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Figure 1. DragGAN fails in both cases due to limited model capacity. Similarly, DragDiffusion relies on LoRA fine-tuning and hand-drawn
masks to achieve high-quality results, and SDE-Drag also fails to address these two cases effectively. In contrast, our approach ensures
precise manipulation and detail preservation without fine-tuning or masks.

Abstract

Generative models are gaining increasing popularity,
and the demand for precisely generating images is on the
rise. However, generating an image that perfectly aligns
with users’ expectations is extremely challenging. The
shapes of objects, the poses of animals, the structures of
landscapes, and more may not match the user’s desires, and
this applies to real images as well. This is where point-
based image editing becomes essential. An excellent im-
age editing method needs to meet the following criteria:
user-friendly interaction, high performance, and good gen-
eralization capability. Due to the limitations of StyleGAN,
DragGAN exhibits limited robustness across diverse sce-
narios, while DragDiffusion lacks user-friendliness due to
the necessity of LoRA fine-tuning and masks. In this paper,
we introduce a novel interactive point-based image edit-
ing framework, called EasyDrag, that leverages pretrained
diffusion models to achieve high-quality editing outcomes
and user-friendship. Extensive experimentation demon-
strates that our approach surpasses DragDiffusion in terms
of both image quality and editing precision for point-based
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image manipulation tasks. The code will be available on
https://github.com/Ace-Pegasus/EasyDrag.

1. Introduction

In the past few years, diffusion models [9, 24, 27] repre-
sent a groundbreaking advancement in the domain of gener-
ative modeling. In particular, text-to-image diffusion mod-
els [24, 25, 31] can produce remarkable images based on
textual prompts. Recently, such models have also been ex-
tended for image editing [3, 7, 13, 18, 23, 33]. Since dif-
fusion models depend on textual input, image elements, in-
cluding objects and styles, can be altered with a high degree
of quality and diversity guided by edited prompts.

However, text-guided image editing cannot precisely di-
rect changes in the image, and it is unpredictable for a spe-
cific point in the image that one might want to move. There-
fore, point-guided image editing becomes essential. A re-
cent study DragGAN [21] introduces “drag” operation for
precise image editing, which has received widespread at-
tention for its point-based interaction. Nonetheless, it en-
counters limitations tied to the capacity and adaptability of
StyleGAN [11, 12] as shown in Fig. 1. In contrast, diffu-
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sion models [9, 24, 27] exhibit better stability and superior
generative quality. DragDiffusion [26] enables interactive
point-based image editing on diffusion models with LoRA
fine-tuning [10] but introduces high time consumption at the
same time.

What capabilities should point-based image editing pos-
sess? User-friendly interaction, good performance and
effective generalization. User-friendly interaction implies
ease of use and short response times for users, while good
performance refers to precise dragging with maintaining
identity. Effective generalization requires the method to
work with a single model for various images. Unfortu-
nately, existing methods have not been able to simultane-
ously exhibit these capabilities. DragGAN lacks general-
ization of dragging general domain image, while DragDif-
fusion is less user-friendly due to its reliance on LoRA fine-
tuning and masks. In this paper, we propose a novel point-
based image editing framework built on diffusion models,
which can concurrently fulfill these requirements.

In contrast to DragDiffusion, our method do not require
any fine-tuning of pre-trained models, which significantly
reduces the response time for users. Since the generative
domain of diffusion models are extremely huge and lack
of LoRA fine-tuning presents a certain degree of challenge
for diffusion-based dragging, we introduce a novel motion
supervision method to better align with the feature space,
which can get precise point tracking on diffusion models.
Similarly, the edited latent often generates images that are
inconsistent with the original due to the broad generation
space. Built on this, we propose reference guidance during
the denoising process, to preserve identity consistency with
the input image. Furthermore, we design a method for auto
mask generation and achieve simplified dragging interac-
tion, which meets the need of user-friendliness. As shown
in Fig. 1, the performance of DragDiffusion relies on LoRA
fine-tuning and masks, while our method does not require
these and achieves better performance.

Our contributions can be summarized as follows:

• User-friendly interaction. We introduce a point-based im-
age editing method with auto mask generation for user-
friendship, simplifying the dragging process while main-
taining the comparable results.

