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Abstract

The rise of new video modalities like virtual reality or
autonomous driving has increased the demand for effi-
cient multi-view video compression methods, both in terms
of rate-distortion (R-D) performance and in terms of de-
lay and runtime. While most recent stereo video com-
pression approaches have shown promising performance,
they compress left and right views sequentially, leading
to poor parallelization and runtime performance. This
work presents Low-Latency neural codec for Stereo video
Streaming (LLSS), a novel parallel stereo video coding
method designed for fast and efficient low-latency stereo
video streaming. Instead of using a sequential cross-view
motion compensation like existing methods, LLSS intro-
duces a bidirectional feature shifting module to directly ex-
ploit mutual information among views and encode them ef-
fectively with a joint cross-view prior model for entropy
coding. Thanks to this design, LLSS processes left and right
views in parallel, minimizing latency; all while substan-
tially improving R-D performance compared to both exist-
ing neural and conventional codecs.

1. Introduction
The rise in popularity of autonomous vehicles (AVs)

equipped with stereo cameras, along with the widespread

use of virtual reality (VR) headsets, has led to a signifi-

cant increase in stereo video data. For AVs, stereo cameras

serve as a cost-effective alternative to sensors like LIDAR or

RADAR. The data they capture is crucial for time-sensitive

safety analyses during vehicle operation, necessitating low-

latency data transmission. In VR, to achieve an immersive

user experience, the demands for both resolution and la-

tency are even higher. For both AV and VR applications,

it’s crucial that the codec encodes stereo video efficiently

while maintaining low latency.

A basic approach to stereo video coding would apply a

low-delay, single-view codec like AVC [62] or HEVC [23]
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Figure 1. Comparison of multi-view compression strategies. In

contrast to LSVC [10], our approach processes the left and right

frames simultaneously. This parallel processing not only facili-

tates more rate-efficient coding, it also reduces the latency between

the left and right views.

to each view independently. While these traditional codecs

yield promising results, and are used in commercial prod-

ucts, such as Meta Quest [16], they double the rate and

ignore the similarities between two views. Consequently,

several standard codecs have been proposed to reduce the

redundancy between two views through disparity compen-
sation [54, 59]. They typically first encode the right view

frame using a single-view codec. Then left view frame is

predicted from the encoded right view frame. However,

these sequential processing limits the ability to process mul-

tiple views simultaneously.

Recent years have seen rapid progress in single-view

neural video codecs [2, 25, 26, 31, 32, 36, 38, 47, 49], par-

ticularly in low-delay settings. For instance, recent DCVC-

DC Li et al. [36] has shown better Rate-Distortion (R-

D) performance than the H.266 standard codec [7]. Our

method is inspired by the most recent work LSVC [10],

which is the first neural codec for stereo video. Although

LSVC achieves great results and shows significant superi-

ority over MV-HEVC [24] codec, it sequentially processes

the right and left view frames, which constrains its suitabil-

ity for low-latency applications like VR and AVs.

In this work, we present a Low-Latency Stereo video
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Streaming (LLSS) codec designed for parallel stereo video

coding. This codec’s development is grounded in two

key insights. First, inspired from the recent progresses

in the stereo matching methods [9, 20, 50], the disparity
compensation module between left and right views can be

greatly simplified, compared to complex motion compensa-

tion schemes in LSVC [10]. It can be efficiently represented

with horizontal shifts. Second, we observed that these

disparity compensations can be executed concurrently for

both views. A careful encoder design, sharing horizontally-

shifted features across views, can implicitly estimate dis-

parity, while facilitating parallel processing of both views,

thereby achieving low-latency inference. Figure 1 shows a

schematic comparison of these approaches. We introduce a

novel component, BiShiftMod (Bidirectional Shifting Mod-

ule), which facilitates the connections and information ex-

change between views in our network. This module is in-

tegrated into both the codec and hypercodec [5, 42], which

enables data-dependent optimization of the cross-view mu-

tual information. By following this approach, we replace

the sequential disparity compensation with a parallel cod-

ing network that can exploit cross-view mutual information

in a “disparity-agnostic” fashion.

