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Abstract

Diffusion probabilistic models (DPMs) are a key com-
ponent in modern generative models. DPM-solvers have
achieved reduced latency and enhanced quality signifi-
cantly, but have posed challenges to find the exact inverse
(i.e., finding the initial noise from the given image). Here we
investigate the exact inversions for DPM-solvers and pro-
pose algorithms to perform them when samples are gener-
ated by the first-order as well as higher-order DPM-solvers.
For each explicit denoising step in DPM-solvers, we formu-
lated the inversions using implicit methods such as gradi-
ent descent or forward step method to ensure the robustness
to large classifier-free guidance unlike the prior approach
using fixed-point iteration. Experimental results demon-
strated that our proposed exact inversion methods signif-
icantly reduced the error of both image and noise recon-
structions, greatly enhanced the ability to distinguish invis-
ible watermarks and well prevented unintended background
changes consistently during image editing.

1. Introduction

Diffusion probabilistic models (DPMs) are rapidly advanc-
ing as a key component in modern generative models for
various applications such as unconditional image genera-
tion [8, 26, 31, 32], conditional image synthesis [7, 26]
including text-guided image generation [24, 26, 27] and
solving inverse problems in imaging [13, 16]. DPMs cre-
ate (or sample) diverse and high-quality images by gradu-
ally denoising random initial noises either in the image do-
main [39] or in the latent space [26] (called latent diffusion
model or LDM). However, this iterative denoising in DPMs
usually takes a long sampling time [39].

There have been a considerable amount of studies to
speed up the sampling time or the generative process in
DPMs [14, 15, 17, 19, 29, 31, 43]. For example, denois-
ing diffusion implicit model (DDIM) [31] has attempted to
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reduce the iterations (or steps) by formulating the denoising
process of DPM as an ordinary differential equation (ODE),
namely the diffusion ODE, and then by using the forward
Euler method to sample a high-quality image with much
fewer denoising steps (e.g., 50) than the diffusion steps
(e.g., 1000) that were used in training. High-order DPM-
solvers [14, 15] leverage fast ODE solvers such as expo-
nential integrators to further reduce the number of denoising
steps (e.g., 10), leading to significantly decreased sampling
time compared to DDIM (first-order DPM-solver). How-
ever, fast DPM-solvers make it challenging to trace back
the generative process and find the initial noise for a given
image.

There have been great interests in tracing the generative
process back, or inversion, which is a key component in a
number of applications such as image editing [6, 11, 23, 34],
style transfer [42], image-to-image translation [33], model
attacks [4], watermark detection [36] and image restora-
tion [10]. For example, image editing using DPM involves
finding the latent vector for a given image through inversion
and then using a different prompt in the generation pro-
cess from that latent noise [6, 33, 34]. Unfortunately, the
exact inversion of DPM-solvers is challenging. The naı̈ve
DDIM inversion does not subtract the estimated Gaussian
noise, but adds it to the clean image to find the correspond-
ing initial noise. As DDIM solves the diffusion ODE us-
ing the forward Euler method, the naı̈ve DDIM inversion
uses the same method in reverse order along the time axis.
This inversion is valid under the assumption that the esti-
mated noises are almost the same in both t and t + dt,
where dt is the time step. While this assumption approx-
imately holds for the methods with many (small) diffusion
steps, DPM-solvers with fewer denoising steps will break
this assumption so that the naı̈ve DDIM inversion will not
properly work anymore, leading to distortions [34].

