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Abstract
Recently, non-transferable learning (NTL) was proposed

to restrict models’ generalization toward the target do-
main(s), which serves as state-of-the-art solutions for in-
tellectual property (IP) protection. However, the robustness
of the established “transferability barrier” for degrading
the target domain performance has not been well studied.
In this paper, we first show that the generalization perfor-
mance of NTL models is widely impaired on third-party do-
mains (i.e., the unseen domain in the NTL training stage).
We explore the impairment patterns and find that: due to
the dominant generalization of non-transferable task, NTL
models tend to make target-domain-consistent predictions
on third-party domains, even though only a slight distribu-
tion shift from the third-party domain to the source domain.
Motivated by these findings, we uncover the potential risks
of NTL by proposing a simple but effective method (dubbed
as TransNTL) to recover the target domain performance
with few source domain data. Specifically, by performing
a group of different perturbations on the few source domain
data, we obtain diverse third-party domains that evoke the
same impairment patterns as the unavailable target domain.
Then, we fine-tune the NTL model under an impairment-
repair self-distillation framework, where the source-domain
predictions are used to teach the model itself how to pre-
dict on third-party domains, thus repairing the impaired
generalization. Empirically, experiments on standard NTL
benchmarks show that the proposed TransNTL reaches up
to ∼72% target-domain improvements by using only 10%
source domain data. Finally, we also explore a feasible de-
fense method and empirically demonstrate its effectiveness.

1. Introduction
Well-trained deep learning models are the core of Machine-
Learning-as-a-Service (MLaaS), which are being provided
in a wide range of applications closely related to our daily
life [40, 55]. The training process of deep learning mod-
els requires massive well-annotated training data, expensive
hardware resources, and often takes weeks or even months,
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which requires high cost, and thus leading to the high busi-
ness value [55]. As such, how can the model owners protect
the intellectual property (IP) [15, 17, 49, 53, 55, 58] of deep
learning models is waiting to be solved.

Recently, Non-Transferable Learning (NTL) [49] was
proposed as a novel technology in IP protection. NTL
aims to restrict the generalization of a deep learning model
toward a certain target domain (target-specified NTL) or
all other domains except the source domain (source-only
NTL). To this end, built upon the source-domain super-
vised learning (SL) paradigm, existing methods [21, 49, 50]
impose a non-transferable task to maximize the target do-
main representations and correct labels. Target-specified
NTL and source-only NTL serve as promising solutions of
two types of IP protection techniques: ownership verifica-
tion [32] and applicability authorization [49], respectively.

Despite the success of NTL in restricting source-to-
target knowledge transferring, the robustness of the “trans-
ferability barrier” established in NTL models has not been
well studied. Earlier evaluations in [49, 50] show that NTL
models are still resistant to state-of-art watermark removal
attacks when up to 30% source domain data are available for
attack. An intriguing inquiry is thus: How can an attacker
break the transferability barrier, thus effectively recovering
target domain performance? In this work, we seek to test
the robustness of the transferability barrier in NTL models
and show that it is possible to recover target domain knowl-
edge using only few source domain data.

We start by exploring the performance of target-specified
NTL models on unseen third-party domains (i.e., the do-
main with distribution gaps to both the source and target
domain1, as shown in Fig. 1). We involve three kinds of
third-party domains: perturbed source domain2, augmented
source domain3, and real domains collected from different
environments. As shown in Fig. 2, we observe that although
the intention is to degrade the target domain performance,
the generalization of target-specified NTL models are im-

1In NTL scenarios, the defined third-party domain shares the same con-
tents (i.e., class labels) with the source and the target domain.

2We perturbed the image by adding Gaussian noise with different std.
3We augment the image by using RandAugment [8].
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Figure 1. The source domain, the target domain, and the third-
party domain in the paradigm of (a) supervised learning (SL), (b)
target-specified NTL, and (c) source-only NTL. The green shadow
represents the ideal generalization area of the source domain. The
red shadow represents the non-transferable area.
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Figure 2. The accuracies of SL and target-specified NTL (NTL
[49] and CUTI [50]) on third-party domains, including per-
tubed source domains, augmented source domains, and real-world
datasets. Compared to SL, NTL models encounter varying degrees
of generalization impairments on third-party domains.

paired with varying degrees on third-party domains (com-
pared to SL models)4. We investigate the impairment pat-
terns on third-party domains and identify that NTL mod-
els: (1) easily make an over-confident prediction, (2) tend to
predict target-domain label on third-party domains. Above
impairment patterns are exactly consistent with the coun-
terpart on the target domain and occurred even though only
a slight distribution shift from the third-party domain to the
source domain, thus being a security risk for NTL models.
Through the lens of the flatness [3, 12, 25–27, 34, 62] of loss
landscapes, we find such impairment patterns are caused by
the dominant generalization of the non-transferable task in
the whole data space, which is reflected on the more flat loss
landscape of the target domain distribution.

