple rounds of communication to mitigate the effect of noise. Meanwhile, the ego agent uses motion context extracted
from historical sequences in the memory bank to reduce the effect of motion blur from moving objects.

ble and accurate feature extraction that eliminates the mo-
tion blur of rapidly moving objects.

To address the aforementioned challenges, we present
MRCNet, a motion-aware robust communication network
that mitigates noise interference and achieves more robust
and accurate collaborative perception. As shown in Figure
1, MRCNet facilitates effective information collaboration
among agents and improves the perception performance of
the ego agent through two main components, i.e., multi-
scale robust fusion (MRF) and motion enhanced mecha-
nism (MEM). Specifically, for the challenge of feature mis-
alignment due to collaborators’ pose noise, MRF improves
the robustness and performance of collaborative perception
through multi-scale semantic feature fusion. For perception
noise, we filter out highly informative semantic features for
multi-round communication based on channel-wise selec-
tion operations, while reducing communication bandwidth
consumption. In addition, to address the problem of motion
blur due to object movement, we introduce the MEM mod-
ule, which is based on the gate recurrent unit (GRU) archi-
tecture and is designed to capture and incorporate the mo-
tion context of the ego agent. This mechanism aggregates
historical information to refine the features of the current
frame. To validate the effectiveness of our MRCNet frame-
work, we carry out a comprehensive evaluation on three
open-source collaborative 3D object detection datasets, in-
cluding V2XSim [13], OPV2V [41], and V2XSet [40]. The
experimental results show that MRCNet outperforms com-
peting methods in noisy scenarios. Our main contributions
can be summarised as follows:

• We present a focused study of the real-world noise
problem in the collaborative perception task.

• We propose a motion-aware collaborative perception
framework, i.e., MRCNet, which presents a novel
multi-scale feature communication and fusion strategy
to improve the robustness of collaboration.

• Collaborative experiments are conducted on three
large open-source datasets, proving that our proposed
MRCNet can achieve the best perception performance
in noisy scenarios with less bandwidth.

2. Related Work
2.1. Communication in Collaborative Perception

Previous works [8, 23, 24] focus on solving the commu-
nication problem, as excessive communication bandwidth
consumption can lead to communication congestion and
latency. To address this challenge, most research consid-
ers how to achieve a better trade-off between performance
and bandwidth. There are two main methods to address
the challenge of bandwidth constraints: compressing the
communication volume or reducing the number of com-
municators. Several works reduce the communication vol-
ume by using learnable methods to facilitate efficient col-
laboration [18]. Where2comm [8] focuses on perceptually
critical areas and transmits foreground features with high
confidence. UMC [34] designs a two-stage communica-
tion strategy using extended entropy theory to filter out low
quality regions. As for selecting of effective collaborators,
Who2Com [24] proposes a multi-stage handshake commu-
nication mechanism that determines which agents to con-
nect with, and Select2Col [19] introduces a collaborator se-
lection method that selects contributing collaborators with
low latency. However, there is still a lack of research on
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the problem of pose noise in collaborative communication.
Therefore, we propose the multi-scale robust fusion mod-
ule, which selects highly informative features from multi-
scale features for communication and aggregation, thereby
reducing the effect of multi-source noise in collaboration.

2.2. Information Fusion in Collaborative Perception

In addition to addressing communication issues, collab-
orative perception systems focus on designing collabora-
tion modules to fuse information from multiple agents. The
goal is to improve perception capabilities and thereby opti-
mise performance in downstream tasks. Based on the stage
of data sharing and collaboration, the collaborative percep-
tion can be broadly divided into three categories [14, 40],
i.e., early fusion [42], intermediate fusion [8, 23, 35, 41],
late fusion [26, 31]. Early fusion involves sharing raw data
for a comprehensive view, but requires significant band-
width and overlooks contextual information. Intermediate
fusion extracts intermediate features from each agent’s ob-
servations before transmission, balancing perception per-
formance and communication bandwidth usage. Late fusion
shares detection outputs among agents, but produces sub-
optimal results due to individual inaccuracies or incomplete
perceptions. Among them, intermediate fusion methods
gain popularity due to their performance-bandwidth trade-
off [35, 40, 41]. V2VNet [35] proposes a spatially aware
graph neural network to aggregate features from multiple
agents. OPV2V [41] uses a global self-attention module
for feature fusion. As an extension of intermediate fusion,
our study introduces a novel cross-semantic fusion module,
which is designed to aggregate features in the presence of
feature misalignment caused by pose noise. Furthermore,
we integrate motion context into the perception system to
improve the understanding of the environment.