• High performance. We propose a stable motion supervi-
sion and point-tracking method that has better adaptabil-
ity to the latent space of the diffusion model to achieve
precise manipulation. We also introduce reference guid-
ance during the denoising process after the optimization
of the latent code for better identity preservation.

• Effective Generalization. Based on diffusion models,
our approach can handle a wide range of natural images
and various types of dragging, obviously outperforming
GAN-based methods.

• Extensive qualitative and quantitative results demonstrate

that our method produces superior and more precise point
dragging outcomes with clear gaps when compared to ex-
isting point-guided image editing methods.

2. Related work
2.1. Text-guided image editing

With the success of GANs in the field of image genera-
tion, many previous image editing methods [1, 6, 29, 34]
are based on StyleGAN. These editing approaches map real
images into the latent space of StyleGAN (W space orW+
space) and then achieve image editing by manipulating the
latent vectors. However, StyleGAN generates images in a
highly restricted domain, and the image quality is not al-
ways high. This makes it challenging to successfully invert
many real images to a satisfactory latent code. Recently,
diffusion models have enabled image synthesis at high qual-
ity. An increasing number of image editing tasks [7, 17, 18]
have shifted towards being based on diffusion models. Pre-
vious image editing methods that rely on diffusion models,
such as SDEdit [16] and blended diffusion [2], cannot fully
leverage the capabilities of accurate diffusion inversion as
they introduced random noise into the input image to cre-
ate a noisy initial state. Prompt-to-Prompt [7] is the first to
accomplish extensive text-guided image editing without the
need for diffusion model refinement, including local edit-
ing even when a known mask is unavailable. Null-text in-
version [18] successfully reconstructs real images by op-
timizing the null-text embedding at each prediction step,
which decides the unconditional prediction. Most recently,
pix2pix-zero [22] proposes to learn editing directions in
the textual embedding space for specific image translation
tasks. In contrast to these methods, our work enables users
to conduct image control through point-guided editing.

2.2. Point-guided image editing

In order to facilitate fine-grained editing, several approaches
have been introduced for point-based editing, including
those by [5, 21, 26, 30]. DragGAN [21] introduces an in-
teractive method for seamless point-based image editing,
incorporating two innovative components: the optimiza-
tion of latent codes to progressively move multiple handle
points to their desired positions and a precise point track-
ing mechanism to accurately follow the path of these han-
dle points. However, the results of DragGAN are con-
strained by the generative capacity of StyleGAN. Recently,
DragDiffusion [26] extends the editing framework of Drag-
GAN to diffusion models with LoRA fine-tuning. Con-
versely, LoRA fine-tuning significantly extends the wait-
ing time, which is unfriendly to the users. DragonDiffu-
sion [19] utilizes an energy function to guide the editing
and a memory bank for editing consistency. SDE-Drag [20]
proposes an SDE-based approach to formulate the image
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Figure 2. The pipeline of our framework. Our method generates masks automatically for precise supervision and convenience for users.
To improve motion supervision over existing methods like DragGAN, we propose a stable motion supervision method based on diffusion
models. The reference guidance where guidance latents are inherited from DDIM inversion preserves identity with the input image
commendably.

editing. In contrast to previous works, we propose a novel
point-based image editing framework, which can generate
high-quality results without LoRA fine-tuning and masks.

3. Method
3.1. Preliminaries

Denoising diffusion probabilistic models (DDPM) [9] aim
to map a pure noise zT to an output image z0, which is
guided by the given conditioning prompt. During the train-
ing process, the network ϵθ is updated by predicting the
noise ϵ from the latent variables zt:

Lθ = Ez0,ϵ∼N(0,I),t∼U(1,T )∥ϵ− ϵθ(zt, t, C)∥22, (1)

where the noised sample zt is calculated by adding noise
ϵ to z0 according to diffusion step t and C is the condition-
ing input of ϵθ. During inference, we use DDIM [27] for
sampling method:

zt−1 =

√
αt−1

αt
zt+
√
αt−1(

√
1

αt−1
− 1−

√
1

αt
− 1)ϵθ(zt),

(2)
where αt(t = 0, 1, 2, ..., T ) represent the noise scales at

corresponding diffusion steps.