Motivated by these findings, we uncover the poten-
tial risks of NTL by proposing a simple but effective
method (dubbed as TransNTL) that enables an attacker to
Transferring the NTL (i.e., recover the target domain perfor-
mance) with few source domain data. To begin with, by per-

4In Fig. 2, MNIST (MT) [10] and MNIST-M (MM) [13] are serviced as
the source and target domain, respectively. SVHN (SN) [39] and SYN-D
(SD) [43] are third-party domains collected from real world. More results
of the impairments on third-party domains are shown in Appendix A.1.

forming a group of different perturbations on the few source
domain data, we obtain third-party domains with diverse
distribution shifts from the original source domain. These
source-domain-derived third-party domains, although mak-
ing no assumptions about the target domain knowledge,
evoke the same impairment patterns as the unavailable tar-
get domain, thus serving as a “free lunch” for breaking
the transferability barrier. Then, we fine-tune the NTL
model under an impairment-repair self-distillation frame-
work, where the source-domain prediction is used to teach
the model itself how to predict on third-party domains, thus
repairing the impairment patterns and breaking the transfer-
ability barrier in the NTL model. Besides, to suppress the
dominant generalization of non-transferable task, we penal-
ize the sharpness of the source and third-party distributions
when fine-tuning the NTL model. Accordingly, a flat loss
landscape around the source distributions will be produced,
thus further enhancing the generalization of source domain
and prompting the impairment repairments.

Empirically, we conduct experiments on standard NTL
benchmarks (i.e., Digits, CIFAR10 & STL10, and VisDA)
and show that the proposed TransNTL can effectively break
the transferability barriers for both target-specified NTL
models and source-only NTL models, with the target do-
main accuracy increasing by up to ∼72%. Additionally,
considering that the proposed TransNTL reveals the po-
tential risk of NTL, we further propose a feasible defense
method that leverages TransNTL in NTL training, and em-
pirically, we validate its effectiveness.

Our contributions are summarized as follows:
• By analyzing the performance on third-party domains, we

observe that NTL models exhibit varying degrees of gen-
eralization impairments compared to SL models. We fur-
ther identify its impairment patterns and the underlying
cause, thus providing insights for attacking NTL models.

• We are the first to reveal the risk of NTL by propos-
ing an effective attack method (dubbed as TransNTL).
TransNTL breaks the transferability barrier by leveraging
the observation that slight-perturbed source domain ex-
hibits the same impairment patterns as the target domain.

• Extensive experiments on NTL benchmarks demon-
strate the effectiveness of TransNTL in attacking target-
specified and source-only NTL models and NTL-based
ownership verification and applicability authorization.

• We also propose a defense method against TransNTL, and
empirically, we validate its effectiveness.

2. Related Work
Target-specified NTL. Target-specified NTL aims to re-
strict the generalization of a deep learning model toward a
certain target domain, which can be seen as an anti-task to
domain adaptation (DA) [14, 22, 33, 41, 44]. As the target
domain data is accessible, existing methods [49, 50] directly
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reduce the statistical dependence between the source do-
main representations and the target domain representations,
thus resisting the target-specified transferability. Wang
et al. [49] first propose the NTL task. They design an
NTL framework that adds two statistical dependence re-
laxation terms on standard supervised learning: (i) maxi-
mizing the Kullback-Leible (KL) divergence between target
domain representations and labels, and (ii) maximizing the
maximum mean discrepancy (MMD) between the distribu-
tion of source and target domain representations. Further,
CUTI [50] improves the NTL by introducing style trans-
fer [23, 46]. They augment target domain images by trans-
ferring their styles to the source domain style, thus obtain-
ing a CUTI-domain. Then, they train a model by maximiz-
ing the KL divergence between labels and the representa-
tions on both the target domain and the CUTI-domain.

In this work, we show that although aiming at degrading
the target domain performance, the target-specified NTL
models inevitably result in significant generalization im-
pairments on third-party domains. Such impairments can be
used to recover the target domain performance, thus leading
to the unreliable ownership verification deployed by target-
specified NTL.

Source-only NTL. The intention of source-only NTL is
to degrade the performance in all other domains except the
source domain, which is opposite to the purpose of domain
generalization (DG) [2, 24, 48, 60]. Due to the assump-
tion of only the source domain data being available, exist-
ing methods [49, 50] introduce generative adversarial net-
work (GAN) [4, 5, 20, 38] to synthesize fake images from
the source domain and see them as the target domain. Thus,
target-specified NTL methods can be leveraged to solve it.

However, due to the risk of target-specified NTL meth-
ods, existing source-only NTL-based applicability autho-
rizations are also unreliable.

3. Investigating Generalization Impairments in
NTL Models

In this section, we present an empirical study to investigate
the generalization impairments of NTL models on third-
party domains. In Sec. 3.1, we first review the general
framework of existing NTL methods, and then, we formally
present the definition of third-party domain in the NTL sce-
narios. In Sec. 3.2, we investigate the patterns of general-
ization impairments. Subsequently, in Sec. 3.3, we explore
the underlying reasons behind these patterns.

3.1. Preliminary
General framework of NTL. Considering an image clas-
sification task. Let Ds and Dt represent the source domain
and the target domain, respectively. Considering a neural
network fθ : X → Y with parameters θ, NTL aims to
train the fθ to degrade performance on the target domain

Dt and simultaneously maintain performance on the source
domain Ds. To reach this goal, existing methods (NTL [49]
and CUTI [50]) follow the framework that imposes a reg-
ularization term on the SL to maximize the target domain
representations and the correct labels:

min
θ

{
Lntl :=E(x,y)∼Ds

[Lsrc(fθ(x), y)]︸ ︷︷ ︸
Tsrc

− λ E(x,y)∼Dt
[Ltgt(fθ(x), y)]︸ ︷︷ ︸
Ttgt

}
,

(1)

where λ is a trade-off weight, Lsrc and Ltgt represent the loss
function (e.g., Kullback-Leible divergence) for the source
and the target domain, respectively. Intuitively, the general
NTL framework can be split into two tasks: (1) a source do-
main learning task Tsrc to maintain the source domain per-
formance, and (2) a non-transferable task Ttgt to degrade the
target domain performance.

