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Abstract

This work delves into the task of pose-free novel view
synthesis from stereo pairs, a challenging and pioneering
task in 3D vision. Our innovative framework, unlike any
before, seamlessly integrates 2D correspondence matching,
camera pose estimation, and NeRF rendering, fostering a
synergistic enhancement of these tasks. We achieve this
through designing an architecture that utilizes a shared rep-
resentation, which serves as a foundation for enhanced 3D
geometry understanding. Capitalizing on the inherent in-
terplay between the tasks, our unified framework is trained
end-to-end with the proposed training strategy to improve
overall model accuracy. Through extensive evaluations
across diverse indoor and outdoor scenes from two real-
world datasets, we demonstrate that our approach achieves
substantial improvement over previous methodologies, es-
pecially in scenarios characterized by extreme viewpoint
changes and the absence of accurate camera poses. The
project page and code will be made available at: https:
//ku-cvlab.github.io/CoPoNeRF/.

1. Introduction

In real-world scenarios aimed at rendering novel views from
unposed images, the initial step often involves employing
an off-the-shelf camera pose estimation [46, 50, 56, 67].
These estimated poses are then typically integrated with a
pre-trained generalized NeRF model [20, 66] to facilitate
view synthesis. However, this approach is not without its
drawbacks. The primary limitation stems from the inherent
disparities or misalignments that may arise when combin-
ing models dedicated to different tasks. This method risks
potential inconsistencies, as it treats pose estimation and
NeRF rendering as distinct, separate processes, potentially

Correspondence Estimation (w. confidence map)

Pose Estimation (visualized by epipolar lines)

Novel View Rendering 

Input two views (pose unknown)

Figure 1. Overview. Given an unposed pair of images, possi-
bly under extreme viewpoint changes and with minimal overlap-
ping, our framework synergistically performs and effectively fos-
ters mutual enhancement among three tasks – 2D correspondence
estimation, camera pose estimation, and NeRF rendering – to en-
able high-quality novel view synthesis.

leading to suboptimal results in the synthesized views.
Recent developments in alternative approaches have

trended towards the integration of pose estimation with
NeRF rendering, thus leading to the advent of pose-free,
generalized NeRF approaches [12, 52]. This has been pri-
marily realized through the meticulous assembly of devel-
oped modules in a multi-task framework. For example, [52]
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exploited correspondence information sourced from a well-
established RAFT optical flow model [55] and depth infor-
mation from a single-view generalizable NeRF model [66]
for pose estimation. [12] combined a generalized NeRF
module with a RAFT-like recurrent GRU module, respon-
sible for camera pose and depth estimation, and imple-
mented a three-stage training scheme for these two mod-
ules. Despite the promising results shown by these semi-
nal approaches, the intrinsic complementarity of the three
key tasks, correspondence estimation, pose estimation, and
NeRF rendering, are not fully recognized and utilized. This
resulted in solutions that were suboptimal, particularly in
scenarios characterized by extreme viewpoint changes or
minimal overlapping regions.

Acknowledging the shared core objectives between the
three tasks, which is the precise interpretation and recon-
struction of three-dimensional geometry from two dimen-
sional image data, we emphasize the critical importance of
cultivating a shared representation among them. To this
end, we propose a unified framework, namely CoPoNeRF,
designed to estimate three distinct outputs, correspondence,
camera pose, and NeRF rendering from this common rep-
resentation. By adopting joint training, we maximize the
synergy between these components, ensuring that each task
not only contributes to but also benefits from this shared
medium. This integrated approach effectively pushes the
boundaries beyond what is achievable when treating each
task as an independent and disjoint problem.

We evaluate the effectiveness of our framework using
large-scale real-world indoor and outdoor datasets [36, 68].
Our results demonstrate that this framework successfully
synthesizes high-quality novel views while simultaneously
achieving precise relative camera pose estimation. We also
provide extensive ablation studies to validate our choices.
Our contributions are summarized as follows:
• We tackle the challenging task of pose-free generalizable

novel view synthesis, addressing the minimal view over-
lap scenarios that are not considered by prior methods.
This aspect of our approach illustrates its applicability in
handling complex, real-world conditions.

• We propose a unified framework that enhances the pro-
cesses of pose estimation, correspondence estimation,
and NeRF rendering. This framework is designed to ex-
ploit the interdependencies of these components with a
shared representation learning.

• Leveraging the advanced representations learned by our
framework, we achieve state-of-the-art performance not
only in pose-free scenarios but also in generalized novel
view synthesis with poses.

2. Related Work
Generalized Neural Radiance Fields. Classical NeRF
methodologies rely on numerous multi-view image

datasets [4, 42], while recent efforts aim to learn reliable
radiance fields from sparse imagery with a single feed-
forward pass [10, 13, 20, 33, 58, 66]. These, however,
depend heavily on precise camera poses and signifi-
cant view overlap. To lessen this dependency, various
frameworks optimize NeRF by integrating geometry
and camera pose refinement, offering a degree of pose
flexibility [7, 32, 35, 57, 71].