DDIM inversion. The forward process of DDIM can be
expressed in terms of ϵθ(zt, t, C), based on the assumption
that the ODE process can be inverted in the limit of small
steps:

zt+1 =

√
αt+1

αt
zt+
√
αt+1(

√
1

αt+1
− 1−

√
1

αt
− 1)ϵθ(zt).

(3)

Stable Diffusion. Stable Diffusion (SD) [24] presents the
input image into a lower-dimensional latent space with a
Variational Auto-Encoder (VAE) [15], where the input la-
tent z0 is defined as E(x0) and the output image x0 is ob-
tained by D(z0). We implement our work based on Stable
Diffusion model.

Classifier-free guidance. The extent to which the prompt
influences the reverse diffusion process directly affects the
quality of image generation. For this purpose, Ho et al. [8]
proposes the classifier-free guidance, which controls the de-
gree of impact from text conditioning. Specifically, the null
next-embedding ϕ = ψ(””) is employed as a anchor point
for unconditional prediction to enhance the text condition-
ing with guidance scale w:

ϵ̃θ(zt, t, C, ϕ) = w∗ϵθ(zt, t, C)+(1−w)∗ϵθ(zt, t, ϕ). (4)

3.2. Overview

Given an input image I, the user should input a number
of handle points {pi = (xp,i, yp,i)|i = 1, 2, ..., N} and
their corresponding target points {qi = (xq,i, yq,i)|i =
1, 2, ..., N}. The objective is to drag the content of the han-
dle points to the target points based on image I. The user
can also input a mask M to specify the modifiable area.

We operate DDIM inversion with C = ψ(P) on the input
image, where P represents the prompt, and get the interme-
diate results zT , ..., zt, ..., z0, where zt is a specific interme-
diate latent in DDIM inversion. Loop of optimizations is
performed on zt to make features of the target points sim-
ilar enough to that of the handle points, with novel stable
motion supervision and automatic mask generation intro-
duced in this paper. Then, the result of optimization z∗t is
fed into the denoising process with reference guidance to
achieve identity consistency with I. We present the pipeline
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Figure 3. Stable motion supervision. When the next point p∗∗ is
more similar with the handle point p than p∗, the handle point has
moved to the position of p∗∗. Our approach differs significantly
from DragGAN in that our method always learns features from
the original image, while DragGAN learns features that are con-
tinually changing.

in Fig. 2, and elaborate three key components in the follow-
ing subsections.

3.3. Stable motion supervision

There exists misleading in DragGAN due to the proposed
motion supervision. In contrast to DragGAN, we introduce
an efficient drag method that is more suitable for diffusion
models. Inspired by DIFT [28], we utilize the feature maps
of U-Net denoiser as the semantic information of the input
image. Specially, we consider the second and third upper
layers of U-Net with (zt, t, C) as inputs, and concatenate
the two layers as our feature maps F used for stable motion
supervision. F is resized to have the same resolution as the
input image in order to get precise manipulation.

As shown in Fig. 3, p∗ represents current position of the
handle point, and p∗∗ is the next position that we want to
drag to. The method for calculating p∗∗ is presented in Al-
gorithm 1. We start from p∗, move along the direction of q
by K units, and then find the nearest integer coordinates to
determine p∗∗. In contrast to DragGAN, we employ p∗ to
learn features of the original image at the p position, en-
suring that the learned features are consistently accurate.
Inspired by DragonDiffusion [19], we define the similarity
loss function of two feature maps as follows:

Lcos(F,F0) =
1

1 + 1+cos(F,sg(F0))
2

, (5)

where F0 represents the feature maps corresponding to the
input image and sg(·) is the stop gradient operator. There-
fore, the stable motion supervision loss is defined as:

Algorithm 1: Next point
Input: Current point p∗, Target point q
Output: Next point p∗∗

1 if ∥q− p∗∥2 < K then
2 p∗∗ ← q;
3 else
4 d← q−p∗

∥q−p∗∥2
;

5 p∗∗ ← p∗ + round(d ∗K);
6 end
7 return p∗∗

L =

N∑
i=1

Lcos(F(p∗∗i ),F0(pi))

+ λLcos(F⊙ (1−M),F0 ⊙ (1−M)),

(6)

where F(p∗∗i ) denotes the feature values of F at pixel p∗∗i .
After motion supervision, the updated latent code z∗t

may change the position of handle points. Consequently, we
need to determine whether the handle point has reached the
next target point. To do this, we compare which one, F(p∗∗

i )
or F(p∗i ), resembles F0(pi) more. If cos(F(p∗∗

i ),F0(pi)) is
higher, the handle point p∗i is updated to p∗∗

i and p∗∗i is fur-
ther updated to next(p∗i , qi) according to Algorithm 1.