Finally, we show that our solution substantially improves

R-D performance compared to the state-of-the-art method

on three common stereo video benchmarks, with 50.6%

BD-rate savings on the CityScapes dataset [11], 18.2% on

the KITTI 2012 dataset [17] and 15.8% on the KITTI 2015

dataset [41]. Besides, we also provide a neural network

complexity and inference time study, and show that our

model has only 35% of the complexity of LSVC [10] in

terms of FLOPS. We further ablate each design choice to

showcase the contribution of the proposed modules toward

the final R-D performance.

The contributions of this paper include:

• A novel low-latency neural stereo video codec archi-

tecture that replaces sequential inter-view compensation

with an efficient and parallelizable learned module to con-

nect parallel autoencoders

• A bidirectional shift module that effectively captures and

exhibits redundancy between inter-view features

• A set of thorough experiments demonstrating that our

method is fast, efficient, and obtaining comparable and

often better than state-of-the-art methods

2. Related Work

2.1. Neural video codecs

Neural networks have been successfully applied to data

compression in many domains, including the image [1, 3,

5, 18, 22, 40, 42, 43, 55, 56] and video [2, 21, 25, 26,

31, 32, 34–36, 38, 48, 49, 51] settings. Most of these

lossy compression systems are composed of one or more

variational autoencoders referred to as compressive autoen-
coders[21, 29, 55]. Lossy compression is achieved through

quantization of the latent variables in the bottleneck. These

latents are further compressed in a lossless manner via

entropy coding, typically using a learned, data-dependent

prior model.

The main advantage of neural codecs is that they learn to

compress from example data, whereas handcrafted codecs

require expert design. This allows for easy customiza-

tion to new domains [21], or even to specific videos or

datapoints [52, 57, 58, 67]. Additionally, they may pro-

vide advantages from a deployment perspective. In prac-

tice, standard codecs often use hardware-based implemen-

tations to enable efficient operation, especially on mobile

devices. However, these implementations tend to require

a longer deployment process. In contrast, software-based

neural codecs only need generic and ubiquitous AI acceler-

ators for operation, making them more flexible and with the

potential to enhance various application domains, especially

where hardware-based codecs are not available. Lastly, neu-

ral codecs can be optimized end-to-end to improve percep-
tual quality through the use of perceptual loss functions

[1, 18, 40, 43, 66], or take the semantics of the video into

account via region-of-interest coding [8, 15]. Despite these

dissimilarities, neural video codecs have taken inspiration

from handcrafted codecs. Early works used temporal archi-

tectures [19, 21, 64], but follow-up work quickly adopted

subnetworks for motion compensation and residual coding

in the low latency [2, 38, 46, 48, 49] and streaming set-

ting [30, 46]. Recently, neural video codecs have adopted

advanced motion compensation techniques [25] and condi-

tional coding, allowing them to become competitive with

standard codecs in the low latency setting [35, 36].

2.2. Standard stereo video codecs

Although single-view codecs achieve strong compression

performance, applying them to the stereo (and more broadly

multi-view) domain by independently coding each view

would lead to a suboptimal linear increase in rate. For this

reason, early works in image coding extended support to

stereo images by using disparity compensation [39, 45].

The idea is to encode one view independently, then pre-

dict the other view, for instance, with motion compensation.

Then, the difference between this prediction and the ground

truth is quantized and transmitted.

Subsequent standard works, like the Multiview Video

Coding (MVC) [59], extended standard video codecs [53,

61] using variations of disparity compensation. In particu-

lar, the most recent standard MV-HEVC [54] adopted new

techniques like the coding tree unit [27] to compress the

disparity information. Such techniques have a few major

drawbacks. First, they use many handcrafted components

which cannot be optimized end-to-end. This makes it chal-
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Figure 2. Overall architecture of our network. It contains two branches dedicated to processing the left and right view. It incorporates

a parallel motion autoencoder and a parallel context autoencoder to reduce the redundant motion and context information across views,

respectively. The weights are shared across views, including the feature extraction module, the motion estimation module, the motion

compensation module, and the image reconstruction module.

lenging to optimize reconstructions for perceptual quality or

for downstream vision tasks, such as in the automotive use

case. Second, relying on explicit disparity compensation

requires sequential processing of each view and therefore

leads to poor parallelization across views.