Third-party domain. Beyond the source domain and the
target domain, we pay more attention to third-party domains
in the data space. Formally, we define the third-party do-
main in the NTL scenarios as follows:

Definition 1 (Third-party domain) In the NTL scenarios,
if a domain D shares the same contents (i.e., class labels)
with but has distribution gaps to both the source domain Ds

and target domain Dt, we call it as the third-party domain.

An intuitive illustration between the source domain, the tar-
get domain, and the third-party domain is shown in Fig. 1.
In general, SL models trained on Ds and target-specified
NTL models trained on {Ds,Dt} are expected to have sim-
ilar classification accuracies on third-party domains. This is
because third-party domains share the same contents with
the source domain Ds and has distribution gap to the target
domain Dt. However, as shown in Fig. 2, we observe that
despite the intention of target-specified NTL is to degrade
the target domain performance, the generalization of target-
specified NTL models are widespreadly impaired on third-
party domains (compared to normal SL models). Motivated
by such phenomena, we further explore the underlying pat-
terns of these impairments.

3.2. Impairment Patterns on Third-Party Domains

We focus on third-party domains obtained by perturbing the
source domain Ds through Gaussian additive noise, thus
making the distribution shift between third-party domains
and the source domain controllable. Specifically, we perturb
source domain images5 by adding Gaussian noise with dif-
ferent standard deviations (i.e., std), thus obtaining a group

5For illustration, we consider the task that CIFAR10 [30] is the source
domain and STL10 [7] is the target domain. Due to limited space, more
implementation details and results on other datasets to support the identi-
fied impairment patterns are shown in Appendix A.2.
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Figure 3. Impairment patterns of NTL models. (a) Domain-
averaged confidence of SL, NTL [49] and CUTI [50] on the source
domain, the target domain, and third-party domains obtained by
perturbing the source domain with different std. (b) Distribution
of per-sample confidence of SL/NTL/CUTI on the source domain,
the target domain, and a typical third-party domain (std = 0.1).
(c) Prediction proportions of SL/NTL/CUTI on the source domain,
the target domain, and the typical third-party domain (std = 0.1).

of third-party domains {D̂g
s}Gg=1 with different distribution

shifts from the source domain, where G is the number of
standard deviations. Totally, we identify two impairment
patterns, which are shown as follows:
Pattern 1: Over-confident prediction. NTL models ex-
hibit over-confident predictions on third-party domain as
well as the target domain. Specifically, the confidence of
prediction is quantified by the MaxLogit scoring [19, 52],
which can be represented as:

sML(x; f) = max
k

fk(x), (2)

where fk(·) denotes the k-th element of the output logits.
As shown in Fig. 3 (a), we plot the prediction confidences of
NTL models (NTL [49] and CUTI [50]) and a SL model on
the source domain Ds, the target domain Dt, and third-party
domains {D̂g

s}Gg=1. Particularly, typical distributions of per-
sample confidence of each model are shown in Fig. 3 (b).
These results illustrate that with the noise severity increas-
ing, NTL and CUTI predict the third-party domain with
more confidence. It is worth noting that such phenomenons
are opposite to the SL model which makes lower confident
predictions when facing unseen distribution shifts (e.g., the
target domain and any third-party domains).
Pattern 2: Implicit target domain class. NTL models
tend to predict the “implicit target domain class” on third-
party domains. As shown in Fig. 3 (c), we plot the propor-
tion of different classes predicted by a SL model and NTL
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Figure 4. Loss landscapes of an NTL [49] model and a CUTI [50]
model. (a) Loss landscape of the NTL model on the source domain
(left) and the target domain (right). (b) Loss landscape of the CUTI
model on the source domain (left) and the target domain (right).

models (NTL [49] and CUTI [50]). The SL model makes
diverse predictions for the data in the third-party domain
and the target domain, However, NTL models, although
trained in a maximization term on the target domain (refer
to Eq. (1)), predict all the target domain data to one class
(denoted as the implicit target-domain class). Moreover,
for the third-party domain obtained by slightly perturbing
the source domain, the NTL model also tends to predict the
label of the implicit target-domain class.

Overall, NTL models tend to make an over-confident de-
cision to predict the label of the “implicit target-domain
class” on third-party domains. Particularly, such target-
domain-consistent predictions can still occur even though
only a slight distribution shift from the third-party domain
to the source domain, thus being a loophole in NTL models.

3.3. Causes for Generalization Impairments

Although the impairment patterns of NTL models are iden-
tified, the underlying causes are still unclear. In this section,
we explore what’s leading to the generalization impairments
of NTL models and why the NTL models exhibit target-
domain-like impairment patterns on third-party domains.

According to Eq. (1), the general objective of NTL can
be divided into two parts: a source domain learning task
Tsrc to maintain the source domain performance, and a non-
transferable task Ttgt to degrade the target domain perfor-
mance. Motivated by the fact that the performance of out-
of-domain generalization is closely related to the flatness
of loss landscape [3, 62], we separately explore the gen-
eralization of the source domain learning task Tsrc and the
non-transferable task Ttgt by plotting the loss landscape on
the source domain and the target domain, respectively. The
results are shown in Fig. 4, and we have two major findings:
• NTL models are optimized to an extremely sharp minima

on the source domain, thus limiting the generalization of
the source domain learning task.