Recently, several exact inversion methods have been pro-
posed to achieve smaller reconstruction errors compared
to the naı̈ve DDIM inversion. One approach is to replace
the standard DDIM with new invertible generation meth-
ods for image editing so that the initial noise for the gen-
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erated image by those methods can be estimated [34, 40].
However, they can not be used for the images generated by
the standard DDIM. Pan et al. [21] proposed an exact in-
version method that can be applicable for DDIM-generated
images, but it suffers a significant performance drop as the
classifier-free guidance increases (> 1) for enhancing im-
age quality [7] (Large classifier-free guidance means severe
extrapolation; see the supplementary material’s Eq. (S11).)
Note that all these prior works [21, 34, 40] can not be ap-
plicable for high-order DPM-solvers. The invertibility of
DPM-solvers is an important theoretical property that could
unlock a broader range of applications with DPMs just like
the invertibility works for other generative models such as
generative adversarial networks (GANs) [35, 38, 44] and
normalizing flows [22, 25, 37].

In this work, we investigate the exact inversions for
DDIM (first-order DPM-solver) as well as the faster high-
order DPM-solvers. For the standard DDIM with the for-
ward Euler method, we propose the backward Euler method
for its exact inversion, which is an implicit technique to
solve an optimization problem at each step (see Algo-
rithm 1). For high-order DPM-solvers with linear multistep
methods, exact inversion is more challenging since linear
multistep methods rely on past states so their exact inver-
sions require knowledge of unknown future states. To ad-
dress this issue, we propose the backward Euler with ap-
proximate high-order terms as illustrated in Figure 1 (see
Algorithm 2). Lastly, note that the naı̈ve DDIM inversion
is, in fact, the forward Euler method applied to the inver-
sion. Table 1 summarizes the existing sampling and inver-
sion methods as well as our contributions for them. Then,
we evaluate our proposed algorithms in various scenarios
and applications such as reconstruction of images and noise
in pixel-space DPM as well as LDM (Sec. 5.1), watermark

Order Sampling (T → 0) Inversion (0→ T )

1
backward Euler

(-)
forward Euler

(naı̈ve DDIM inversion)

1
forward Euler
(DDIM [31])

backward Euler
([21], Alg. 1)

≥ 2
linear multistep

(DPM-Solver++ [15])

backward Euler with
high-order term

approximation (Alg. 2)

Table 1. Summary of sampling and its corresponding inver-
sion. Naı̈ve DDIM inversion is not the corresponding inversion of
DDIM, thus resulting in errors. For DDIM [31], our Algorithm 1
and the concurrent work [21] will be the corresponding inversion,
but only ours can use classifier-free guidance > 1 for stably en-
hancing quality. For DPM-Solver++(2M) with a linear multistep
method [15], our Algorithm 2 using the backward Euler with high-
order term approximation will be the corresponding inversion.

detection and classification (Sec. 5.2) and the background-
preserving image editing (Sec. 5.3). While these exper-
iments were the tasks from [23, 34, 36], the proposed
methods significantly reduce reconstruction errors, thus en-
abling a new task like watermark classification and allowing
the background-preserving image editing without using any
original latent vectors. The contributions of this paper are:
• proposing the exact inversion methods to find the initial

noise of the images generated by various existing dif-
fusion probabilistic models including high-order DPM-
solvers by our proposed high-order term approximation,

• implementing the backward Euler with either the gradi-
ent descent or the forward step method that enables exact
inversion with large classifier-free guidance (> 1) for en-
hancing image quality, and

• demonstrating that our exact inversion methods signif-
icantly reduce reconstruction errors for existing ODE-
driven generation methods (DDIM, DPM-Solver++) in
both image and latent spaces, better detect noise-space
watermarks and even enable to classify which water-
marks were used, and substantially improve background-
preserving image editing.

2. Related Work
Diffusion probabilistic models: DPMs are a class of
generative models that iteratively denoise, ultimately gen-
erating original clean data. DPMs show notable advan-
tages in generating diverse and high-quality image [5, 8]
(pixel-space DPM). In particular, latent diffusion mod-
els [26] (LDMs) enable high-resolution image generation
through latent space processes. Now, DPMs are widely
applicable across various domains and applications such
as image generation [8, 26, 31, 32], conditional image
synthesis [7, 24, 26, 26, 27] and solving inverse prob-
lems [13, 16, 30].