2.3. Neural stereo video codecs

There are multiple works on neural stereo image coding

[14, 33, 37, 63]. To the best of our knowledge, there is

only one prior work on neural compression of stereo video,

called LSVC [10]. All of these works apply some form of

explicit disparity compensation. As an example of a recent

stereo image coding work, SASIC by Wödlinger et al. [63]

uses a shared codec between left and right views but only

encodes the differences in latent space between the hori-

zontally shifted right latent and the left latent when com-

pressing the left view. By operating in feature space rather

than pixel space, this codec allows capturing big disparities

with few parameters due to the heavy spatial subsampling

in the encoder. Recently, LSVC [10] was the first method to

propose an end-to-end neural method for stereo video cod-

ing. The main idea is to first encode the right view, then

use this to conditionally encode the left view. LSVC uses

a reference buffer that keeps track of the last encoded inter

and intra view frames. Using these frames, explicit feature-

based motion (as originally introduced in FVC [25]) and

disparity compensation are used. LSVC vastly outperforms

the MV-HEVC standard on three common benchmarks.

3. Method
3.1. Redundancy and mutual information reduction

Consider a stereo video denoted by {XL
t ,X

R
t }t∈{1···T}

consisting of T frames captured concurrently by the left

(L) and right (R) cameras. This video contains two pri-

mary types of redundancy: (1) temporal redundancy be-

Figure 3. Mutual information between cross-view motion latents.

I(YR;YL) = −1/2 log2(1 − ρ2) for a joint Gaussian distribu-

tion with a normalized cross-correlation ρ.

tween consecutive frames (XL
t , XL

t+1) and (XR
t , XR

t+1);
and (2) cross-view redundancy between XL

t and XR
t .

The performance of a video codec is significantly in-

fluenced by its ability to eliminate redundant information.

For instance, temporal redundancy is commonly addressed

using motion compensation techniques, where one image

is aligned with another to “reuse” decoded information

through a set of highly compressible motion vectors such as

optical flows [2, 38, 51] or deformable kernels [25, 26, 36].

For stereo video compression, as illustrated in Figure 1,

each frame at time t typically needs to perform two mo-

tion compensation steps: an intra-view step, where a pre-

diction of the the current frame is based on the same cam-

era view from the previous frame, and an inter-view step,

which relies on the other camera view in the current frame

for prediction. Conventionally, these processes are executed

in a sequential pattern [10, 54] which hinders the opportu-

nities for exploiting parallel processing and leveraging spe-

cific mutual information characteristics of the stereo videos.

Stereo videos are typically rectified and highly-

correlated. For instance, the disparity between two views

are always in the horizontal direction [9, 20, 50]. By re-

ducing the redundant information between two views, we

could compress the stereo videos more effectively. From
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Figure 4. The architecture of a parallel autoencoder. It contains two parallel branches to compress the left and right features at the same

time. The format reads “BlockType(channel, kernel size, stride)”. The Bidirectional Shift Module (BiShiftMod) is designed to learn the

correlation between the left and right branches. It shifts the left and right features bidirectionally, estimating the Groupwise Correlation

(GroupCor) features and Concatenation-based Correlation (CatCor) features between them. We omit activation layers for conciseness.

the rate-distortion theory [12], the total bit rate RL + RR

to encode the two separate latents YL and YR generated

by encoders/decoders of left and right views (with shared

information)