• NTL models are optimized to a relative flat minima on the
target domain, thus leading to the well-generalization of
the non-transferable task.

Accordingly, the sharp source domain landscape and the
flat target domain landscape co-lead to the dominance of
the generalization of the non-transferable task Ttgt in the
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whole data space. Thus, the performance of NTL models on
third-party domains will be mainly influenced by the non-
transferable task Ttgt rather than the normal source domain
learning task Tsrc. Particularly, the Ttgt is designed to de-
grade classification performance. As a result, NTL models
tend to exhibit degraded performance (i.e., generalization
impairments) on third-party domains, with the models’ pre-
dictions following the objective of the non-transferable task
Ttgt (i.e., target-domain-like impairment patterns).

More empirical results to support the explanations can
be found in Appendix A.3.

4. Transferring the NTL
Motivated by our findings, in this section, we uncover the
potential risks of NTL by proposing a simple but effec-
tive method (dubbed as TransNTL) that enables an attacker
Transferring the NTL with only a small proportion of source
domain data. In Sec. 4.1, we first formula the problem of at-
tacking NTL. Then, in Sec. 4.2 and Sec. 4.3, we introduce
main components of the proposed TransNTL. In Sec. 4.4,
we illustrate the overall training process of TransNTL.

4.1. Problem Formulation

Pre-trained NTL model. We assume the attack target is
an NTL model fθ (with parameter θ ∈ Rd) trained on a
source domain Ds = {(xi, yi)}Ns

i=1 and a target domain
Dt = {(xi, yi)}Nt

i=1
6. The NTL model fθ has normal ac-

curacy (comparable to SL) on the source domain Ds and
poor performance on the target domain Dt.

Attacking goal. We consider the scenarios that the at-
tacker is given a white-box NTL model fθ with few source
domain data Dc, where Dc = {(xi, yi)}Nc

i=1 and Nc ≪ Ns.
The attacker’s goal is to recover the normal transferability
from the source domain to the target domain in the NTL
model fθ (i.e., recovering the target domain accuracy) and
also maintain the source domain performance.

4.2. Impairment-Repair Fine-Tuning

Fine-tuning paradigm. The proposed TransNTL is built
upon the fine-tuning paradigm. Specifically, we use the few
source domain data Dc to fine-tune all the parameters in the
NTL model fθ. Formally, the objective of fine-tuning is
formulated as:

min
θ

{
Lft := E(x,y)∼Dc

[Lce(fθ(x), y)]
}
, (3)

where Lce represents the Cross-Entropy loss.

Impairment-repair self-distillation. According to our
findings in Sec. 3, third-party domains which are derived

6For target-specified NTL, the Dt is the real target domain. For source-
only NTL, the Dt is the fake domain synthesized from the Ds using GAN.

from perturbing the source domain, although making no as-
sumptions about the target domain knowledge, evoke the
same impairment patterns as the unavailable target domain.
Therefore, we are motivated to start breaking the trans-
ferability barrier by repairing the impairment patterns on
perturbation-based third-party domains.

For effectively attacking, we consider a group of differ-
ent perturbation functions pg(·), g ∈ G = {1, 2, · · · , G},
where each pg is sampled from the perturbation collection
P . Particularly, we let the collection P contains three kinds
of perturbation sets: additive perturbation set P⊕ (e.g.,
Gaussian noise [18], adversarial noise [56] ), multiplicative
perturbation set P⊙ (e.g., speckle noise [11, 36, 51]), and
convolution perturbation set P⊗ (e.g., motion blur [29, 59]).
Regarding perturbations with different types, the perturbed
image x̂ = p(x) can be represented as:

x̂ = p(x) =


x+ δ, p ∈ P⊕

x⊙ (1 + δ), p ∈ P⊙

x⊗ k, p ∈ P⊗

(4)

where ⊙ and ⊗ represent the dot-product and convolution
operation, respectively. The δ represents a random pertur-
bation in which elements are independently drawn from a
pre-defined probability distribution (e.g., Gaussian distribu-
tion). The k is a pre-defined kernel (e.g., Gaussian kernel).

By performing the group of perturbations on Dc, we ob-
tain a group of third-party domains {D̂g

c}Gg=1 with diverse
distribution shifts from the original source domain, where
D̂g

c = {(pg(x), y) | pg ∈ P, (x, y) ∼ Dc}. To mitigate
the over-confident target-domain-consistent predictions on
third-party domains, we propose an impairment-repair self-
distillation framework, in which we use the model predic-
tions on the source domain to teach the model itself how to
predict on third-party domains. The self-distillation frame-
work can be formulated as follows:

min
θ

{
Lsd := max

p∈P
E(x,y)∼Dc

[Lkl(fθ(p(x)), fθ(x))]

}
, (5)

where Lkl represents the Kullback-Leible (KL) divergence.
The loss term Lsd finds the most-impaired third-party do-
main based on the KL divergence between the perturbed
distribution and the source domain distribution. By mini-
mizing Lsd, the NTL model fθ is taught by itself to learn
source-domain-consistent predictions on the group of third-
party domains. Consequently, the impairment patterns
on third-party domains (i.e., over-confidence and implicit
target-domain class) will be repaired.

The term Lsd is used as a regularization in the fine-tuning
paradigm. Accordingly, the total impairment-repair fine-
tuning framework can be formulated as:

min
θ

{Lirft := Lft + λsdLsd} , (6)

where λsd is a weight to balance the self-distillation loss.
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Algorithm 1 Training TransNTL
1: Input: An NTL model fθ with parameters θ, a few source

domain data Dc = {(xi, yi)}Nc
i=1; perturbation collection P ,

total fine-tuning epochs E, batchsize B, self-distillation loss
weight λsd, radius of maxmization region ρ.