Fast ODE solvers for DPMs: The iterative denoising in
DPMs usually takes a long sampling time [39] and over-
coming this drawback of DPM has been an active research
area. Early-stopping [17], neural operator [43], and pro-
gressive distillation [19, 29] can reduce sampling time, but
require additional training. DDIM [31], DPM-Solver [14],
and DPM-Solver++ [15] formulate the denoising process
of DPM as an ODE and then solve it using the forward
Euler method or fast ODE solvers like exponential inte-
grators to reduce the number of sampling steps from 1000
to 50 or 10 steps, respectively. Since these methods are
training-free, they can be practically used with open-source
DPMs [26, 31].

Exact inversion methods: Inversion has been important
for various applications such as image editing [6, 11, 23,
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Standard
sampling
methods

Inversion of
high-order

DPM-solvers

Inversion with
classifier-free
guidance > 1

Wallace et al. [34]
Zhang et al. [40]

% % !

Pan et al. [21] ! % %

Ours ! ! !

Table 2. Property comparisons of exact inversion methods.

33, 34, 42], model attacks [4], watermark detection [36]
and image restoration [10]. Exact inversions have been pro-
posed beyond the naı̈ve DDIM inversion. Wallace et al. [34]
proposed a new sampling method, which performs exact
diffusion inversion through invertible affine coupling trans-
formations that alternately track and modify two separate
quantities. Zhang et al. [40] proposed bi-directional approx-
imation integration to ensure symmetry between sampling
and inversion algorithms. However, these prior exact in-
version methods [34, 40] proposed new sampling methods,
thus exact inversions can be performed only for the images
generated by these special methods, not for the images gen-
erated by the standard sampling methods such as DDIM.
Recently, Pan et al. [21] proposed an exact inversion method
with fixed point iterations (FPIs) for the standard DDIM-
generated images. However, FPI sometimes does not con-
verge, thus resulting in poor performance with the increased
classifier-free guidance (> 1) while strong classifier-free
guidance was supposed to enhance image fidelity. For real
image editing, performing the exact inversion of high-order
DPM-solvers was not necessary since there is no true noise
vector. However, there are other applications where accu-
rate inversion is important. Table 2 summarizes the differ-
ences between those exact inversion methods.

3. Background
3.1. Fast Sampling in DPM

DDIM [31], DPM-solver [14], and DPM-solver++ [15] are
designed to recover x0 ∈ RD (image) from xT ∈ RD

(noise), which is considered to have undergone the fol-
lowing diffusion process (gradually adding Gaussian noise)
defined in t ∈ [0, T ]: qt0(xt|x0) = N (xt;αtx0, σ

2
t I),

where α2
t /σ

2
t , referred to the signal-to-noise ratio (SNR),

is a strictly decreasing function of t [12]. Sampling x0 can
be done by solving the diffusion ODE, expressed as

dxt

dt
=

(
f(t) +

g2(t)

2σ2
t

)
xt −

αtg
2(t)

2σ2
t

xθ(xt, t), (1)

where xT ∼ N (0, σ̃2I), f(t) := d logαt

dt , g2(t) :=
dσ2

t

dt −
2d logαt

dt σ2
t [12]. xθ(xt, t) is the data prediction model pa-

rameterized by learnable θ, aiming to estimate x0 from xt.

Note that we employ the diffusion ODE defined with data
prediction (xθ) rather than noise prediction (ϵθ), as it is
known to better perform in guided sampling at higher or-
der [15] (For the first order DDIM, they are equivalent).

Lu et al. [14], Zhang and Chen [41] have demonstrated
that ODE solvers utilizing exponential integrators [9] ex-
hibit significantly faster convergence compared to conven-
tional solvers when addressing Eq. (1). When provided with
an initial value xs at time s > 0, Lu et al. [15] derived the
solution xt for the diffusion ODE (Eq. (1)) at time t using
an exponential integrator as follows:

xt =
σt

σs
xs + σt

∫ λt

λs

eλxθ(xλ, λ)dλ, (2)

where xλ := xtλ(λ) is the change-of-variable forms for the
log-SNR (λ). λt := log(αt/σt) is the inverse of tλ(·).