RL +RR ≥ I(XR
t ,X

L
t ;Y

L
t ,Y

R
t ) (1)

where RL,RR indicates the bit rate for the left and right

view, respectively, and I(XR
t ,X

L
t ;Y

L
t ,Y

R
t ) indicates the

mutual information between the pair of the random vari-

ables (XR
t ,X

L
t ) and (YL

t ,Y
R
t ). It is upper bounded by

I(XR
t ,XL

t ;Y
L
t ,YR

t ) ≤ I(XR
t ,XL

t ;Y
L
t ) + I(XR

t ,XL
t ;Y

R
t ), (2)

where I(XR
t ,X

L
t ;Y

L
t ) is indicating the mutual informa-

tion [12] between joint random variable (XR
t ,X

L
t ) and ran-

dom variable YL
t . Similarly, I(XR

t ,X
L
t ;Y

R
t ) is the mutual

information [12] between joint random variable (XR
t ,X

L
t )

and random variable YR
t .

This causes the bit rate overhead W ≥ 0

W =
[
I(XR

t ,XL
t ;Y

L
t ) + I(XR

t ,XL
t ;Y

R
t )

]
− I(XR

t ,XL
t ;Y

L
t ,YR

t )

= I(YL
t ;YR

t )− I(YL
t ;YR

t |XR
t ,XL

t ), (3)

comparing to the case we had a single joint encoder/decoder

with the single joint latent Ut = (YL
t ,Y

R
t ) and R ≥

I(XR
t ,X

L
t ;Y

L
t ,Y

R
t ). I(YL

t ;Y
R
t |XR

t ,X
L
t ) is a Condi-

tional mutual information [12] of random variables YL
t and

YR
t conditioned on joint random variables (XR

t ,X
L
t ).

If I(YL
t ;Y

R
t ) = 0, since I(YL

t ;Y
R
t |XR

t ,X
L
t ) ≥ 0, the

total bit rate overhead W has to be equal to 0. Consequently,

to reduce the total bit rate overhead W , the network should

be designed to minimize I(YL
t ;Y

R
t ). In our architecture,

we enabled this via information-sharing between the two

parallel autoencoders. Specifically, we make use of two au-

toencoders for left and right views, and let them share in-

formation through a (learned) shifted attention module af-

ter each convolutional block. These modules enable the

information flow between the two left and right branches,

helping the network to learn to reduce their redundancy, or

equivalently the mutual information I(YL;YR). Besides,

the parallel design is beneficial for the parallel processing.

As shown in Figure 3, we observe a substantial reduction

in the mutual information I(YL
t ;Y

R
t ) between the left and

right view latents when the two autoencoders are configured

to share information compared to operating independently.

Given this approach of enabling more information flow,

the remaining question is how to design a module that can

efficiently capture and exhibit the mutual information be-

tween two branches of a codec. As inspired by the recent

success of the recent state-of-the-art approach for stereo

matching [50], this paper introduces a Bidirectional Shift

module to effective capture and transfer the mutual infor-

mation between views in stereo video compression. As a

learnt component, this module naturally adapts to both flow

and context latent between two views. The following sec-

tions present in details the network design of our method.

3.2. Low-Latency Neural Stereo Streaming

Figure 2 shows an overview of the architecture of LLSS.

At each time step t, our method compresses both left and

right view in a parallel manner. LLSS uses two branches,

left and right, to accordingly compress the left and right

image XL
t and XR

t into two separated latents YL
t and YL

t .

The network of each branch is partially adopted from the re-

cent feature-based video compression methods [25, 34, 36],

including the feature extractor, motion estimation, motion

compensation module, and the image reconstruction mod-

ule. Please find the implementation details in the supple-

mentary materials.

To enable inter-view information flow, LLSS introduces

a novel Bidirectional Shift Module, dubbed BiShiftMod that

is inspired from the recent work from Wödlinger et al.

[63]. This module is used to bridge the intermediate fea-
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tures of the network in both codec and hyper codec of the

two branches.

3.2.1 Parallel AutoEncoders

As illustrated in Figure 2, LLSS has two pairs of parallel

autoencoders: parallel motion autoencoder and parallel
context autoencoder. Inside each of them, there are two

autoencoders running in parallel corresponding to the left

and right views. The architecture of each single autoen-

coder is adopted from recent state-of-the-art feature-based

video codec [25]. Due to the limited space, we would like

to refer the reader to the original paper [25] for more de-

tails of its architecture. Briefly, each autoencoder contains

a residual-based encoder to transform its input into highly

compressible latent, which is then coded with the help of a

hyper prior network before being decoded back to the ex-

pected output via another residual-based decoder.