2: for e = 1 to E do ▷ Start training
3: Sample a mini-batch B = {(xi, yi)}Bi=1 from Dc;
4: Lirft(θ) = ImpairRepairFTLoss(fθ , B, P , λsd);

5: Compute the ϵ∗ through ρ
T2
θ ∇Lirft(θ)

∥Tθ∇Lirft(θ)∥2
; ▷ Eq. (9)

6: Lirft(θ + ϵ∗) = ImpairRepairFTLoss(fθ+ϵ∗ , B, P , λsd);
7: Updating parameters θ through minimizing Lirft(θ + ϵ∗);
8: end for ▷ End training
9: Output: the attack result fθ

10: function ImpairRepairFTLoss(fθ , B, P , λsd);
11: Lft =

1
B

∑B
i=1 Lce(fθ(xi), yi); ▷ Eq. (3)

12: Lsd = max
p∈P

1
B

∑B
i=1 [Lkl(fθ(p(xi)), fθ(xi))]; ▷ Eq. (5)

13: return Lirft = Lft + λsdLsd

4.3. Sharpness-Aware Minimization

According to Sec. 3.3, the source domain landscape of NTL
model is sharper than the landscape of the target domain.
This leads to the limited generalization of source domain
learning task Tsrc and the dominant generalization of non-
transferable task Ttgt. In order to alleviate such a situation,
we propose to produce a flat loss landscape over the source
domain distributions by minimizing the sharpness (i.e., loss
changes around the neighbor of model parameters) of the
source domain and the third-party domains. Formally, fol-
lowing [31], the sharpness term Lsharp can be formulated as:

Lsharp := max
∥T−1

θ ϵ∥2≤ρ
{Lirft(θ + ϵ)− Lirft(θ)} , (7)

where ϵ ∈ Rd is the parameter-perturbation and ρ is a
hyper-parameter to control the perturbation magnitude. The
Tθ = diag(|θ1|, |θ2|, . . . , |θd|) ∈ Rd×d is introduced to set
element-wise adaptive weight for each parameter in θ [31].

Intuitively, the Lsharp indicates the largest loss change
when model parameter θ is perturbed with ϵ, which is seen
as the loss sharpness. By minimizing LSharp, the model will
find a more flat minima on the source domain and the third-
party domain. Therefore, the generalization performance
of the source domain learning task Tsrc will be further en-
hanced, enabling better repairment of NTL impairments.

4.4. Overall Training Process for TransNTL
By combining the self-distillation framework in Eq. (5) and
the sharpness term in Eq. (7), we get the total objective of
TransNTL, which can be formulated as:

min
θ

{
LTransNTL :=Lirft + Lsharp

= max
∥T−1

θ ϵ∥2≤ρ
Lirft(θ + ϵ)

}
.

(8)

Specifically, the inner maximization of the above bi-level
optimization problem can be solved as follows (the deriva-
tion is shown in Appendix B):

ϵ∗ = argmax
∥T−1

θ ϵ∥2≤ρ

Lirft(θ + ϵ) ≈ ρ
T 2
θ∇Lirft(θ)

∥Tθ∇Lirft(θ)∥2
. (9)

Overall, the complete algorithm for training TransNTL
is shown in Algorithm 1.

5. Experiments
We first describe our experimental setups. Then, in Sec. 5.1,
we verify the effectiveness of the proposed TransNTL in at-
tacking NTL and NTL-based IP protection (i.e., ownership
verification and applicability authorization). In Sec. 5.2, we
conduct ablation studies. Finally, in Sec. 5.3, we discuss a
defense method and verify its effectiveness.
Experimental setups. For datasets, by following [49,
50], we conduct experiments on (1) Digits: MNIST [10],
MNIST-M [13], SVHN [39], and SYN-D [43]; (2) CIFAR10
& STL10 [7, 30]; (3) VisDA-2017 [42]. For pretrain-
ing NTL models, we involve all NTL methods, including
the first proposed method NTL [49] and the state-of-the-art
(SOTA) method CUTI [50]. We pre-train NTL and CUTI
by using their released codes and following their parame-
ters. We also follow the same data split, preprocessing and
backbones. For attacking NTL, we seek possible attack
methods for comparison. We involve SOTA backdoor de-
fense methods and watermark removal methods, including:
FTAL [1], RTAL [1], FP [37], NAD [35], i-BAU [57], and
FT-SAM [61]. We re-implement the FTAL/RTAL and fol-
low the implementations in [54] for other methods. All the
methods can access 10% source domain data. For evalua-
tion, we report Top-1 Accuracy on both the source domain
and the target domain. Due to the limited space, more im-
plementation details can be found in Appendix C.

5.1. Transfering the NTL
Effectiveness of TransNTL in recovering target domain
performance. We first conduct experiments on target-
specified NTL with natural target domains, thus verify-
ing the effectiveness of TransNTL in recovering target do-
main performance. We carry out experiments on two digits
tasks (MNIST→ Digits, SVHN→ Digits) and three more
complex tasks (CIFAR10→STL10, STL10→CIFAR10 and
VisDA-T→VisDA-V). As shown in Tab. 1, the proposed
TransNTL effectively recovers the target domain perfor-
mance on each task by using only 10% source domain data,
with the accuracy increasing by up to 49.2% for NTL and
55.0% for CUTI. Besides, TransNTL significantly outper-
forms all attacking baselines, with most of them failing to
recover the target domain performance for either NTL or
CUTI. Moreover, CUTI models always recover to better tar-
get domain performance compared to NTL models. This
indicates that CUTI is more vulnerable to TransNTL.
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Table 1. Transfering the NTL with 10% source domain data. We report the source domain accuracy (%) in blue and target domain accuracy
(%) in red. The accuracy drop compared to the pre-trained model is shown in brackets. The best result7 is highlighted in bold.