Using the Talyor expansion at λti−1
, DPM-Solver++ ap-

proximates the exact solution at time ti, given xti−1 at time
ti−1:

xti =
σti

σti−1

xti−1 + σti

k−1∑
n=0

x
(n)
θ (xλti−1

, λti−1)︸ ︷︷ ︸
estimated∫ λti

λti−1

eλ
(λ− λti−1)

n

n!
dλ︸ ︷︷ ︸

analytically computed

+O(hk+1
i )︸ ︷︷ ︸

omitted

,

(3)

where hi := λti − λti−1
. Since the integral part (w.r.t. λ)

can be computed analytically and O(hk+1
i ) can be omitted,

the only thing we need to find is x
(n)
θ (xλti−1

, λti−1
) for

n = 0, . . . , k.
The simplest approximation is k = 1, and is equivalent

to DDIM [31] as follows:

xti =
σti

σti−1

xti−1 − αti(e
−hi − 1)xθ(xti−1 , ti−1). (4)

For more precise approximation (hence for smaller number
of steps), k = 2 is a good choice:

xti = (σti/σti−1
)xti−1

− αti

(
e−hi − 1

) (
(1 + 1/2ri)xθ(xti−1

, ti−1)− (1/2ri)xθ(xti−2
, ti−2)

)
.
(5)

This is called as DPM-Solver++(2M) [15], where ‘2M’ de-
notes second-order multistep. DPM-Solver++(2M) uses the
previous value (i.e., xti−2 ). Although DPM-Solver++(2M)
enables fast sampling within only 10 to 20 steps, the nature
of multistep methods becomes a tough obstacle for doing
exact inversion. This will be covered in detail in Sec. 4.1.

3.2. Naı̈ve DDIM inversion

DDIM inversion implies obtaining xti−1
given xti , so

xθ(xti−1
, ti−1) as in Eq. (4) is not explicitly obtainable
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(as xti−1 is unknown yet). To avoid the computational
overhead of the implicit method, the naı̈ve DDIM inver-
sion takes the simplest way of using xθ(xti , ti−1) instead
of xθ(xti−1

, ti−1). Each step of the naı̈ve DDIM inversion
is expressed as follows:

x̂ti−1
=

σti−1

σti

(
xti + αti(e

−hi − 1)xθ(xti , ti−1)
)
. (6)

This method can be interpreted as another forward Euler
method starting from t = 0; hence this is the exact inversion
of sampling via the backward Euler, as shown in Tab. 1.
Nevertheless, the naı̈ve DDIM inversion is widely used for
many applications such as image editing [6, 11] as they have
short runtimes.

4. Proposed Method
4.1. Exact Inversion of DDIM

Backward Euler method: From now on, we will distin-
guish that z is in the latent space and x is in the pixel space.
We employ the backward Euler method for exact inversion
of DDIM. Algorithm 1 shows the proposed exact inversion
of DDIM. For initialization, we perform the naı̈ve DDIM
inversion (line 4 of Algorithm 1). For iterations (lines 5-8
and UPDATE(ẑti−1

; ẑti , z
′
ti ) of Algorithm 1), we use either

gradient descent:

Taking gradient step on∇ẑti−1
∥ẑti − z′

ti∥
2
2,

or the forward step method:

ẑti−1
= ẑti−1

− ρ(z′
ti − ẑti),

where z′
ti ←

σti

σti−1
ẑti−1 − αti(e

−hi − 1)zθ(ẑti−1 , ti−1).

Gradient descent or the forward step method vs FPI:
One may try employing FPI rather than gradient descent or
the forward step method. However, in [21], it is observed

Algorithm 1 Inversion of DDIM via the backward Euler.

Require: initial value x, time steps {ti}Mi=0, data prediction
model zθ , UPDATE, D† in Sec. 4.1.