3. Method
In this paper, we focus on improving the robustness and

accuracy of collaborative perception in complex collabora-
tive scenarios. To achieve this, we propose a novel motion-
aware robust communication network (MRCNet) that in-
tegrates multi-scale feature selection, effective information
fusion, and motion-aware feature extraction into collabora-
tive perception. As shown in Figure 1, MRCNet consists
of four key components: feature extraction and selection,
multi-scale robust collaboration, motion enhanced mecha-
nism, and the 3D object detection head.

3.1. Problem Formulation

At time t, in a collaborative perception task involving
N agents, the selected i-th agent is defined as the ego
agent, and a communication graph is established among
them. Other agents within the communication range serve
as collaborators, providing complementary information and

helping the ego agent to make a comprehensive percep-
tion. Let X t

i be the point cloud observation and Yt
i be

the perception supervision of the ego agent. Each col-
laborator provides the ego agent with the information ex-
tracted from their local observations X t

j . Additionally, con-
sidering that we aim at modelling the motion-aware col-
laborations, we design a memory bank of the ego agent
that stores K frames of historical point data, denoted as{
X t−k

i

}K
k=1

=
{
X t−1

i ,X t−2
i , ...,X t−K

i

}
.

Thus, the motion-aware collaborative perception task
can be defined as follows:

Ŷt
i =

N∑
i=1

{
Yt
i |Ω

(
X t

i ,
{
X t

j

}N
j ̸=i

,
{
X t−k

i

}K
k=1

)}
, (1)

where Ω (·) is the proposed MRCNet. In this paper, we use
the 3D object detection task to evaluate the performance of
collaborative perception. Therefore, Ŷt

i are defined as the
predicted detection boxes along this line.

3.2. Feature Extraction and Selection

Feature Extraction. After the ego agent constructs a
vehicle-to-everything (V2X) collaboration graph connect-
ing neighbouring agents at the current frame t, it exchanges
pose data between agents for alignment purposes. The col-
laborators then transform their raw point cloud data into the
ego agent’s coordination using the transformation matrix Λ
computed based on the agents’ unique pose ξt. Next, each
agent uses a shared feature extractor consisting of S lay-
ers [41] to obtain multi-scale features from the raw data.
This process yields a set of features F t

i =
{
Fs,t

i

}S
s=1

for
the i-th agent, where i ranges from 1 to N .
Feature Selection. In contrast to previous methods that
transmit all features, we introduce a novel feature selection
technique. Perception noise introduces distortions into the
collaborative features, thereby misleading the collaborative
system. Therefore, our feature selection technique selects
highly informative features from the multi-scale features for
communication, effectively reducing the effect of noise in-
terference and conserving communication bandwidth.

The features extracted from the foreground regions are
particularly important due to their rich semantic informa-
tion [43,45]. To select highly informative features for effec-
tive communication, we use channel pooling operations to
evaluate the semantic density within each feature. Initially,
different scales of features are spatially flattened and then
concatenated into a feature sequence Et ∈ RC×L, where C
is the number of channels of the feature, L is the length of
the multi-scale feature after flatten. Subsequently, we per-
form channel-wise pooling operations on Et to generate the
semantic confidence map m:

m =
(
MaxPool

(
Et
)
+ AvgPool

(
Et
))

∈ R1×L, (2)
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Figure 2. The architecture of the proposed MEA component. (a)
shows the improved pyramid sampling aggregation module. (b)
shows the multi-scale deformable self-attention module.

where MaxPool (·) and AvgPool (·) refer to the channel-
wise max pooling and average pooling operations. The bi-
nary selection matrix for communication is defined as:

c = Φselect (m) ∈ {0, 1}1×L
, (3)

where Φselect (·) is the selection function to select the most
informative features for communication. The selected fea-
tures with high information are then obtained as Dt =(
c⊙Et

)
∈ RC×L, where ⊙ is the element-wise multi-

plication. The selected feature map provides highly infor-
mative features with less bandwidth usage.