MNIST→Digits SVHN→Digits CIFAR10→STL10 STL10→CIFAR10 VisDA-T→VisDA-V
(SL: 99.1 / 47.5) (SL: 91.1 / 54.7) (SL: 86.6 / 68.5) (SL: 91.0 / 62.4) (SL: 95.2 / 34.0)

NTL CUTI NTL CUTI NTL CUTI NTL CUTI NTL CUTI

Pre-train 98.7 / 12.2 99.3 / 8.7 85.2 / 10.6 89.8 / 10.9 84.1 / 10.1 84.3 / 9.9 83.9 / 11.1 88.1 / 10.2 94.0 / 5.5 93.3 / 10.3

FTAL 97.2 (-1.5)
12.4 (+0.2)

99.3 (+0.0)
8.7 (+0.0)

84.0 (-1.2)
10.8 (+0.2)

89.1 (-0.7)
10.0 (-0.9)

84.6 (+0.5)
10.1 (+0.0)

84.6 (+0.3)
9.9 (+0.0)

84.7 (+0.8)
11.1 (+0.0)

88.2 (+0.1)
10.2 (+0.0)

93.2 (-0.8)
5.6 (+0.1)

93.1 (-0.2)
10.3 (+0.0)

RTAL 95.2 (-3.5)
14.9 (+2.7)

99.0 (-0.3)
8.5 (-0.2)

82.5 (-2.7)
13.2 (+2.6)

87.4 (-2.4)
11.6 (+0.7)

82.2 (-1.9)
10.1 (+0.0)

82.6 (-1.7)
9.9 (+0.0)

83.5 (-0.4)
11.0 (-0.1)

85.6 (-2.5)
10.2 (+0.0)

92.8 (-1.2)
8.3 (+2.8)

91.0 (-2.3)
10.7 (+0.4)

FP 96.8 (-1.9)
14.2 (+2.0)

98.6 (-0.7)
9.9 (+1.2)

83.8 (-1.4)
10.7 (+0.1)

87.2 (-2.6)
12.4 (+1.5)

82.3 (-1.8)
10.4 (+0.3)

82.7 (-1.6)
10.0 (+0.1)

82.6 (-1.3)
9.0 (-2.1)

84.4 (-3.7)
10.5 (+0.3)

91.0 (-3.0)
7.3 (+1.8)

91.1 (-2.2)
13.3 (+3.0)

NAD 97.0 (-1.7)
12.8 (+0.6)

99.0 (-0.3)
8.8 (+0.1)

82.5 (-2.7)
10.4 (-0.2)

87.2 (-2.6)
10.9 (+0.0)

81.2 (-2.9)
10.1 (+0.0)

83.9 (-0.4)
9.9 (+0.0)

73.3 (-10.6)
10.7 (-0.4)

84.3 (-3.8)
50.4 (+40.2)

9.0 (-85.0)
7.7 (+2.2)

89.0 (-4.3)
25.4 (+15.1)

i-BAU 96.4 (-2.3)
10.9 (-1.3)

99.2 (-0.1)
8.9 (+0.2)

81.2 (-4.0)
13.9 (+3.3)

86.7 (-3.1)
11.0 (+0.1)

80.5 (-3.6)
10.2 (+0.1)

77.0 (-7.3)
17.7 (+7.8)

83.6 (-0.3)
11.0 (-0.1)

83.5 (-4.6)
36.5 (+26.3)

90.3 (-3.7)
5.9 (+0.4)

88.4 (-4.9)
15.1 (+4.8)

FT-SAM 90.9 (-7.8)
11.7 (-0.5)

94.8 (-4.5)
34.6 (+25.9)

72.5 (-12.7)
22.6 (+12.0)

87.3 (-2.5)
13.6 (+2.7)

76.1 (-8.0)
14.7 (+4.6)

78.9 (-5.4)
26.7 (+16.8)

78.5 (-5.4)
11.1 (+0.0)

86.3 (-1.8)
11.4 (+1.2)

12.0 (-82.0)
9.5 (+4.0)

28.4 (-64.9)
11.0 (+0.7)

TransNTL
(Ours)

97.9 (-0.8)
37.6 (+25.4)

99.0 (-0.3)
48.4 (+39.7)

84.8 (-0.4)
48.2 (+37.6)

87.9 (-1.9)
55.3 (+44.4)

82.5 (-1.6)
49.7 (+39.6)

80.2 (-4.1)
62.3 (+52.4)

83.4 (-0.5)
60.3 (+49.2)

85.1 (-3.0)
65.2 (+55.0)

89.4 (-4.6)
22.5 (+17.0)

91.0 (-2.3)
31.2 (+20.9)

Table 2. Risks for NTL-based ownership verification. “(P)” repre-
sents the patched domain. We report the source domain accuracy
(%) and target domain accuracy (%). The relative accuracy drop
compared to the pre-trained NTL method is shown in brackets.