1: Denote hi := λti − λti−1 for i = 1, . . . ,M .
2: ẑtM ← D

†(x0) if LDM else x0

3: for i←M to 1 do
4: ẑti−1 ←

σti−1

σti

(
ẑti + αti

(
e−hi − 1

)
zθ(ẑti , ti−1)

)
5: repeat
6: z′

ti ←
σti

σti−1
ẑti−1 − αti(e

−hi − 1)zθ(ẑti−1 , ti−1)

7: UPDATE(ẑti−1 ; ẑti ,z
′
ti )

8: until converged
9: end for

10: return ẑt0

that the accuracy of reconstruction (measured by LPIPS and
SSIM) significantly decreases when the classifier-free guid-
ance ω is larger than 1. In this paragraph, we briefly explain
why FPI is vulnerable to large classifier-free guidance. In
our setting (Eq. (4)), the FPI operator F can be defined as:

F (·) :=
σti−1

σti

αti(e
−hi − 1)xθ(·, ti−1) +

σti−1

σti

x̂ti . (7)

To ensure the convergence of FPI, at the very least,
F needs to be nonexpansive, and a sufficient con-
dition for being nonexpansive is that xθ(·, ti−1) is
(σti−1

αti
(e−hi−1)/σti

)−1-Lipschitz continuous. Consider-
ing the classifier-free guidance ω > 1, the model should be
(|ω|+ |1−ω|)−1(σti−1

αti
(e−hi−1)/σti

)−1-Lipschitz contin-
uous (See Sec. S1.2 in the supp.) This suggests that the in-
version via FPI is likely to fail when the classifier-free guid-
ance ω is large. In contrast, the forward step method (gra-
dient descent) can adjust step sizes (learning rates). When
the step size is reduced, it takes more time to converge, but
is more likely to converge. This property enhances the ro-
bustness of our approach with large classifier-free guidance
(Sec. 5). In fact, it is widely known that gradient descent or
the forward step method is more stable than FPI [28].

Decoder inversion: As LDMs use latent variables in the
diffusion process, they necessarily require a decoder (D)
that can convert latent variable (z0) to image (x0). Previ-
ous studies [21, 34] used the encoder (E) for the inversion
of the decoder. However, since the encoder is not the exact
inverse of the decoder, it induces reconstruction errors (so
[21, 34] set ∥D(E(x0)) − x0∥ as a lower bound for recon-
struction errors). For reducing this error, we perform the
exact inversion of the decoder. As in many GAN inversion
studies [1–3, 38], we employ the gradient descent as:

1: function D†(x) // Decoder inversion
2: z ← E(x)
3: repeat gradient step on∇z∥x−D(z)∥22
4: until converged
5: return z
6: end function

We use Algorithm 1 in Sec. 5.1 and 5.3.

4.2. Exact Inversion of High-order DPM-Solvers

In this subsection, we propose an exact inversion method
for high-order DPM-solvers. Our motivation for this idea
is that values prior to ti−1 (i.e., xti−2

,xti−3
, . . . ), which

cannot be estimated at the current time, have been used for
higher-order terms in Eq. (3), i.e.,

σti

k−1∑
n=1

x
(n)
θ (xλti−1

, λti−1
)

∫ λti

λti−1

eλ
(λ− λti−1)

n

n!
dλ.

(8)
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ŷti−1

ŷti−2

x̂ti−1

x̂ti
...

noise

image

naı̈v
e DDIM

inversion

ODE trajectory

proposed method:

fine-grained naı̈ve
DDIM inversion
high-order term
approximation
backward Euler

Figure 1. An abstract of our algorithm for exact inversion of
high-order DPM-solvers. Since x̂ti−1 , x̂ti−2 , . . . are needed for
high-order terms but unobtainable, we estimate them via the fine-
grained naı̈ve DDIM inversion (ŷti−1 , ŷti−2 , . . . ). Then we use
the backward Euler method with high-order term approximation.