We focus on generalized frameworks for pose-free view
synthesis; DBARF [12], for example, proposes a pose-
agnostic solution by combining camera pose estimation
with novel view synthesis. However, the network is trained
in a staged manner with a local cost volume to encode
multi-view information, struggling with minimal overlap-
ping pairs and failing to fully harness the potential synergy
between pose estimation and NeRF. FlowCAM [52], on the
other hand, leverages a weighted Procrustes analysis [17]
and an established optical flow network for point correspon-
dences [55]. Despite its attempt to formulate a multi-task
framework, the reliance on the flow model inevitably risks
failures in both view synthesis and pose estimation, espe-
cially for images with extreme viewpoint changes.

Establishing Correspondences. Correspondence esti-
mation, pivotal for various applications such as SLAM [21],
SfM [51], and camera pose estimation [43], traditionally en-
tails a sequence involving keypoint detection [6, 18, 39, 48],
feature description [22, 45, 64], tentative matching, and out-
lier filtering [2, 3, 8, 60, 65]. While outlier filtering stage
also holds significant importance in relative pose estima-
tion [5], the intrinsic quality of feature descriptors and the
validity of matching scores markedly influence the pose pre-
diction outcomes [9, 46]. In this research, we harness the
power of meticulously established correspondences, lever-
aging them to bolster both pose estimation and neural ren-
dering processes, optimizing the overall task efficacy.

Camera Pose Estimation. Classic camera pose estima-
tion methods primarily utilize hand-crafted algorithms to
solve pose estimations using a set of correspondences, fo-
cusing on improving descriptor quality, cost volume, or out-
lier filtering to enhance correspondence quality [25, 37, 43].
More recent works have shifted towards learning direct
mappings from images to poses. Notable advancements
include the use of CNN-based networks to solve pose re-
gression, such as the work by [41] and subsequent de-
velopments [23, 34]. Our work aligns more closely with
methodologies tackling wide-baseline image pairs as in-
puts, an aspect relatively lesser explored. Some examples
include leveraging a 4D correlation map for relative pose
regression [9], predicting discrete camera position distribu-
tions [11], and modifying the ViT [19] to emulate the 8-
point algorithm [46]. Unique in approach, our method pi-
oneers addressing the wide-baseline setting in generalized
pose-free novel view synthesis tasks.
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Figure 2. Overall architecture of the proposed method. For a pair of images, we extract multi-level feature maps and construct 4D
correlation maps at each level, encoding pixel pair similarities. These maps are refined for flow and pose estimation, and the renderer then
uses the estimated pose and refined feature maps for color and depth computation.

3. Unified Framework for Generalized Pose-
Free Novel View Synthesis

3.1. Problem Formulation

Assuming an unposed pair of images I1, I2 ∈ RH×W×3

taken from different viewpoints as the input, our goal is to
synthesize an image Ît from a novel view. In this work,
we assume camera intrinsics are given, as it is generally
available from modern devices [1]. Different from classical
generalized NeRF tasks [10, 58, 66], our task is addition-
ally challenged by the absence of camera pose between the
input images. To this end, we estimate the relative camera
pose between I1, I2 as P2←1 ∈ R4×4, consisting of rota-
tion R ∈ R3×3 and translation T ∈ R3×1, and deduce
P2←t = P2←1P1←t with P1←t as the desired rendering
viewpoint, which are then used in conjunction with the ex-
tracted feature maps to compute the pixel color at the novel
view by the renderer.

3.2. Cost Volume Construction

The first stage of the pipeline is feature extraction, which
will be shared across all three tasks. Because our method
must be robust for scale differences and extreme viewpoint
changes, we use multi-level feature maps to capture both ge-
ometric and semantic cues from different levels of features.
Given a pair of images I1 and I2, we first extract l-levels of
deep local features Dl

1, D
l
2 ∈ Rhl×wl×cl with ResNet [27].

Subsequent to feature extraction, the extracted features un-
dergo cost volume construction.

Unlike the previous methods that only consider local re-
ceptive fields within their cost volumes [10, 12, 33, 63],
we consider all pairs of similarities between features to
handle both small and large displacements [14, 15, 28–
30]. Specifically, we compute and store the pairwise co-
sine similarity between features, obtaining a 4D cost vol-
ume {Cl}Ll=1 ∈ Rhl×wl×hl×wl

, where L is the number of

levels.

3.3. Feature Aggregation and Cost Filtering

Joint Feature and Cost Aggregation. Recent progress in
image correspondence has demonstrated the value of self-
and cross-attention mechanisms in capturing global context
within images and enhancing inter-image feature extraction,
vital for understanding multi-view geometry [20, 54, 62].
Studies have also emphasized the importance of cost aggre-
gation for reducing noise in cost volumes and embedding
geometric priors [13, 16, 31].