3.3. Multi-Scale Robust Fusion

Cross-agent collaboration improves the visual represen-
tation and perception performance of the ego agent by ex-
ploiting shared semantic information. Previous attention-
based [39–41] approaches overlook to consider the robust-
ness of the collaboration system to noise. Therefore, we
introduce a novel multi-scale robust fusion (MRF) mod-
ule, which is designed for the robust multi-scale feature fu-
sion through two-stage communication. Multi-scale feature
fusion combines information of different semantics to im-
prove perception capability and robustness to pose noise.
The two-stage communication module consists of multi-
scale enhanced aggregation (MEA) and collaborative fea-
tures aggregation (CFA). MEA uses cross-semantic fusion
to overcome the challenge of feature misalignment caused
by pose noise, and CFA enables the ego agent to maximise
the perception information aggregation.
Multi-scale Enhanced Aggregation. In the first stage, the
ego agent broadcasts highly informative features to the col-
laborators. For the sake of clarity, let’s consider a commu-
nication process involving only two agents. Upon receiving
highly informative features, the collaborator first converts
these features from sequence to multi-scale representation,
then performs a preliminary fusion using the max fusion op-
eration to obtain the multi-scale feature U t

j =
{
Us,t
j

}S
s=1

.

To address the challenge of feature misalignment, MEA
incorporates cross-semantic modules to fully exploit the
strengths of different semantics [6]. As shown in Figure
2, MEA consists of two components: an improved pyramid
sampling aggregation (IPSA) module and a multi-scale de-
formable self-attention (MDSA) module [46].

Low-level features capture fine-grained details, while
high-level semantic features provide integrated contextual
understanding. The pyramid sampling aggregation mod-
ule [12, 25] uses simple convolution and channel-wise con-
catenation operations to fuse multi-scale features. This pro-
cess gathers information through cross-semantic fusion, re-
sulting in a more comprehensive and robust feature repre-
sentation that effectively mitigates noise interference. We
pyramid sample the feature Us,t

j to obtain the new multi-

scale feature
{
Usl,t
j

}S

l=1
, where Usl,t

j is the transformation

of Us,t
j from the s-th scale to the l-th scale, and the feature

sizes of the new multi-scale feature correspond to U t
j .

After multiple rounds of communication, the fine details
in the transmitted features tend to be compromised due to
cross-semantic fusion during the pyramid sampling. There-
fore, we improve the pyramid sampling aggregation module
by adding original multi-scale features from collaborators
to compensate for detailed features, which is the proposed
IPSA module. The output can be represented as:

Ũs,t
j = conv1×1

([
Us1,t
j ,Us2,t

j ,Us3,t
j

])
+ U t

j , s ∈ [1, 2, 3] ,

(4)
where [·, ·, ·] is the channel-wise concatenation, and
conv1×1 (·) is the 1× 1 convolution operation.

Following the IPSA module, the collaborator applies the
MDSA [46] module to further fuse multi-scale features and
mitigate the effect of pose noise on feature distortion. The
MSDA module consists of three linear layers W a, W v ,
W o, which separately compute the sampling offset ∆q, the
attention weight A and the value V at position q, where q
is the two-dimensional reference point in Ũs,t

j . The output
of MSDA at position q can be expressed as follows:

MSDA (q) =

H∑
h=1

W h·(
S∑

s=1

P∑
p=1

ψ
(
W aŨs,t

j (q)
)
·W v

(
Ũs,t
j

(
q +W oŨs,t

j (q)
)))

=

H∑
h=1

W h ·

(
S∑

s=1

P∑
p=1

Ahsp (q) · Vhs
(
q +∆hsp (q)