Their impact on the overall computation is expected to
be relatively small. So we estimate these values (i.e.,
xti−1 ,xti−2 , . . . ) using a slightly less precise method, such
as the naı̈ve DDIM inversion with a finer step size (the yel-
low lines in Fig. 1). After that, we find x̂ti−1

by the back-
ward Euler method (the blue lines in Fig. 1), as the high-
order terms (Eq. (8)) are treated as constant (the green lines
in Fig. 1). Figure 1 shows an abstract of our algorithm for
exact inversion of forward linear multistep methods.

To illustrate this with DPM-Solver++(2M) (Eq. (5)), we
provide Algorithm 2 (see the supplementary material). Us-
ing our key idea, we first obtain ŷti−1

and ŷti−2
as substi-

tutes for x̂ti−1
and x̂ti−2

using a fine-grained naı̈ve DDIM
inversion. Then we use ŷti−1 and ŷti−2 to find x̂ti−1 via
the backward Euler method with high-order term approxi-
mation as follows:

d′
i ← zθ(ẑti−1

, ti−1) +
zθ(ŷti−1

, ti−1)− zθ(ŷti−2
, ti−2)

2ri︸ ︷︷ ︸
high-order term approximation

,

(9)
where ri =

λti−1
−λti−2

λti
−λti−1

, and these operations are repeated
until convergence is achieved. We employ Algorithm 2 in
Sec. 5.1 and 5.2.

5. Experiments
5.1. Reconstruction

In this subsection, we perform the reconstruction of noise
and image to evaluate the exact invertibility of the pro-
posed methods. For simplicity, let x0 = DPM(xT ). Let
DPM† : RD → RD be the inversion of DPM. Let
x̂T = DPM†(x0) and x̂0 = DPM(x̂T ). Exact inver-
sion of noise refers to xT = x̂T , and thus, the goal is to
minimize NMSE(xT , x̂T ) = ∥xT − x̂T ∥22/∥xT ∥22. Simi-
larly, exact inversion of the image refers to x0 = x̂0, and
the objective is to minimize NMSE(x0, x̂0). For practical

utility, we used LDM [26] with the classifier-free guidance
ω = 3.0. To evaluate algorithm performance independently,
unaffected by decoder inversion or classifier-free guidance,
we also use an unconditional pixel-space DPM [31] trained
on the ImageNet64 dataset1.

Experimental results show that our Algs. 1 and 2 signif-
icantly reduce reconstruction errors than the naı̈ve DDIM
inversion, whether it’s for images or noise, DDIM or high-
order DPM-solver, or pixel-space DPM or LDM (see Fig. 2
and Fig. 3 for qualitative and quantitative results, respec-
tively). In Fig. 3c, we also show that inversion with FPI
(‘AIDI E’ of Pan et al. [21]) exhibits poor performance in
noise reconstruction, as we noted in Sec. 4.1.

Some may argue that fine-grained naı̈ve DDIM inver-
sion should perform well as it converges to the diffusion
ODE trajectory (i.e., Eq. (2)). However, that is not the case,
as DPM-solvers make a discretized trajectory. Even if we
make the naı̈ve DDIM inversion finer to closely follow the
ODE solution, it cannot further reduce the reconstruction
error, as seen in the black lines in Fig. 3. Therefore, we
must use implicit methods like our algorithms to address it.

5.2. Application: Tree-ring watermark

Wen et al. [36] proposed a new method for watermarking
diffusion-generated images. It is invisible to human ob-
servers and robust to image manipulations. It works by em-
bedding a watermark into the Fourier transform of the ini-
tial noise vector for image generattion. The watermark can
be detected by inversion (to recover the initial noise vector)
and comparing the Fourier transform to the expected wa-
termark pattern. It can protect the intellectual property of
the diffusion model and track diffusion-generated images’
provenance. In Sec. 5.2, we demonstrate that our proposed
methods can enhance watermark detection.