Building upon these developments, we introduce a self-
attention-based aggregation block that processes the feature
maps and cost volume, i.e., D1, D2, and C (level indicator l
omitted for brevity). Specifically, two augmented cost vol-
umes are first constructed by feature and cost volume con-
catenation: [C,D1] and [CT , D2] ∈ Rh×w×(hw+c). Then,
treating each 2D location in the augmented cost volume as
a token, our aggregation block performs self-attention op-
eration ϕ using feature maps and cost volumes as values.
The resulting cost volumes are obtained as ϕ([C,D1]) +
ϕ([CT , D2])

T that ensures consistent matching scores.

Leveraging Cost Volume as Matching Distribution.
Our method leverages enhanced feature maps and a refined
cost volume from the aggregation block to inter-condition
the feature maps. Unlike the standard practice of using a
cross-attention map from two feature maps [13, 54, 62],
we introduce a simple and more effective adaptation by
employing the refined cost volume from the aggregation
block, rather than computing a separate cross-attention
map. Specifically, we apply softmax to this volume to cre-
ate a cross-attention map, which then guides the alignment
of feature maps with matching probabilities. This layer is
integrated with the aggregation block in an interleaved man-
ner, crucial for refining and assimilating multi-view infor-
mation. More details can be found in the supp. material.
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(a) I1 (b) DBARF (c) FlowCAM (d) Ours (e) GT

Figure 3. Visualization of epipolar lines. We use the relative
camera pose to draw epipolar lines based on the points in (a). Our
predictions can well follow the ground truth even under large view-
point changes.

The final cost volume, 1
L

∑L
l C̃

l, calculated from each
l-th level, is then used for relative pose and flow estima-
tion. This cost volume plays a pivotal role in consolidating
multi-level feature correspondences, directly impacting the
accuracy of our pose and flow estimations.

3.4. Flow and Relative Pose Estimation

Making use of the cost volume from previous steps, we de-
fine a dense flow field, F (i) that warps all pixels i in image
I1 towards I2. We also estimate relative camera pose P2←1

from this cost volume as it sufficiently embodies confidence
scores and spatial correspondences [9, 46]. To estimate the
dense flow map F2←1, we can simply apply argmax to find
the highest scoring correspondences. While this may be suf-
ficient for image pairs with large overlapping regions, we
account for the potential occlusions by computing a confi-
dence map. Specifically, following [40], we obtain a cyclic
consistency map M2←1(i) using the reverse field F1←2 as
an additional input, and check if the following condition is
met for consistency: ||F2←1(i) + F1←2(i+ F2←1(i))||2 <
τ , where || · ||2 denotes frobenius norm and τ is a threshold
hyperparameter. The reverse cyclic consistency map M1←2

is computed with similar procedure.

To estimate camera parameters, we use the knowledge
taken from previous study [46] and adopt an essential ma-
trix module to output rotation R and translation t. The es-
sential matrix module is a mapping module that exploits
each transformer token from images to a feature that is used
to predict R and t. This module contains positional encod-
ing, bilinear attention, and dual softmax over attention map
A. Following the design in Sec. 3.3, we make a modifica-
tion to replaceA with our cost volume, since it acts as a key
for emulating 8-point algorithm, such that the better spa-
tial correspondences encoded in A can aid more accurate
camera pose estimation. Subsequent to the essential matrix
module, we finally regress 6D rotation representations [69]
and 3 translation parameters with scales using MLPs.

Figure 4. Visualization of correspondences and confidence.
We show top 100 confident matches between input images and
the covisible regions are highlighted based on confidence scores.

3.5. Attention-based Renderer

Within our method, the rendering module is tasked with
synthesizing novel views, guided by the estimated camera
poses and a pair of aggregated features from previous steps.
Borrowing from recent advancements, we adopt a strategy
of sampling pixel-aligned features along the epipolar lines
of each image and augment the features by a corresponding
feature in the other image, as suggested by Du et al. [20].
This technique also enables us to ascertain depth δ by trian-
gulating these features, thereby streamlining the typically
resource-intensive 3D sampling process. Given the set of
sampled features from epipolar lines, we adopt an attention-
based rendering procedure to compute the pixel color, as
done similarly in previous methods [20, 33, 53].

3.6. Training Objectives

The outputs of our models are colors, depths, an estimated
relative camera pose, and a dense flow map. Our model is
trained with an objective function consisting of four losses:
image reconstruction loss Limg, matching loss Lmatch, cam-
era pose loss Lpose, and the triplet consistency loss Ltri. For
rendering, we use the photometric loss between the ren-
dered color and the target color defined as L1 loss.