))
,

(5)

where H is the number of attention heads, S is the quantity
of different feature scales, and P is the number of sampling
points utilized in each scale. W h is the projection matrix
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and the softmax function ψ (·) is used to determine the at-
tention weight. Ultimately, we output the multi-scale format
feature Ct

j =
{
Cs,t
j

}S
s=1

after MSDA.
Collaborative Features Aggregation. In the second stage
of communication, the j-th collaborator uses the same fea-
ture selection technique to send highly informative features
Dt

j =
(
mj ⊙Et

j

)
back to the ego agent, where Et

j is the
feature sequence representation of Ct

j . In order to maximise
the aggregation of the semantic information provided by
the collaborator, inspired by [29], the ego agent uses the
spatial-wise adaptive fusion module on each scale of fea-
tures. The ego agent first stacks the feature maps of the
agents to form At

i =
{
As,t

i

}S
s=1

,As,t
i ∈ Rn×C×Hs×Ws ,

where s is the scale index and n is the maximum number
of agents. Max and average pooling is applied to As,t

i over
the first channel axis to create new feature maps As,t

i,max ∈
R1×C×Hs×Ws and As,t

i,avg ∈ R1×C×Hs×Ws , where Hs and
Ws represent the height and width of the feature. These
pooled feature maps are concatenated and passed through
a 3D convolutional layer with a ReLU activation function
to perform further fusion. The aggregated features provide
complementary information to the ego agent.

3.4. Motion Enhanced Mechanism

As mentioned above, the collaborative perception mod-
ule increases the range of perception and provides com-
pensation for occlusions [41], but it cannot directly ad-
dress the motion blur introduced by moving objects. To
combat this, we introduce the motion enhanced mechanism
(MEM), which uses motion context from historical point
cloud frames to achieve motion-aware perception.

When the ego agent initiates a collaboration request, it
projects the last K frames of the point cloud stored in the
memory bank to its current coordinate, producing a series of
bird’s eye view (BEV) feature maps

{
Bt−1, ...,Bt−K

}
. In-

spired by [4,22], we design a recurrent unit called the gated
motion unit (GMU). This unit aggregates motion context to
enhance frame-level features. Figure 3 illustrates the opera-
tion of GMU at timestamp t, showing that GMU takes three
inputs stored in the ego agent’s memory bank: the feature
Bt−1 of the previous frame, the feature Bt of the current
frame, and the enhanced feature Ht−1. Both B0 andH0 are
initialized as B1, and the output Ht represents the enhanced
feature of the current frame after passing through GMU.

Between successive frames, object motion causes spatial
transitions of features. Therefore, we use Mt = Bt −Bt−1

to capture motion context, which can represent the motion
clues of moving objects [17]. To reduce the effect of mo-
tion blur and to exploit historical information, we use a de-
formable convolution network [3]. The deformable convo-
lution network can better capture the features of objects by
adaptively adjusting the kernel size and shape. Specifically,

— Conv2d Deformable 
Conv2d

Gate

X

X

1-

+

Concat

Figure 3. The architexture of the proposed GMU component.

the 3× 3 convolutional layer is used on the motion context
Mt to obtain the spatial offsets ∆ptn. The convolutional op-
eration is then applied to Bt−1 to extract historical features
at position p. The output feature map It at location p is:

It (p) =
∑
pn∈R

W (pn) · Bt−1
(
p+ pn +∆ptn

)
, (6)

where W is the convolution weight, R is the kernel grid
and pn enumerates the locations in R.

To reduce the motion blur effect caused by the mov-
ing object between frames, it is necessary to determine
whether the features at each position should be updated.
Inspired by [36], we design an update gate G using the
channel-spatial attention module. The channel-spatial at-
tention module is applied to the stack feature of It and
Ht−1. After applying the sigmoid operation, the overall
attention map is normalised to a range of values between 0
and 1, as formulated below:

G = σ
(
Γ
([
It,Ht−1

]))
∈ RC×H×W , (7)

where [·, ·] is the channel-wise concatenation, Γ (·) is the
channel-spatial attention module, and σ (·) is the sigmoid
function for value normalisation. The value in G indicates
the probability that the corresponding position of Ht−1 is
reserved. Then the improved feature Ht is refined with the
previous improved feature Ht−1 as follows:

Ht = G ⊙Ht−1 + (1− G)⊙ It, (8)

where Ht ∈ RC×H×W is the final output of the GMU.