CIFAR10→CIFAR10(P) VisDA-T→VisDA-T(P)
(SL: 86.6 / 61.5) (SL: 95.2 / 94.0)

NTL CUTI NTL CUTI

Pre-train 81.2 / 9.5 86.2 / 10.5 94.3 / 16.3 95.1 / 17.6

FTAL 82.3 (+1.1)
9.5 (+0.0)

85.4 (-0.8)
10.5 (+0.0)

94.0 (-0.3)
17.9 (+1.6)

94.3 (-0.8)
16.7 (-0.9)

RTAL 81.3 (+0.1)
9.5 (+0.0)

82.4 (-3.8)
11.4 (+0.9)

92.9 (-1.4)
33.4 (+17.1)

93.4 (-1.7)
26.8 (+9.2)

FP 79.6 (-1.6)
9.6 (+0.1)

82.3 (-3.9)
8.2 (-2.3)

92.3 (-2.0)
53.9 (+37.6)

92.9 (-2.2)
27.4 (+9.8)

NAD 79.8 (-1.4)
10.1 (+0.6)

83.8 (-2.4)
10.5 (+0.0)

92.8 (-1.5)
58.6 (+42.3)

92.4 (-2.7)
61.7 (+44.1)

i-BAU 78.3 (-2.9)
10.0 (+0.5)

84.6 (-1.6)
10.4 (-0.1)

88.5 (-5.8)
24.8 (+8.5)

90.8 (-4.3)
21.0 (+3.4)

FT-SAM 78.7 (-2.5)
9.5 (+0.0)

84.2 (-2.0)
19.5 (+9.0)

91.1 (-3.2)
58.9 (+42.6)

87.5 (-7.6)
83.2 (+65.6)

TransNTL
(Ours)

77.3 (-3.9)
38.3 (+28.8)

82.6 (-3.6)
54.0 (+43.5)

91.3 (-3.0)
85.3 (+69.0)

90.3 (-4.8)
89.3 (+71.7)

Risk of NTL-based ownership verification. Further, we
uncover the risk of NTL-based ownership verification. In
the pre-training stage, we follow [49, 50] to add a trigger
patch on the source domain data and see them as the tar-
get domain. Thus, NTL-based ownership verification can
be achieved by observing the performance difference of a
trained model on the data with and without trigger patch.

The attacking results on CIFAR10 and VisDA-T are
shown in Tab. 2. We can see that the proposed TransNTL
successfully recovers the performance on patched data, with
improvements by up to 71.7% and exceeding all attack
baselines. By performing TransNTL, the NTL-based own-

7In each table, we highlight the best overall accuracy (i.e., the sum of
accuracies of the source domain and the target domain)

ership verification will be cracked as the attacked model be-
haves more like an SL model, with the performance nearly
the same on the data with and without the patch.

Risk of NTL-based applicability authorization. We
also reveal the risk of NTL-based applicability authoriza-
tion, which aims to restrict the model generalization ability
to only the authorized domain. We first pretrain NTL and
CUTI to employ applicability authorization by following
[49, 50]. Specifically, the source data with an authorized
patch is regarded as the source domain, and the union of
the original source data, the generated neighborhood data8

with and without the patch is seen as the target domain.
Then, we attack the NTL-based applicability authoriza-

tion models and show results in Tab. 2. By performing
TransNTL, the restricted generalization of the pretrained
NTL and CUTI is unleashed to unauthorized domains, with
the performance increasing by up to 28.7%. TransNTL also
outperforms all the attacking baselines, becoming the most
serious threat to NTL-based applicability authorization.

5.2. Ablation Studies
In this section, we explore the effectiveness of main com-
ponents in TransNTL by conducting ablation studies. As
shown in Tab. 4, performing the vanilla fine-tuning (i.e.,
Lft) on 10% source domain data fails to attack both NTL
and CUTI. When adding the self-distillation loss (i.e., Lft +
Lsd), the impairments on third-party domains are repaired,
and the transferability barrier in NTL models begin to be
broken, with the target domain performance increasing by
up to 49.4%. However, the source domain performance
has significant degradation (e.g., 6.7% dropping of NTL on
VisDA-T→VisDA-V). As we continue to add the sharpness

8We follow the GAN-based method proposed in [49] to generate the
neighborhood data from the original source data.
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Table 3. Risks of NTL-based applicability authorization. “(P)”
represents the authorized domain. “unAuths” represents the un-
authorized domains. We report the source domain accuracy (%)
in blue and target domain accuracy (%) in red. The accuracy drop
compared to the pre-trained NTL method is shown in brackets.

CIFAR10(P)→unAuths VisDA-T(P)→unAuths
(SL: 83.7 / 71.9) (SL: 95.7 / 55.1)

NTL CUTI NTL CUTI

Pre-train 80.7 / 30.4 80.3 / 37.2 93.9 / 17.1 94.0 / 20.0

FTAL 80.5 (-0.2)
31.5 (+1.1)

79.9 (-0.4)
39.8 (+2.6)

93.6 (-0.3)
17.3 (+0.2)

93.2 (-0.8)
19.6 (-0.4)

RTAL 79.6 (-1.1)
34.1 (+3.7)

76.8 (-3.5)
48.1 (+10.9)

92.5 (-1.4)
18.6 (+1.5)

92.0 (-2.0)
21.5 (+1.5)

FP 80.0 (-0.7)
35.5 (+5.1)

76.2 (-4.1)
51.3 (+14.1)

91.7 (-2.2)
29.9 (+12.8)