Matching Loss. To provide training signals for corre-
spondence estimation, we adopt self-supervised SSIM loss
as a valuable alternative since obtaining ground-truth cor-
respondences between image pairs is often challenging and
impractical, since the depth information is required. The
SSIM [59] loss computes the structural similarity between
the warped image and the target image, offering a data-
driven approach to assess the quality of image registration
without relying on explicit depth measurements or ground-
truth correspondences. The matching loss is defined as:

Lmatch =
∑
i

M1←2(i)(1− SSIM(F1←2(I2(i)), I1(i)))

+M2←1(i)(1− SSIM(F2←1(I1(i)), I2(i))),

(1)
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where ϕ(·, ·) yields the SSIM score between two compara-
tive inputs.

Pose Loss. Although we only take a pair of unposed im-
ages as input for the inference phase, for the training phase,
we incorporate readily available and ubiquitous camera
poses, thanks to the extensive availability of video data and
the deployment of conventional pose estimation methodolo-
gies prevalent in the field, including SfM and SLAM. Our
pose loss is a combination of geodesic loss [49] for rotation
and L2 distance loss for translation1. Specifically, they are
combined with addition and defined as:

Lrot = arccos

(
trace(R̂TR)− 1

2

)
Ltrans(t̂, t) = ∥t̂− t∥22,

(2)

where R̂ and t̂ indicates the estimated rotation and transla-
tion.

Empirical results indicate that including gradient feed-
back from other losses alongside the pose loss contributes
to unstable training, typically leading to suboptimal model
performance. Aligning with the literature [12, 32, 35], our
findings also accentuate that the expansive search space and
the intrinsic complexities associated with pose optimization
increase the difficulty of the learning process.

To address this challenge, we directly incorporate
ground-truth pose data into key modules, like rendering
or feature projection, during training. This approach re-
stricts gradient flow to the pose loss, proving highly ef-
fective in our experiments. Conceptually, this resembles
the teacher forcing strategy in RNNs [61], where ground
truth, rather than previous network outputs, guides training.
This method encourages network parameters are optimized
in direct alignment with pose estimation objectives, similar
to using ground truth inputs for more direct supervision in
teacher forcing.

Triplet Consistency Loss. Finally, we propose a triplet
consistency loss Ltri seamlessly incorporating all the out-
puts of our model, flow, pose, and depth. Our loss ex-
tends the cycle consistency [70] loss, which has been preva-
lent in the field of computer vision, by incorporating the
three outputs from our network. Specifically, at each iter-
ation, given a set of randomly selected coordinates in the
target frame that are projected to I1 and I2 using depth δ,
camera pose P , and camera intrinsic K, we define the p:
i′1 = K1P1←tδ(i)K

−1
1 i and i′2 is defined similarly. Us-

ing the set of projected points i′1, we employ F2←1 to warp
them towards I2 to obtain warped coordinates î′2. We finally

1Although two-view geometry inherently lacks the capability to discern
translation scales, we let the model learn to align all predictions to true
scales via recognition, as done in [46].

apply Huber loss function [26] ψ such that M(i′1)ψ(̂i
′
2, i
′
2),

where M(·) eliminates the unconfident matches. This loss
effectively measures the consistency between the estimated
depth and optical flow across the views. If the estimated
depth and flow are accurate, the projected and warped points
should coincide, resulting in a small loss value.

In summary, our total training loss is defined as

Lfinal = Limg + Lmatch + Lpose + λtriLtri, (3)

where λtri is a scaling factor.

4. Experiments

4.1. Implementation Details

Our encoder uses ResNet-34, taking 256×256 image as an
input, and extracts 3 levels of feature maps with a spatial
resolution of 16, 32, and 64. We set λtri = 0.01. Our net-
work is implemented using PyTorch [44] and trained with
the AdamW [38] optimizer. We set the base learning rate as
2e−4 and use an effective batch size of 64. The network is
trained for 50K iterations, taking approximately 2 days. We
exponentially decay the learning rate with γ = 0.95 after
every epoch. We train and evaluate all other baselines on
the same datasets for fair comparisons. We provide train-
ing and evaluation details of ours and our competitors in the
supp. material for completeness.

4.2. Experimental Settings

Datasets. We train and evaluate our method on
RealEstate10K [68], a large-scale dataset of both in-
door and outdoor scenes, and ACID [36], a large-scale
dataset of outdoor coastline scenes. For RealEstate10K,
we employ a subset of the complete dataset, resulting in
a training set comprising 21,618 scenes and a testing set
consisting of 7,200 scenes, while for ACID, we use 10,935
scenes for training and 1,893 scenes for testing.

Tasks and Baselines. We assess the performance of our
method on two tasks: novel-view synthesis and relative
pose estimation. The latter task serves a dual purpose as it
also assesses the quality of our correspondences, a method-
ological approach that aligns with prior image matching
studies. We first compare with established generalized
NeRF variants, specifically PixelNeRF [66] and [20], high-
lighting the complexities of wide-baseline inputs. Subse-
quently, we compare with existing pose-free generalized
NeRF methods, namely DBARF [12] and FlowCAM [52].
For relative pose estimation, the evaluation includes several
comparisons: matching methods [18, 50, 56] followed by
5-point algorithm [43] and RANSAC [24] and end-to-end
pose estimation frameworks [46, 67]. Finally, we conduct
a comparative analysis with pose-free generalized NeRF
methods [12, 52].
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(a) 𝐼! (b) 𝐼" (c) DBARF (d) FlowCAM (e) Ours (f) Ground Truth

Figure 5. Qualitative comparison on RealEstate10K.