3.5. 3D Object Detection Head

After obtaining the fused output after MRF, the multi-
scale feature is encoded to the same size and concatenated
to Zt

i ∈ RC×H×W . Then, we concatenate Zt
i and Ht along

the channel dimension to derive the final representation Pt
i .

To generate the final object detection results, we then use a
dual-branch convolutional module on Pt

i to perform classi-
fication and regression tasks for each detection anchor. Sim-
ilar to the previous study [44], the formulation for the object
detection loss Ldet is expressed as:

Ldet = Lcls + βLreg, (9)
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Figure 4. Robustness of our proposed method and compared benchmark to varying levels of localization noise.
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Figure 5. Robustness of our proposed method and compared benchmark to varying levels of heading noise.

where Lcls is the cross-entropy loss for object classification,
Lreg is the smooth L1 loss for box regression [16], and β is
the balancing hyperparameter.

4. Experiments
To assess the robustness of our module in noisy collab-

oration scenarios, we conduct experiments on three large
open-source datasets. In particular, our experiments fo-
cus on LiDAR-based 3D object detection. We measure
detection performance using average precision (AP) at
intersection-over-union (IoU) thresholds of 0.50 and 0.70,
and note that the AP values are given as percentages. To
ensure a fair comparison, we exclude data and feature com-
pression operations in the compared methods.

4.1. Datasets and Experimental Settings

Datasets. V2XSim [13] is a V2X collaborative perception
dataset co-simulated by SUMO [10] and CARLA [5]. It
contains 10000 frames of LiDAR point clouds and 501K
annotated 3D boxes. There are 8000/1000/1000 frames
for the training/validation/testing, respectively. The de-
tection range of the agent is x ∈ [−32m, 32m] , y ∈
[−32m, 32m]. OPV2V [41] is a vehicle-to-vehicle collab-
orative perception dataset co-simulated by OpenCDA [38]
and CARLA [5], including 11464 frames of 3D point
clouds with 230K annotated 3D boxes, split into train-
ing/validation/testing of 6764/1981/2719 frames. The de-
tection range is x ∈ [−140m, 140m] , y ∈ [−40m, 40m].
V2XSet [40] is the first open dataset that includes both
V2X cooperation and realistic noise simulation, which is
co-simulated by OpenCDA [38] and CARLA [5]. There

are a total of 11447 frames in the dataset, and the
train/validation/testing splits are 6694/1920/2833, respec-
tively. The detection range setting is the same as OPV2V.
Implementation Details. In our implementation, we use
PointPillars [11] as the multi-scale feature extractor, with
the grid size of (0.4m, 0.4m) for the point cloud discreti-
sation. And we get intermediate features in three scales,
which is S = 3 as we define in the method. The MSDA
module uses 8 attention heads and 4 sampling points per
communication round. For V2XSim, we extract informa-
tion from three historical frames, while for V2XSet and
OPV2V, we use two historical frames. To train the detec-
tion model, we set the hyperparameter in the loss function to
β = 2 according to [11]. We use the Adam optimizer with
an initial learning rate of {1e− 3, 5e− 4, 3e− 4} for the
OPV2V, V2XSet and V2XSim datasets. The learning rate
is gradually reduced at epochs 35 and 45 on the V2XSim
dataset using a decay factor of 0.1. For the OPV2V and
V2XSet datasets, the decay occurs at epochs 30 and 40. All
models are trained on 2 NVIDIA RTX 3090 GPUs with a
batch size of 2 for a total of 50 epochs.
Benchmark Comparison. Our considering benchmark in-
cludes early fusion, intermediate fusion, and late fusion
techniques as well as single agent perception for com-
parison. In addition, we compare with six state-of-the-
art (SOTA) intermediate fusion models: When2Com [23],
V2VNet [35], AttFuse [41], V2X-ViT [40], DiscoNet [14],
CoBEVT [39], and Where2Comm [8].