To enhance the intra-view information flow, the resid-

ual autoencoder compressing the residual feature Rt =
Ft− F̄t, originally in FVC [25] is replaced by a conditional

autoencoder inspired by [35]. In this conditional autoen-

coder, Ft is fed directly into the encoder, and both encoder

and decoder are conditioned on the warped feature F̄t. Ad-

ditionally, F̄t is fed into hyper codec to enhance the estima-

tion of the parameters of the prior model.

To boost the inter-view information flow, we propose the

“Bidirectional Shift Module”. In summary, this block con-

nects the modules of encoders and decoders of the left and

right branches together to enable the flow of information

across views, as illustrated in Figure 4. The next section

details the implementation of this block.

3.2.2 Bidirectional Shift Module

Figure 4 shows the architecture of a Bidirectional Shift

Module. It takes as input a pair of inter-view features,

one from each branch of the codec, and outputs a pair

of enhanced features. Inside, the inter-view features will

be first transformed into a more representative form of in-

termediate features via a set of group-based convolutions.

These intermediate features are then shifted via a mod-

ule BiShift(D,S). The shifted features are then passed

through a set of Groupwise and Concatenation-based blocks

to estimate their correlation.

The estimated correlations are then further transformed

together with the input inter-view features. These sets of

transformations and correlations help capturing the redun-

dancy between the inter-view features while feeding them

into each of the left and right encoders/decoders. The en-

coders/decoders can then share their information efficiently

and reduce the mutual information between the inter-view

latents before compression.

We describe some key components of Bidirectional Shift

Module in detail:

• Bidirectional shift (BiShift(D,S))): horizontally

shifts left feature FL to the left and the right feature FR

to the right with a max disparity D and a stride S.

• Groupwise correlation (GroupCor(G)): inspired by

the stereo matching networks [9, 20, 50], measures sim-

ilarity between the shifted features. It splits the features

into groups and calculates the cosine distance for each

group. Following [20, 50], the shifted features are evenly

divided into G groups along the channel dimension. The

groupwise correlation is calculated by

Vgwc(d, x, y, g) =
1

Cg/G
〈FL

g (x, y),F
R
g (x− d, y)〉,

(4)

where 〈·, ·〉 and (x, y) respectively indicates the inner

product and the pixel coordinates. g and d designate the

index of the groups and the disparity levels. Vgwc is de-

fined in [D,H,W,G], where H,W indicate the height

and width of the feature map, respectively.

• Concatenation-based correlation (CatCor): adopting

from [9, 20, 50], it captures the similarity between the

shifted features by just concatenating them. Compared to

the Groupwise correlation, it would provide more context

information, thus help guide the network to learn the re-

dundancy between the left and right branches. To get the

Concatenation-based feature maps [50], the shifted fea-

tures are concatenated as follows

Vconcat(d, x, y) = FL(x, y)‖FR(x− d, y), (5)

where ‖ indicates the concatenation operator along the

shifted channels.

3.3. Loss Function

We optimize the entire network for the left and right views

in an end-to-end manner. We adopt the typical rate-

distortion loss [21, 55] as follows

L =
∑

v∈{L,R}

∑

t

D(Xv
t , X̂

v
t )+β

(
H(Yv

M,t) +H(Yv
C,t)

)
, (6)

where D(·) indicates the distortion metric for the recon-

structed frames. Depending on the training phase, it can

be either the MSE or MS-SSIM loss. The superscript v in-

dicates which view is considered between Left and Right.

For each view v and time step t, Xv
t indicates the ground

truth frame, X̂v
t the reconstructed frame, Yv

M,t the quan-

tized motion latent and Yv
C,t the quantized context latent.