3.4. Auto mask generation

For user-friendly interaction, image editing should avoid
burdening users with the task of drawing masks. Existing
drag methods based on diffusion models [19, 26] always
rely on mask inputs, which are provided by users. This
requires users to have a deep understanding of the drag
method because an incorrectly drawn mask can lead to un-
predictable outcomes. Consequently, we propose a method
that can automatically generate masks, which are able to
change adaptively during the training process.

In the process of motion supervision, the parts with
larger gradients of z∗t have a greater impact on the results,
while those with smaller gradients are generally the parts
that are expected to remain stationary. However, if the re-
gions with relatively small gradients keep changing, the fi-
nal result becomes unpredictable. Due to the self-attention
layer in U-Net, minor changes made at step t are very likely
to have an unacceptable impact on the final image. There-
fore, we still need control over these low-impact areas. We
achieve this by using regions with normalized gradients
greater than a threshold g as the drag mask M.

Every time p∗i is updated, the hot-zone of zt also changes
due to the position shifting of the drag point. We update
our dynamic mask M each time p∗i changes, but there is no
need to change the mask when p∗i remains the same. This is
because for the same p∗

i and p∗∗i , the hot-zone is consistent.
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Figure 4. Qualitative comparison of our approach to DragDiffusion. Due to the misleading of motion supervision, DragDiffusion always
cannot move the handle points to the target. Furthermore, DragDiffusion often exhibits significant background changes in the absence of
the mask. In our method, the handle points reach the target positions precisely even without the mask.

This way, M adapts to changes of zt, aligning better with
the dragging requirements.

3.5. Reference guidance

With optimized z∗i , the generated images with direct DDIM
denoising often exhibit identity changes and a decrease in
image quality. Especially in areas where the pretrained
models have limited generation capabilities, naively gener-
ating with zi after DDIM Inversion may not even reproduce
the original image. Drawing inspiration from [4, 19, 26],
we employ mutual self-attention to ensure that images gen-
erated from z∗i maintain content consistency with the origi-
nal image.

As illustrated in Fig. 2, we replace the key and value
of self-attention layers in backward process of z∗i with the
corresponding key and value in the process of reconstruct-
ing the source image I. Due to the feature correlations in
lower layers being relatively weak, the mutual self-attention
is only applied to the upper layers of U-Net ϵθ. We then per-
form sampling using the linear combination of the reference
guidance and normal prediction:

ϵ∗i ← wϵθ(z
∗
i , zi, i, C) + (1− w)ϵθ(z∗i , i, C), (7)

where w controls the strength of the reference guidance.
Specifically, zi is the corresponding latent during DDIM in-
version, rather than that generated from zt. When w = 1,
our reference guidance is the same as mutual self-attention.

However, in the cases where the input image is infrequent
for the model and zt undergoes significant changes, using
mutual self-attention alone cannot guarantee identity con-
sistency. When we increase the strength of reference guid-
ance, the generated results can better ensure content and
texture consistency with the input image.

4. Experiments
In this section, we evaluate the proposed method qualita-
tively and quantitatively, on both synthetic and real images.

Implementation details. In our experiments, except for
generated image manipulations, all tasks are based on Sta-
ble Diffusion 1.5 (SD-1.5). Unless otherwise specified, in
both DDIM inversion and sampling we set the number of
the sampling steps to be 50 via using the stride of 20 over
1000 diffusion steps. We set the latent from the 35-th DDIM
step, which contains rich semantic information correspond-
ing to the input image, as zt. The gradient threshold g is 0.4,
the motion step K is 12 and the reference guidance scale w
is 4 by default. We use a learning rate of 0.01 for zt with-
out any decay schedule and train the latent with Adam [14]
solver.