Evaluation Metrics. We use the standard image quality
metrics (PSNR, SSIM, LPIPS, MSE) for novel view synthe-
sis evaluation. For relative pose estimation, we use geodesic
rotation error and angular difference for translation2 as done
in classical methods [41, 43]. Our statistical analysis in-
cludes average, median, and standard deviation of errors,
with the median offering robustness against outliers and
standard deviation indicating error variability.

Evaluation Protocol. As our approach is the first work to
this extremely challenging task, we introduce a new evalu-
ation protocol. By default, we assume I1, I2 and P1←t are
provided to the model, while It is used solely for computing
the metrics3. First, when presented with a video sequence
of a scene, we employ a frame-skipping strategy. The value
of N frames skipped between each frame is dynamically
determined based on the total number of frames. For se-
quences with fewer than 100 frames,N is calculated as one-
third of the total frame count; otherwise, we set N = 50.
This gives us three images I1, It, I2, which are taken from
N = 0, 50, 100, respectively. Next, for evaluation, while
a common practice in relative pose estimation tasks is to
leverage rotation variance [9, 46], this approach disregards
translations, often leading to controversial classification of
the images into one of the distributions in some cases, e.g.,
image pairs with zoomed-in and out cameras. We thus par-
tition the test set into three subsets named Small, Medium,
and Large to denote the degree of overlap in the scenes.
With such a splitting scheme, for the RealEstate10K dataset,
we obtain subsets containing 3593, 1264, and 2343 scenes

2Since translation scale is theoretically indeterminable in two-view
camera pose estimation, evaluating it could potentially lead to inconclu-
sive or erroneous interpretations (see the supp. material for more results).

3Existing pose-free generalized NeRF methods use target frames for
additional geometric cues during evaluation [12, 52]. For practicality, we
assume target frames are only available for metric calculation, not for
method operation, applying this uniformly across all methods. This aligns
with real-world scenarios where target views are not accessible.

respectively, whereas for the ACID dataset, they encompass
559, 429, and 905 scenes each. We show the visualization
of the splits and their distributions in the supp. material.

To quantitatively compute the overlapping regions, we
employ a pre-trained state-of-the-art dense image matching
method [56] to find the overlapping ratio o12 within the im-
age, defined as the ratio of pixels in I1 whose correspon-
dence with pixels in I2 is found with high confidence. We
define the overlap between two images to be the intersection
over union of two images as overlap = 1

o−1
12 +o−1

21 −1
, and

consider images with overlap greater than 0.75 as Large,
less than 0.5 as Small, and the in-between as Medium. Fi-
nally, the evaluation metrics are computed using synthe-
sized novel view Ît and the estimated relative pose between
I1 and I2, P̂1←2 and those of the ground-truths.

4.3. Experimental Results

Relative Pose Estimation. We report quantitative results
in Tab. 1 and the visualization of epipolar lines from the
estimated camera poses are shown in Fig. 4. From the re-
sults, we observe that our framework significantly outper-
forms the existing pose-free NeRFs, where they fail to es-
timate reliable camera pose which can lead to poor view-
synthesis quality. Moreover, we observe that compared to
pose estimation methods [46, 67], our framework achieve
significantly better accuracy, demonstrating the effective-
ness of the captured synergy between pose estimation, ren-
dering and image matching. However, it is also notable that
PDC-Net+ [56] achieves better performance. This is be-
cause PDC-Net was learned with GT correspondences that
are obtained using depth information, which indicates fur-
ther improvements in all our three tasks can be promoted if
depth information is incorporated in our framework.

Novel View Synthesis. Tab. 2 shows quantitative compar-
isons, whereas Fig. 5 show qualitative comparisons. From
the results, compared to previous pose-free approaches [12,
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Overlap Task Method
RealEstate-10K ACID

Rotation Translation Rotation Translation
Avg(◦↓) Med(◦↓) STD(◦↓) Avg(◦↓) Med(◦↓) STD(◦↓) Avg(◦↓) Med(◦↓) STD(◦↓) Avg(◦↓) Med(◦↓) STD(◦↓)

Small

COLMAP SP+SG [18, 24, 50] 9.793 2.270 22.084 12.549 4.638 23.048 10.920 2.797 22.761 22.214 7.526 33.719
(Matching) PDC-Net+ [24, 56] 3.460 1.128 7.717 6.913 2.752 15.558 2.520 0.579 6.372 15.664 4.215 29.640