H(·) indicates the entropy function, which is proportional

to the bitrate. β indicates the hyper-parameter used to con-

trol the trade-off between the frame distortion and the rate.

Note that we omit the hyper latents entropy for conciseness.
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Figure 5. Rate-distortion curves in terms of PSNR and MS-SSIM on the CityScapes [11] , KITTI 2012 [17] and KITTI 2015 [41] datasets.

Table 1. BD-rate (%) on the CityScapes [11], KITTI 2012 [17],

and KITTI 2015 [41] datasets. MV-HEVC [54] is set as the base-

line. Lower is better, a negative number indicating bitrate savings.

Method CityScapes [11] KITTI 2012 [17] KITTI 2015 [41]

HEVC [23] 33.3 7.9 12.7

FVC [25] -15.6 -2.3 1.0

DCVC [34] -15.2 -13.7 -12.3

LSVC [10] -32.7 -17.1 -13.4

Ours -50.6 -18.2 -15.8

4. Experiments
Datasets. We make use of 4 different datasets. For train-

ing, we use the single-view Vimeo90K dataset [65] for pre-

training and then the stereo-camera CityScape dataset [11]

train set for finetuning. For evaluation we use Cityscapes

test set and the stereo-video KITTI 2012 [17] and 2015 [41]

datasets.

The CityScapes [11] testing dataset comprises 1,525

30-frame stereo sequence pairs, with each containing two

streams of size 2048 × 1024. The KITTI 2012 and 2015

testing datasets include 195 and 200 stereo sequence pairs,

respectively, each containing 21 frames. We follow LSVC

[10] data pre-processing for the CityScape and KITTI

datasets, all frames are cropped into size 1920 × 704 and

1216× 320, respectively.

Evaluation metrics. We measure rate in bits-per-pixel

(BPP), and assess reconstruction fidelity with the com-

monly used Peak Signal-to-Noise Rate (PSNR) and Multi-

Scale Structural SIMilarity (MS-SSIM) [60] metrics. To

summarize the rate-distortion curve in a single number, we

also report the Bjøntegaard-Delta rate (BD-rate) [6], which

can be interpreted as an average bitrate saving for a fixed

quality compared to a reference codec. All scores are re-

ported in the RGB color space. We evaluate our methods

with a Group-of-Picture (GoP) size equal to the total se-

quence length i.e., 30 and 21 frames for the CityScape and

KITTI datasets, respectively. For model efficiency, we re-

port the number of parameters along with FLOP and MAC

per pixel. We measure the inference GPU time using the

function torch.cuda.Event() as well as the function

torch.cuda.synchronize() from the official PyTorch

library [44], while FLOPs and MACs are calculated using

get model profile from the DeepSpeed library [4, 13].

Training details. We implemented our neural stereo video

codec using PyTorch [44]. Following a similar strategy

to [10], we train our models in 3 stages:

First, a single view version of our model (hence with-

out the “BiShiftMod” modules) is randomly initialized. We

train the single view model on the Vimeo90k dataset and

make use of its size and diversity. We train for 2M itera-

tions with a learning rate of 5 · 10−5, using MSE as distor-

tion loss. Second, the resulting pre-trained weights from

the first stage are used to initialize both branches of the

full stereo network. We then train the BiShiftMod mod-

ules while freezing all other modules. During this step, we

train the network for 10k iterations on the CityScape dataset

with a learning rate of 1·10−5. We found this step to greatly

stabilize the training process. Finally, we finetune the entire

network on the CityScape dataset for 200k iterations with

a learning rate of 1 · 10−5. When reporting MS-SSIM per-

formance, we use a version of our network which is fur-

ther finetuned using MS-SSIM as distortion loss for an ad-

ditional 100k iterations.

Across all stages, we use the Adam optimizer

[28] and train with various β values, specifically

[0.0002, 0.0004, 0.0008, 0.0016, 0.0032], to obtain rate
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Figure 6. Detailed complexity with respect to the pixel number on a single Nvidia 3080 GPU. The transmitter comprises the entire network,

while the receiver is tasked solely with a subset of functions to reconstruct the frame from bits.

curves. We use a batch size of 8 for the Vimeo dataset and

4 for the CityScape dataset. Additionally, we applied stan-

dard data augmentation during training. Specifically, we

generated training samples by randomly cropping with size

256×256 for Vimeo-90k, and size 384×256 for CityScape.