Dataset. We employ DragBench introduced in DragDif-
fusion as our evaluation dataset as it encompasses various
types of images, and we also follow its dragging instruc-
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Figure 5. Qualitative results of our approach on generated images with SD-1.5 and its fine-tuned variants. (a) SD-1.5. (b) Majicmix
Realistic V7. (c) Interior Design Supermix. (d) Dvarch.

tions. DragBench contains 205 images, with well-annotated
prompts, masks, and dragging points.

Evaluation metrics. We evaluate the dragging results
from two aspects: the quality of dragged image and the
accuracy of position of handle points. We employ Image
Fidelity (IF) [13] and Mean Distance (MD) [21] to assess
these two aspects, respectively. IF evaluates the similarity
between the input and output images, which is calculated
by subtracting the mean LPIPS [32] over all pairs of orig-
inal and edited images from 1. MD quantifies how well
the handle points move to the target points. The same as
DragDiffusion, we utilize DIFT [28] to identify the points
in the output image that correspond to the handle points in
the input image. These identified points are then treated
as the definitive handle points after the dragging process.
Subsequently, MD is calculated as the average Euclidean
distance between the positions of all target points and their
corresponding final handle points. A higher IF and a lower
MD indicate a better quality of the dragging approach.

4.1. Qualitative evaluation

We conduct extensive experiments for the qualitative com-
parison between our method and DragDiffusion. To provide
a thorough evaluation, we adopt SD-1.5 [24] as our base
model for all real images, and also employ other fine-tuned
variants of SD-1.5 for generated image manipulation.

We present real image editing results for various object
categories and user inputs in Fig. 4. Our approach accu-
rately moves the handle points to reach the target positions,
resulting in a wide range of natural and diverse manipu-
lation effects such as altering the poses of animals, rear-
ranging landscapes, modifying human body parts, and re-
shaping objects, in the absence of the mask. Conversely,
DragDiffusion is unable to precisely move the handle points
to the target positions, which is mainly attributed to the mis-
leading of point tracking that is employed in DragGAN and
DragDiffusion. It is worth noting that DragDiffusion always
changes the non-dragged regions when no mask is provided.

We also conduct a series of point manipulations based
on the generated images, as shown in Fig. 5. The classifier-
free guidance scale is configured at 7.5 for various SD-1.5
variants. Notably, the reference guidance is unnecessary for
generative editing, as the prompt of generated images pro-
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Figure 6. Out-of-distribution manipulations. In some cases, the input image cannot be reconstructed with DDIM Inversion. Utilizing
reference guidance, edited image preserves its identity with the original image.

Method IF(↑) MD(↓) Time(s)
DragGAN 0.695 57.3 59.1
DragDiffusion 0.882 36.71 69.4
DragDiffusion w/o LoRA 0.863 53.63 33.7
DragDiffusion w/o mask 0.766 47.03 65.6
SDE-Drag 0.871 45.44 50.1
Ours w/ mask 0.889 29.07 27.3
Ours 0.910 32.55 30.6

Table 1. Quantitive evaluation of different methods with Drag-
Bench. Evaluation metrics include Image Fidelity (IF) and Mean
Distance (MD).

vides substantial guidance during the denoising process. As
shown in Fig. 5, our method achieves point-based editing
with high quality and precision on generated images. It can
be observed that in some cases, the details of generated im-
ages have changed. This is because the self-attention layer
in diffusion models may introduce slight variation in other
parts when a specific area of the image is edited. If users
want to preserve certain areas without any changes, they
can employ inpainting during image generation with masks
to determine which regions should remain unchanged.

4.2. Quantitative evaluation

We conduct quantitative evaluation by comparing our
method to the baseline dragging method on diffusion,
DragDiffusion. The evaluation, which incorporates IF and
MD metrics, makes use of the DragBench dataset provided
by DragDiffusion. The results, as shown in Tab. 1, demon-
strate that our approach significantly surpasses DragDiffu-
sion and SDE-Drag on the DragBench dataset. Notably, our
method achieves superior dragging results without requiring
LoRA fine-tuning, offering substantial time savings during
extensive experiments. The performance of DragDiffusion
degrades significantly without LoRA nor mask. The execu-
tion time in Tab. 1 is calculated on a single A100 GPU.