Pose Estimation Rockwell et al. [46] 12.604 6.860 14.502 91.455 91.499 56.872 8.466 3.151 13.380 88.421 88.958 36.212
RelPose [67] 12.102 4.803 21.686 - - - 10.081 4.753 13.343 - - -

Pose-Free NeRF
DBARF [12] 17.520 13.218 15.946 126.282 140.358 43.691 8.721 3.205 12.916 95.149 99.490 47.576
FlowCAM [52] 11.883 6.778 15.676 87.119 58.245 26.895 8.663 6.675 7.930 92.130 85.846 40.821
Ours 5.471 2.551 11.733 11.862 5.344 21.080 3.548 1.129 8.619 23.689 11.289 30.391

Medium

COLMAP SP+SG [18, 24, 50] 1.789 0.969 3.502 9.295 3.279 20.456 3.275 1.306 6.474 16.455 5.426 29.035
(Matching) PDC-Net+ [24, 56] 1.038 0.607 1.841 6.667 2.262 18.247 2.378 0.688 5.841 14.940 4.301 27.379

Pose Estimation Rockwell et al. [46] 12.168 6.552 14.385 82.478 82.920 55.094 4.325 1.564 6.177 90.555 90.799 51.469
RelPose [67] 4.942 3.476 6.206 - - - 5.801 2.803 6.574 - - -

Pose-Free NeRF
DBARF [12] 7.254 4.379 7.009 79.402 75.408 54.485 4.424 1.685 6.164 77.324 77.291 49.735
FlowCAM [52] 4.154 3.346 3.466 42.287 41.594 24.862 8.778 6.589 7.489 95.444 87.308 43.198
Ours 2.183 1.485 2.419 10.187 5.749 15.801 2.573 1.169 3.741 21.401 10.656 28.243

Large

COLMAP SP+SG [18, 24, 50] 1.416 0.847 1.984 21.415 7.190 34.044 1.851 0.745 3.346 22.018 7.309 33.775
(Matching) PDC-Net+ [24, 56] 0.981 0.533 1.938 16.567 5.447 29.883 1.953 0.636 4.133 18.447 4.357 35.564

Pose Estimation Rockwell et al. [46] 12.771 7.214 14.863 91.851 88.923 57.444 2.280 0.699 3.512 86.580 87.559 50.369
RelPose [67] 4.217 2.447 5.621 - - - 4.309 2.011 5.288 - - -

Pose-Free NeRF
DBARF [12] 3.455 1.937 3.862 50.094 33.959 43.659 2.303 0.859 3.409 54.523 38.829 45.453
FlowCAM [52] 2.349 1.524 2.641 34.472 27.791 31.615 9.305 6.898 9.929 97.392 89.359 43.777
Ours 1.529 0.991 1.822 15.544 7.907 24.626 3.455 1.129 7.265 22.935 10.588 30.974

Avg

COLMAP SP+SG [18, 24, 50] 5.605 1.301 16.129 14.887 5.058 27.238 4.819 1.203 13.473 20.802 6.878 32.834
(Matching) PDC-Net+ [24, 56] 2.189 0.751 5.678 10.100 3.243 22.317 2.315 0.619 5.655 16.461 4.292 31.391

Pose Estimation Rockwell et al. [46] 12.585 6.881 14.587 90.115 88.648 40.948 4.568 1.312 8.358 88.433 88.961 36.197
RelPose [67] 8.285 3.845 16.329 - - - 6.348 2.567 9.047 - - -

Pose-Free NeRF
DBARF [12] 11.144 5.385 13.516 93.300 102.467 57.290 4.681 1.421 8.417 71.711 68.892 50.277
FlowCAM [52] 7.426 4.051 12.135 50.659 46.281 52.321 9.001 6.749 8.864 95.405 88.133 42.849
Ours 3.610 1.759 8.617 12.766 7.534 15.510 3.283 1.134 7.093 22.809 14.502 21.572

Table 1. Pose estimation performance on RealEstate-10K and ACID. Gray color indicates methods not directly comparable as they
supervise correspondence with ground-truth depth; they are included for reference only. We also specify the targeted task for each method.

Overlap GT Method RealEstate-10K ACID
Pose PSNR↑ LPIPS↓ SSIM↑ MSE↓ PSNR↑ LPIPS↓ SSIM↑ MSE↓

Small

✓
PixelNeRF [66] 13.126 0.639 0.466 0.058 16.996 0.528 0.487 0.030
Du et al. [20] 18.733 0.378 0.661 0.018 25.553 0.301 0.773 0.005

✗
DBARF [12] 13.453 0.563 0.522 0.045 14.306 0.503 0.541 0.037
FlowCAM [52] 15.435 0.528 0.570 0.034 20.153 0.475 0.594 0.016
Ours 17.153 0.459 0.577 0.025 22.322 0.358 0.649 0.010