4.2. Quantitative Results

The pose of the agent can be represented by a 6D vec-
tor. Since the agent only has yaw angle to measure rotation,
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Table 1. Performance comparison on the V2XSim, OPV2V, and
V2XSet datasets. The results are reported in AP0.5/0.7.

Model V2XSim OPV2V V2XSet

AP0.5 AP0.7 AP0.5 AP0.7 AP0.5 AP0.7

No Fusion 65.73 52.57 69.38 56.40 64.88 50.83
Late Fusion 71.22 56.99 82.76 61.64 76.31 53.33
Early Fusion 84.94 65.97 89.27 72.96 83.40 51.71

When2com [23] 73.36 52.52 82.78 67.66 74.73 40.62
V2VNet [35] 82.70 65.31 88.69 74.93 84.79 64.73
AttFuse [41] 81.70 66.24 88.54 72.91 84.37 66.27

V2X-ViT [40] 82.32 64.41 86.74 75.70 82.42 63.14
DiscoNet [14] 83.56 66.12 88.05 72.07 82.34 64.79
CoBEVT [39] 81.00 65.06 88.99 72.80 84.84 65.14

Where2comm [8] 77.57 57.02 86.58 68.97 80.83 58.72

MRCNet 85.33 69.82 89.77 76.12 85.00 66.31

we simplify the pose to ξ = (x, y, θ) in 2D space [26],
where x, y and θ represent the 2D center position and the
yaw angle of the agent’s accurate global position, respec-
tively. To simulate pose noise in real-world scenarios, we
add Gaussian noise with a standard deviation of 0.2m and
0.2◦ to the collaborators’ poses in the datasets. We compare
the performance of 3D object detection with other methods
on the datasets, as shown in Table 1. According to the ex-
perimental results, despite the introduction of pose noise,
our proposed MRCNet module shows superior performance
compared to the benchmark on all datasets.

In addition, to investigate the effect of different compo-
nents of pose noise on the collaborative perception system,
we conduct experiments to evaluate the robustness of the
models to localization noise and heading noise, separately.
Experiments are also performed to assess the effect of var-
ious levels of localization and heading noise. Specifically,
we add Gaussian noise with standard σxy ∈ [0.2m, 0.6m],
σθ ∈ [0.2◦, 1.0◦] separately to the collaborators’ poses. As
shown in the Figure 4 and the Figure 5, an increase in Gaus-
sian noise leads to a rapid decrease in AP0.7 values for the
other methods. This suggests that misaligned spatial fea-
tures from collaborators can mislead the collaboration sys-
tem. However, our method maintains superior performance
even under significant pose noise, demonstrating its ability
to effectively select and fuse multi-level semantic features
while achieving robustness to pose noise.

4.3. Component Analysis

Contribution of Major Components. To evaluate the ef-
fectiveness of our proposed component, we progressively
remove (i) MEM, (ii) FS (feature selection), (iii) IPSA and
(iii) MSDA and present the detection precision. Table 2
shows the results of our ablation studies, with each innova-
tive component contributing to the performance gains.
Varying Number of History Frames. We evaluate the ef-
fect of integrating different numbers of history frames from
the ego agent. As shown in Figure 6, integrating multiple

Table 2. Results of the ablation study of the proposed core com-
ponents on the V2XSim, OPV2V and V2XSet datasets.

MEM FS ISPA MSDA V2XSim OPV2V V2XSet

AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7

80.77 64.28 85.78 74.01 83.12 63.88
✓ 81.46 67.64 86.29 74.63 83.44 64.71

✓ ✓ 82.87 69.15 87.32 75.31 84.21 65.31
✓ ✓ ✓ 83.60 69.21 88.11 75.77 84.43 65.47

✓ ✓ ✓ ✓ 85.33 69.82 89.77 76.12 85.00 66.31

1 2 3 4 5
Number of historical frames

82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

AP
0.