Small mask Large mask Appropriate mask Ours

Figure 7. When users do not provide an appropriate mask, the
generated results are prone to issues.

4.3. Discussions

Reference Guidance. With our reference guidance, we
enable the diffusion models to perform out-of-distribution
manipulations. As shown in Fig. 6, the original image
cannot be faithfully reconstructed using DDIM Inversion.
When we introduce reference guidance, zt can better re-
construct the input image. It is worth noting that zi(i =
t, t − 1, ..., 1) is obtained during the DDIM Inversion pro-
cess, so it contains richer information compared to zt. After
editing zt, the image generated from z∗t is very different
from the input image in terms of identity. As we increase
the reference guidance scale w, the consistency between
the generated image and original image gradually improves.
However, ifw is too large, the generated image may become
oversaturated. In our experiments, a value forw in the range
of 3 to 5 is considered a good choice.

Auto mask generation. When users create imprecise
masks, the results are unpredictable. As shown in Fig. 7,
when the mask is too small, it will restrict the editing of
the image. On the other hand, when the mask is too large,
changes may occur in the background. Therefore, an appro-
priate mask is necessary for point-based image editing. Our
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Figure 9. Ablation study.

auto mask generation method liberates users from the need
to manually draw masks, which is user-friendly, especially
for novice users.

Figure 8 shows the update of gradient and prediction
with the optimization of zt. It can be observed that when the
handle points update, the gradient of zt will change simulta-
neously. In the K-th step, the whole arm of the robot needs
to be lifted, so the gradients for the arm part are relatively
large. However, by the time we reach the (K+1)-th step, the
robot’s arm has already been dragged into the right place,
and only the palm part needs to extend outward. Therefore,
only the gradients for the palm part are high. Our auto mask
effectively captures these details and incorporates this vari-
ation into the updates of zt, thereby providing better control
over the direction of zt. That is the reason why the IF metric
of without mask is higher than that with mask in Tab. 1.

Ablation study. We perform ablation studies to analyze
the impact of the feature used in stable motion supervision,
and we evaluate the performance on DragBench, as shown
in Fig. 9a. Notably, the concatenated feature maps from up-
per layers 1&2 exhibit the best performance, demonstrating
an optimal balance between resolution and discriminative-
ness. Additionally, we investigate the effects of different
values of K in Fig. 9b, and it is observed that K = 12
yields better results.

Methods IF(↑) MD(↓)
DragGAN 0.856 51.32
DragonDiffusion 0.899 52.21
Stable motion supervision 0.889 29.07

Table 2. Quantitative comparison of motion supervision between
our method and previous works. Our approach achieves more ac-
curate dragging results than other methods.

Figure 10. When the manipulated portion in the image is very
small or the dragging distance is extensive, it is challenging for
the dragging to have a noticeable effect.

A comparison of “drag” method between our approach
and previous methods is shown in Tab. 2. We only replace
stable motion supervision with the “drag” method in other
works. It can be found that stable motion supervision is
more suitable for the feature space of diffusion models, al-
though DragonDiffusion achieves slightly higher IF.

Limitations. Despite the outstanding performance, our
method has some limitations. Particularly, when the edit-
ing area is too small or the dragging distance is too long,
the dragging result may be unsatisfactory. As depicted in
Fig. 10, when the girl’s face occupies only a small part
of the image, and we intend to edit the mouth, the desired
changes of mouth do not occur as expected.

5. Conclusion
In this work, we attribute an excellent point-based image
editing method to three criteria: user-friendly interaction,
good performance, and effective generalization. We aban-
don the LoRA fine-tuning and masks, which is convenient
for users. Furthermore, we propose a stable motion su-
pervision method and reference guidance to generate high-
quality results based on diffusion models. Leveraging the
powerful generative capabilities of the diffusion model, we
achieve impressive dragging results across various domains.
However, in our experiments, we observe that for very
small-scale manipulations or long-distance dragging in im-
ages, the results are often not satisfactory. Diffusion mod-
els with stronger generative capabilities may be needed to
achieve a broader range of dragging manipulations.
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