Medium

✓
PixelNeRF [66] 13.999 0.582 0.462 0.042 17.228 0.534 0.501 0.029
Du et al. [20] 22.552 0.263 0.764 0.008 25.694 0.303 0.769 0.005

✗
DBARF [12] 15.201 0.487 0.560 0.030 14.253 0.457 0.538 0.038
FlowCAM [52] 18.481 0.592 0.441 0.018 20.158 0.476 0.585 0.015
Ours 19.965 0.343 0.645 0.013 22.407 0.352 0.648 0.009

Large

✓
PixelNeRF [66] 15.448 0.479 0.470 0.031 17.229 0.522 0.500 0.028
Du et al. [20] 26.199 0.182 0.836 0.004 25.338 0.307 0.763 0.005

✗
DBARF [12] 16.615 0.380 0.648 0.022 14.086 0.419 0.534 0.039
FlowCAM [52] 22.418 0.707 0.287 0.009 20.073 0.478 0.580 0.016
Ours 22.542 0.250 0.724 0.008 22.529 0.351 0.649 0.009

Avg

✓
PixelNeRF [66] 14.438 0.577 0.467 0.047 17.160 0.527 0.496 0.029
Du et al. [20] 21.833 0.294 0.736 0.011 25.482 0.304 0.769 0.005

✗
DBARF [12] 14.789 0.490 0.570 0.033 14.189 0.452 0.537 0.038
FlowCAM [52] 18.242 0.597 0.455 0.023 20.116 0.477 0.585 0.016
Ours 19.536 0.398 0.638 0.016 22.440 0.323 0.649 0.010

Table 2. Novel view rendering performance on RealEstate-10K
and ACID. Gray text indicates methods not directly comparable
for their use of ground-truth pose at evaluation.

52], our approach outperforms them all. Note that we also
include results from generalized NeRFs [20, 66] to highlight
the complexity and challenge of this task. It’s important to
note that while our method may not surpass the state-of-
the-art [20], the proximity of our results to it underlines the
potential and effectiveness of our approach in the absence
of camera pose information.

4.4. Ablation Study and Analysis

Component ablation. In Tab. 3, we validate the effective-
ness of each component within our framework. The base-

line in the first row represents a variant equipped with only
the feature backbone, renderer, pose head and image recon-
struction loss. We then progressively add each component.
From the results, we observe clear improvements on per-
formance for every component, demonstrating that they all
contribute to the final performance. A particularly illustra-
tive comparison are (I) vs (II) and (II) vs (III), where sim-
ply adding each loss leads to apparent improvements, indi-
cating that the process of finding correspondences, learning
3D geometry through rendering and estimating camera all
contribute largely to the performance. However, it is also
notable that PDC-Net+. + [20] reports lower rotation and
translation angular errors. This can be attributed to the use
of classical solvers [24, 43] that are known to output more
precise transformations given a sufficient numbe of corre-
spondences [47].

Will our method be more effective than the combination
of readily available models from separate tasks? Un-
less our framework achieves more competitive rendering
quality, the practicality of our method will be rather limited.
In this analysis, we compare our framework with the vari-
ants that adopt two separate methods for camera pose esti-
mation and rendering. The results are reported in Table 4a.
Specifically, for the first row, we combine pretrained gen-
eralized NeRF [20] with an off-the-shelf matching network
for pose estimation. The second row shows the outcomes
obtained with [46]. Note that RelPose [67] does not pre-
dict translations, and we thus leverage [46]. Summarizing
the results, we observe that our approach outperforms the
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Components

Avg Large Medium Small

PSNR SSIM LPIPS Mean Mean. PSNR SSIM LPIPS Mean Mean. PSNR SSIM LPIPS Mean Mean PSNR SSIM LPIPS Mean Mean
Rot.(◦) Trans.(◦) Rot.(◦) Trans.(◦) Rot.(◦) Trans.(◦) Rot.(◦) Trans.(◦)

(I) Baseline 14.646 0.553 0.513 29.123 52.237 16.430 0.626 0.406 27.622 71.047 14.246 0.532 0.524 28.636 51.675 13.624 0.522 0.578 30.275 40.164
(II) + pose loss 16.03 0.547 0.485 8.755 62.246 18.872 0.638 0.367 4.303 74.553 16.311 0.548 0.476 8.193 62.510 14.087 0.488 0.565 11.855 54.127
(III) + flow head (SSIM loss) 17.393 0.578 0.440 6.737 43.104 17.964 0.588 0.419 4.257 34.584 20.083 0.658 0.329 2.578 54.666 15.439 0.522 0.520 10.325 38.554
(IV) + cycle loss 17.899 0.593 0.432 6.675 43.132 20.555 0.662 0.321 2.624 50.541 18.882 0.590 0.412 4.137 34.882 15.821 0.549 0.512 10.210 38.107
(V) + aggregation module 18.629 0.611 0.406 5.008 24.769 21.402 0.689 0.294 1.977 31.295 19.219 0.621 0.383 2.951 19.509 16.614 0.556 0.487 7.706 22.363
(VI) + matching distribution 19.536 0.638 0.398 3.610 12.766 22.542 0.724 0.250 1.530 10.187 19.965 0.645 0.343 2.183 11.860 17.153 0.577 0.459 3.610 12.766

Table 3. Component ablations on RealEstate10K.