Our network was trained on two NVIDIA V100 GPUs for

the first stage and only one for the other stages.

Standard Baselines. We compare our work to two standard

baselines: H.265 [53] and its multi-view extension MV-

HEVC [54]. We obtain the results of the standard codecs

from the LSVC [10] paper. For H.265, it uses the HM-

16.20 [23] implementation in the “lowdelay P main” preset

on each view independently. MV-HEVC is from the HTM-

16.3 implementation [24] with “baseCfg 2view” preset.

Learned Baselines. The only learned stereo video codec to

date is LSVC by Chen et al. [10]. Like them, we include a

comparison to a single-view codec FVC by Hu et al. [25],

in which feature-based warping and residual compensation

were introduced and inspired LSVC architecture. We re-

port the scores of H.265, MV-HEVC, FVC, and LSVC as

recorded in Chen et al. [10]. Besides, we also compare with

DCVC [34]. Since DCVC didn’t release the training codes,

we evaluated it without finetuning. Therefore, the compari-

son between our method with DCVC should be interpreted

with a grain of salt.

4.1. Comparison with state-of-the-art methods

Figure 5 and Table 1 respectively show the rate-distortion

curves and BD-rate (with MV-HEVC as anchor) of all meth-

ods considered on the CityScapes, KITTI 2012 and 2015

test sets. Our LLSS method outperforms both learned

and standard state-of-the-art methods. On the CityScape

dataset, our method achieves 50.6% BD-rate savings com-

pared to MV-HEVC, while LSVC only saved 32.7%. On the

KITTI 2012 and 2015 datasets, our method attains 18.2%
and 15.8% BD-rate savings, respectively.

Note that for KITTI datasets, the gap in R-D perfor-

mance to LSVC has tightened. We tested our method on the

KITTI datasets without finetuning, following LSVC. How-

ever, KITTI and CityScapes datasets have different data dis-

tributions due to camera settings and baselines, and image

processing settings. These differences lead to significant

variations in BPP and PSNR ranges when applying con-

ventional and data-driven methods codecs. Especially all

neural codecs relying on training data so tend to be less per-

formant in this setting. Despite these challenges, our LLSS

method still achieves comparable and often better results

than all existing conventional and neural codecs. Compared

to LSVC, our method obtains an improvement of 1.1% and

2.4% BD-rate gain on KITTI 2012 and KITTI 2015, respec-

tively, while being much faster. This demonstrates the ef-

fectiveness and generalization capability of our method and

its potential to further improve its performance in the future

with more generalized datasets.

4.2. Computational complexity study

In this study, we evaluate the complexity of both the trans-

mitter and receiver components. The transmitter encom-

passes the entire network, as both encoding and decoding

operations are carried out in order to create the bit streams.

The receiver however only encompasses the feature extrac-

tor for previous frames, the parallel motion decoding mod-

ule, the motion compensation, the parallel context decod-

ing module, and the image reconstructor. As stated in Sec-

tion 4, note that LSVC does not report complexity numbers,

hence we re-implemented their architecture in order to get

the complexity numbers.

We reduced the complexity of our method by observ-

ing that the pixel displacement in cross-view disparity of a

pair of stereo frames is simpler and more predictable than

the one caused by temporal motion. When compressing

temporal motion and disparity cross views, LSVC requires

large and complex networks (MRC and DRC). Our method

greatly simplifies this by designing an efficient BiShift-

Mod to align features cross-view. In the supplementary,

we showed that our BiShiftMod accounts for only a small

fraction of the overall computational complexity. Due to

BiShiftMod, our parallel autoencoders have been designed

to be more streamlined and efficient.