In this subsection, we demonstrate the improved detec-
tion of watermarks [36] by employing our algorithm, even
when the images were generated using high-order DPM-
solvers. Furthermore, with improved reconstruction, our
algorithm can perform classification as well. We used
LDM [26], DPM-Solver++(2M) 10 steps, with classifier-
free guidance ω = 3.0 to generate images. We embedded
three different watermarks as in the first column of Fig. 4.
Figure 4 provides qualitative results of watermark detection,
where the images were generated with the same prompt and
different watermarks. Our Algorithm 2 exhibits the best re-
construction performance.

Figure 5 shows quantitative results of watermark classi-
fication, where 100 images were generated for each water-
mark. The l1 norm is used for classification, as same in the
detection [36]. Our Algorithm 2 exhibits the best perfor-
mance in classification, as well as in the reconstruction.

1https://github.com/LuChengTHU/dpm-
solver/tree/main/examples/ddpm and guided-diffusion
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Figure 2. Our Algs. 1 and 2 significantly reduce reconstruction errors, whether it’s for images or noise, DDIM or high-order DPM-solvers,
or pixel-space DPM or LDM. The generation / inversion method varies for each row, e.g., ‘naı̈ve / 1000’ indicates that we performed the
naı̈ve DDIM inversion (Eq. (6)) for 1000 steps. ‘Alg. 1 / 50’ and ‘Alg. 2 / 10’ attempt exact inversion with 50 steps of DDIM and 10 steps
of DPM-Solver++(2M), respectively. Achieving exact inversion in LDM is challenging due to information loss from the autoencoder and
instability caused by a classifier-free guidance of 3.0. Nonetheless, our algorithm produces good results also in LDM.
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 w/ high-order term
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Figure 3. Our algorithms reconstruct better than the naı̈ve DDIM inversion. When the number of steps in the naı̈ve DDIM inversion
is increased, the reconstruction error can be reduced, but it becomes saturated (black). Since DPM-solvers are incorrect in the aspects
of the diffusion ODE, correcting their errors can further reduce the reconstruction errors. 3a and 3c were generated with DDIM using
50 steps, so Algorithm 1 based on the backward Euler (blue) minimizes the reconstruction errors, while 3b and 3d were generated with
DPM-Solver++(2M) using 10 steps, making Algorithm 2, which approximates high-order terms, the best performer (red). Pan et al. [21]’s
method using FPI exhibits poor performance on noise reconstruction in 3c, because of its weakness at large classifier-free guidance (> 1).
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Embedded
watermark

Generated by
DPM-Solver++

naı̈ve DDIM inversion
(Recon. / Error)
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Figure 4. Our Algorithm 2 enables accurate reconstruction of Tree-ring watermarks [36] in the Fourier space of the initial noise (zT ). The
Tree-ring watermark is embedded in the Fourier space of the initial noise in the shape of tree-rings and can be utilized for copyright tracing
(column 1). Then, the image is generated starting from the watermarked noise. The practical approach is to accelerate image generation
using methods like DPM-Solver++(2M) [15] (column 2). Using Algorithm 2 (columns 7-8) for watermark reconstruction results in lower
errors compared to employing naı̈ve DDIM inversion (columns 3-6). We provide NMAE on each error map.
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Figure 5. Our algorithm’s strong reconstruction performance allows for the classification of tree-ring watermarks as well. For copyright
tracing, it is possible to generate images by embedding different unique watermarks. Three distinct watermarks (WM 1,2, and 3) are
displayed in the first column of Fig. 4. In the confusion matrices, ‘Predicted’ corresponds to the watermark with the smallest l1 difference
among the three watermarks. In Figs. 5a and 5b, the naı̈ve DDIM inversion encounters difficulties in detecting WM 2. In contrast (Fig. 5c),
our Algorithm 2 performs well in detecting WM 2.