90.0 (-4.0)
26.9 (+6.9)

NAD 79.7 (-1.0)
37.5 (+7.1)

77.4 (-2.9)
46.0 (+8.8)

93.7 (-0.2)
16.4 (-0.7)

86.3 (-7.7)
44.2 (+24.2)

i-BAU 82.1 (+1.4)
32.2 (+1.8)

76.4 (-3.9)
36.7 (-0.5)

90.2 (-3.7)
36.6 (+19.5)

87.1 (-6.9)
38.7 (+18.7)

FT-SAM 80.3 (-0.4)
36.9 (+6.5)

77.0 (-3.3)
55.0 (+17.8)

60.9 (-33.0)
27.5 (+10.4)

92.7 (-1.3)
37.7 (+17.7)

TransNTL
(Ours)

80.3 (-0.4)
42.0 (+11.6)

77.6 (-2.7)
63.4 (+26.2)

88.4 (-5.5)
45.8 (+28.7)

89.1 (-4.9)
47.8 (+27.8)

term (i.e., the full TransNTL), the attack becomes more ef-
fective because the sharpness term further enhances the gen-
eralization of both the fine-tuning on the source domain and
the self-distillation on third-party domains. Thus, the full
TransNTL achieves the best attacking performance.

More results and analyses are shown in Appendix D.

5.3. Defending the TransNTL
Previously, our experiments reveal the risks of existing NTL
methods. For completeness, in this section, we discuss how
to defend the proposed TransNTL attack. We first illustrate
the main principle of the defense method, and then we con-
duct basic experiments to show its effectiveness.

Defense method. To defend the TransNTL, we propose
to pre-repair the impairments in perturbation-based third-
party domains. Thus, by simply modifying the impairment-
repair self-distillation loss term in Eq. (5), we have:

LDefense := max
p∈P

E(x,y)∼Ds
[Lkl(fθ(p(x)), fθ(x))] , (10)

where P is the perturbation collection, Ds is the source do-
main, and Lkl is the KL divergence. We add the LDefense to
the general NTL framework and get the total objective:

LRobustNTL := LNTL + λdfLDefense, (11)

where λdf is a trade-off weight. Intuitively, by minimizing
LRobustNTL, we let the NTL model exhibits source-domain-
consistent behaviours on perturbed source domain data,
thus pre-fixing bugs before deployment.

Defense results. We here consider the more vulnerable
method CUTI. According to Eq. (11), we revise CUTI to
its robust version: R-CUTI. Experiments are conducted on
CIFAR10→STL10 and VisDA-T→VisDA-V. As shown in

Table 4. Ablation studies of the proposed TransNTL. We report
the source domain accuracy (%) in blue and target domain accu-
racy (%) in red. In brackets, we show the relative accuracy drop
compared to the corresponding pre-trained NTL method.

CIFAR10→STL10 VisDA-T→VisDA-V
(SL: 86.6 / 68.5) (SL: 95.2 / 34.0)

NTL CUTI NTL CUTI

Pre-train 84.1 / 10.1 84.3 / 9.9 94.0 / 5.5 93.3 / 10.3

Lft
84.6 (+0.5)
10.1 (+0.0)

84.6 (+0.3)
9.9 (+0.0)

93.2 (-0.8)
5.6 (+0.1)

93.1 (-0.2)
10.3 (+0.0)

Lft + Lsd
82.6 (-1.5)

44.8 (+34.7)
79.7 (-4.6)

59.3 (+49.4)
87.3 (-6.7)

16.9 (+11.4)
90.6 (-2.7)

28.3 (+18.0)

TransNTL
(full)

82.5 (-1.6)
49.7 (+39.6)

80.2 (-4.1)
62.3 (+52.4)

89.4 (-4.6)
22.5 (+17.0)

91.0 (-2.3)
31.2 (+20.9)

Table 5. Defending the TransNTL. The source domain accuracy
and target domain accuracy (%) are reported, with the accuracy
drop compared to the pre-trained NTL model shown in brackets.

CIFAR10→STL10 VisDA-T→VisDA-V
(SL: 86.6 / 68.5) (SL: 95.2 / 34.0)

CUTI R-CUTI CUTI R-CUTI

Pre-train 84.3 / 9.9 83.6 / 10.0 93.3 / 10.3 95.4 / 7.0

TransNTL 80.2 (-4.1)
62.3 (+52.4)

83.5 (-0.1)
10.0 (+0.0)

91.0 (-2.3)
31.2 (+20.9)

92.7 (-2.7)
23.6 (+16.6)

Tab. 5, the R-CUTI is more robust against the TransNTL
than CUTI, with the post-attack target domain accuracy
increasing by 0.0% and 16.6% on CIFAR10→STL10 and
VisDA-T→VisDA-V, respectively (significantly lower than
52.4% and 20.9% of the original CUTI). Due to the limited
space, more analyses of defense are shown in Appendix E.

6. Conclusion
In this paper, we focus on the robustness of NTL. We ob-
serve that the generalization of NTL models is widely im-
paired outside the target domain, which patterns are iden-
tified as over-confident predictions on the implicit tar-
get domain class. Motivated by these findings, we pro-
pose a TransNTL method to reveal the risk of existing NTL
methods. TransNTL attacks NTL based on the finding that
the slight-perturbed source domain exhibits the same im-
pairment patterns as the target domain. The effectiveness
of TransNTL is verified through extensive experiments.
Finally, we discuss a feasible defense method against
TransNTL, and empirically, we validate its effectiveness.
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