5 
on

 V
2X

Si
m

83.97
84.35

85.33

83.69

82.69

1 2 3 4 5
Number of historical frames

67.0

67.5

68.0

68.5

69.0

69.5

70.0

AP
0.

7 
on

 V
2X

Si
m 69.0

69.45

69.82

68.58

67.68

Figure 6. Collaborative Performance with varying number of his-
tory frames. The MEM module works best when fusing three his-
tory frames on the V2XSim dataset, and two frames on the OPV2V
and V2XSet datasets.
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Figure 7. (a) shows the perception performance comparison when
using the proposed multi-scale method versus the single-scale ap-
proach. (b) is the comparison of collaborative perception perfor-
mance of our proposed method and other baseline methods with
different communication volume.

frames into the MEM module leads to an improvement in
the detection accuracy in the V2XSim [13] dataset. How-
ever, once the number of history frames exceeds three, no
further improvement is observed, as MEM faces challenges
in effectively capturing features with large changes.
Effect of Multi-Scale Collaboration. To evaluate the ef-
fectiveness of multi-scale feature collaboration in complex
scene perception, we separately evaluate the detection ac-
curacy achieved by single-scale and multi-scale feature col-
laboration. In our implementation, the single-scale feature
collaboration is modified by using only a single-scale de-
formable self-attention module [46] within MEA. The re-
sults of this comparison are shown in Figure 7a. By using
multi-scale feature fusion, our method exploits the advan-
tages of different semantics for better noise robustness and
achieves an improved detection performance.
Comparison of Communication Volume. Figure 7b
shows the performance-bandwidth trade-off of the proposed
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Figure 8. In the qualitative comparison on the V2XSim dataset under pose noise, green and red boxes indicate the ground truths and the
detection outputs, respectively. Our method outperforms previous SOTA models by achieving more accurate detection results.

MRCNet and the benchmark at different levels of commu-
nication bandwidth consumption. No fusion serves as the
baseline, as it does not involve any communication. Our
analysis reveals several key trends: (i) Where2Comm [8]
initially improves detection performance by transmitting
the most critical information, but struggles to filter out
noisy data as the transmission volume increases. When
Where2Comm [8] transmits all feature information, the
global attention mechanism captures the spatial information
and improves its effectiveness. (ii) Our proposed MRCNet
method consistently shows better detection performance at
different bandwidth levels, achieving superior results, and
multi-round communication can improve the performance
of collaborative perception, but excessive misaligned fea-
ture transmission can also cause degradation.

4.4. Case Study

Detection Results Visualization. Figure 8 provides a vi-
sual comparison of the detection results of different mod-
els in real-world scenarios. Our proposed MRCNet outper-
forms SOTA methods, with well-aligned bounding boxes
that closely match the ground truth labels. In contrast,
other models such as V2X-ViT [40], DiscoNet [14], and
CoBEVT [39] fail to accurately detect fast moving objects
accurately, resulting in missed objects or falsely-detected
predictions. Our proposed MRCNet exploits the multi-
level semantic features of collaborative systems and demon-
strates improved robustness against noise interference. In

addition, the proposed motion-aware fusion model extracts
motion information derived from moving objects, which
can effectively mitigate the negative effects of motion blur
in complex scenes, thus improving detection accuracy.

5. Conclusion

In this paper, we study the real-world noise problem in
multi-agent collaborative perception systems. We propose
a novel framework called motion-aware robust communi-
cation network (MRCNet) to mitigate noise interference
and achieve robust collaborative perception. MRCNet uses
two-stage communication to enable the selection, commu-
nication and fusion of multi-level semantic features among
agents. To address the problem of motion blur caused by
fast-moving objects, a GRU-based module is proposed to
capture the motion context and to refine the current BEV
feature. Comprehensive experiments on three open-source
datasets show that the proposed MRCNet outperforms ex-
isting competing methods in noisy scenarios. The further
consideration of communication issues and model hetero-
geneity will be a future direction.
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