5.3. Application: Background-preserving editing

One of the most common applications is image editing [6,
11, 18, 20]: to manipulate an image based on a new condi-
tion while preserving information from the original image.
Patashnik et al. [23] proposed methods to localize the vari-
ations exclusively on the object while preserving the back-
ground. They suggested a prompt-mixing technique that
switches the original and new prompt during the denois-
ing process. Additionally, they introduced two localization
techniques: self-attention map injection and blending the
original latent image with the generated one. These tech-
niques allowed them to utilize the information included in
the original latents, the image structure and detailed appear-
ance of the desired region (e.g., background, objects to pre-
serve). In Sec. 5.3, we experimentally demonstrate our pro-
posed methods enable the background-preserving editing,

without the need for the original latents.

Here, we experimentally show our Algorithm 1 enables
the background-preserving editing proposed by Patashnik
et al. [23], even though we don’t know the whole denois-
ing process of the original image (i.e., trajectory, (zti)

M
i=0).

Note that Patashnik et al. [23] employed oracle for the orig-
inally generated image, but any DDIM inversion methods
(i.e., they knew the trajectory). Figure 6 displays the results
of performing background-preserving image editing [23],
where the original trajectory ((zti)

M
i=0) is estimated using

the naı̈ve DDIM inversion and our Algorithm 1. We con-
ducted the same experiment on 60 (original) × 5 (edited) =
300 images as shown in Tab. 3. Note that the classifier-free
guidance ω is set to 7.5, demonstrating the robustness of our
method.
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Method Edited Error map (×5) Edited Error map (×5)

Oracle
[23]

naı̈ve
DDIM
inversion

naı̈ve
DDIM
inversion
w/ D†

Alg. 1
(Ours)

Figure 6. Our Algorithm 1 enables the preservation of the background and upholds high diversity of editing, even though the image’s
original trajectory (i.e., (zti)

M
i=0) is unknown. The first row (Oracle) shows the result when the entire generating trajectory is provided,

while in the subsequent rows, only the generated image (i.e., x0) is given. In the latter cases, we estimate the trajectory through each
inversion method and perform editing based on the inversion results. While D† (i.e., decoder inversion) enhances overall performance
when employed with the naı̈ve DDIM inversion, using the backward Euler as Algorithm 1 is necessary to achieve background-preserved
edits at a level similar to that of the oracle. We provide NMSE of background on each error map.

Oracle
[23]

naı̈ve DDIM
inversion

naı̈ve DDIM
inversion w/ D†

Alg. 1
(ours)

11.0±1.7 30.4±4.8 18.4±2.0 12.8±2.0

Table 3. Average NMSE (×10−3) with 95% confidence interval,
on the background-preserving editing experiment.

Naı̈ve DDIM inversion FPI [21] Alg. 1 Alg. 2

3 (50 steps) 59 (1000 steps) 32 79 159

Table 4. Average runtime of various inversion algorithms in LDM
including our Alg. 1 and 2 (in second).

6. Conclusion
We have presented exact inversion methods of DPM-
solvers, to seek the initial noise of generated images. Our
methods work by the backward Euler implemented with
gradient descent or the forward step method, which is robust
to large classifier-free guidance. For the inversion of high-
order DPM-solvers, we approximate high-order terms using
the naı̈ve DDIM inversion. Our method can be applied to
various applications, such as watermark detection and the
background-preserving editing. Our method is widely ap-

plicable to standard DPMs, thus can encourage to create
new DPM applications where exact inversion is essential.

Limitations The proposed method comes with a signifi-
cantly larger computational time compared to naı̈ve DDIM
inversion, as shown in Tab. 4. Additionally, it assumes
prior knowledge of the prompt in the case of LDMs. Al-
though we tried to find ‘exact’ inversion (NMSE < 10−6 in
Fig. 3a), exactnesses were not perfect on accelerated sched-
ulers (Fig. 3b) or in LDMs (Figs. 3c and 3d). In those cases,
our method should be referred to as ‘near exact inversion’
rather than ‘exact inversion’. Lastly, estimating the prompt
and initial noise jointly is left as future work.
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