We examine the complexity of the transmitter and re-

ceiver in terms of inference time, FLoating-point OPera-

tions (FLOPs), and Multiply-Add Cumulation (MACs). To

investigate how these metrics perform for various video

sizes, we crop the videos to the sizes including 128 × 128,
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Figure 7. The effectiveness of the BiShiftMod, the components in BishiftMod, and the parallel feature on the CityScape dataset [11].

256×128, 256×256, 512×256, 512×512, and 768×512.

Our experiments are conducted on a single Nvidia 3080

GPU, with a batch size of 1. We report the complexity

for one pair of stereo P-frames and compare our method

to the state-of-the-art stereo video compression approach,

LSVC [10]. As illustrated in Figure 6, our method suc-

cessfully reduces computational complexity across all ex-

amined metrics. For instance, considering a pair of stereo

frames of size 512× 512, our transmitter achieves an infer-

ence time 1.7× times faster than LSVC, while our receiver

is 1.9× times quicker. In terms of FLOPs, LSVC exhibits

2.8× and 3.2× times higher complexity for the transmit-

ter and receiver, respectively. Similarly, for MACs, LSVC

demonstrates 2.8× and 3.3× times higher complexity for

the transmitter and receiver, respectively.

4.3. Ablation study

Effectiveness of the BiShiftMod. We evaluate the effec-

tiveness of the BiShiftMod by conducting tests it on the

codec and hypercodec. When training the network with-

out BiShiftMod, we skip the second training step. Figure 7

demonstrates that BiShiftMod significantly enhances the

rate-distortion (RD) performance on the CityScape dataset.

Specifically, employing BishiftMod on the codec and hyper-

codec lead to BD-rate savings of 7.3% and 6.1% compared

to the configuration without BishftMod, respectively. When

applied to the entire network, BishiftMod achieves 13.0%

BD-rate reduction. These improvements can be attributed

to BiShiftMod’s robust ability to reduce rates, highlighting

the efficacy of our BiShiftMod architecture.

Effectiveness of the BishiftMod components. We remove

the component from BishftMod, including the groupwise

correlation (CroupCor) and concatenation-based correlation

(CatCor). Figure 7 shows the RD curve on the cityscape

dataset. Both GroupCor and CatCor improve the results.

Removing GroupCor and CatCor results in 3.7% and 4.3%

BD-rate increasing, respectively, which demonstrates the

effectiveness of our network architecture.

Effectiveness of parallel feature. We concatenate the left

and right features as a single feature. Figure 7 shows that

our paralleled feature streams approach achieves 62% BD-

rate saving compared to using single shared feature. Our ap-

proach to split features into views and explicitly model their

cross-view redundancy is more effective than simply ask-

w.o. BishiftMod - Left 

w.o. BishiftMod - Right

w. BishiftMod - Left 

w. BishiftMod - Right 

Figure 8. Visualization of sorted channels in the motion latents

with the top-8 largest average energy. With BishiftMod, the latent

features between left and right views become less alike.

ing a network to perform all of these operations implicitly,

which is consistent with the many other works on monocu-

lar video compression tasks that compressing frames with-

out modeling the motion tends to spend more bits.

Visualization of latent features. Figure 8 displays the la-

tent features from the left and right branches with the top-

8 largest average energy. We compare the differences be-

tween the left and right branches. The first two rows are

from the model without BiShiftMod, while the bottom two

rows are from the model with BiShiftMod. In the absence of

BiShiftMod, the latent features appear very similar. How-

ever, when BiShiftMod is present, the latent features be-

come less alike, indicating that BiShiftMod successfully re-

duces redundancy between the left and right branches.

5. Conclusion

We present a low-latency neural stereo video compression

method designed to simultaneously compress left and right

views. We develop a bidirectional-shift compression net-

work for this purpose. The bidirectional-shift module ef-

fectively and efficiently captures the redundancy between

the left and right frames. Our experiments demonstrate that

our method significantly outperforms other state-of-the-art

approaches. Furthermore, the experiments show that our

bidirectional-shift module and parallel autoencoders con-

tribute to the reduced bit rates and improved frame quality.
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