PSNR SSIM LPIPS R (◦) t (◦) t (m)
PDC-Net+. + [20] 18.140 0.606 0.366 2.091 8.817 0.696
Rockwell et al. [46] + [20] 14.892 0.562 0.500 12.588 90.189 0.524
Ours 19.526 0.641 0.312 2.739 11.362 0.290

(a) Fixed Pose and Generalized NeRF

PSNR SSIM LPIPS R (◦) t (◦)
DBARF [12] + pose loss (Lpose) 12.998 0.468 0.566 11.82 80.66
FlowCAM [52] + pose loss (Lpose) 18.646 0.589 0.433 7.505 44.347
Ours 19.536 0.638 0.398 3.610 12.766

(b) Pose Supervision
PSNR SSIM LPIPS R (◦) t (◦)

Baseline + w/o Teacher Forcing 13.856 0.502 0.577 31.112 104.490
Baseline 14.646 0.553 0.513 29.123 52.237
Ours + w/o Teacher Forcing 18.785 0.635 0.415 5.254 40.571
Ours 19.536 0.638 0.398 3.610 12.766

(c) Training Strategy

PSNR SSIM LPIPS R (◦) t (◦)
Du et al. [20] + Noisy Pose (σ = 0.025) 18.850 0.618 0.363 2.292 6.171
Du et al. [20] + GT Pose 21.833 0.736 0.294 - -
Ours + Noisy Pose (σ = 0.025) 19.500 0.633 0.353 2.292 6.171
Ours + GT Pose 22.781 0.758 0.314 - -

(d) The learned representation

Table 4. More Ablations and insights. See text for details.

other variants by large margin, highlighting the importance
of capturing the underlying synergy between the tasks and
the practicality of the proposed approach.

Direct pose supervision. To assess the impact of direct
pose supervision on the rendering and pose estimation per-
formance of existing methods, we explore the potential en-
hancement of [12, 52] through the integration of direct su-
pervision. For this experiment, we modify them by incorpo-
rating the same loss signals as our approach, specifically the
geodesic rotation loss and L2 distance loss for translation.
The results are reported in Table 4b.

Although we have found that the use of direct pose su-
pervision aiming to harness benefits from synergistic rela-
tionships among different tasks is crucial, when applied to
existing frameworks, we have observed only marginal im-
provements in image quality and a decline in the perfor-
mance of pose estimation for FlowCAM, while overall de-
cline is obeserved in the performance of DBARF. This out-
come is primarily attributed to the architectural design of
FlowCAM, where each module operates in a relatively iso-
lated manner without a focus on seamless integration. Con-
versely, the performance reduction observed in DBARF is
multifaceted, with specific causative factors being challeng-
ing to pinpoint. These findings are expounded in the supp.
material for further discussion. In contrast, our proposed
framework demonstrates an inherent advantage in harness-
ing the benefits of pose supervision without requiring fur-
ther considerations.

Ablation study on our training strategy. As explained
in Section 3.6, we adopt a special training strategy that con-
ceptually bears similarity to the teacher forcing strategy. In
Table 4c, we validate whether this strategy actually helps.
For this experiments, we evaluate two variants that builds
upon either Baseline or Ours: the variant that uses the esti-
mated camera poses at training phase and the other that uses

the ground-truth. Comparing the results, we observe clear
performance differences between the variants, demonstrat-
ing the effectiveness of the proposed strategy.
The learned representation. In Table 4d, we compare
four variants: the first two rows show results from the state-
of-the-art generalized NeRF method with ground-truth and
noisy poses, respectively, while the next two rows detail re-
sults using our framework under the same conditions. The
noisy poses are synthetically perturbed from the ground-
truth poses by adding Gaussian noise with σ = 0.025. From
the results, we can observe that that our unified framework’s
learned representation markedly improves rendering perfor-
mance, outperforming the current state-of-the-art general-
ized NeRF method when using ground-truth poses. These
results further highlight the importance of jointly learning
the three tasks in improving the capabilities of the shared
representation.

5. Conclusion
In this work, we have presented a novel unified frame-
work that integrates camera pose estimation, NeRF ren-
dering and correspondence estimation. This approach ef-
fectively overcomes the limitations of existing approaches,
particularly in scenarios with limited data and complex ge-
ometries. Our experimental results, encompassing both in-
door and outdoor scenes with only a pair of wide-baseline
images, demonstrate the framework’s robustness and adapt-
ability in achieving high-quality novel view synthesis and
precise camera pose estimation. Extensive ablation studies
further validates our choices and highlight the potential of
our method to set a new standard in this task.
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