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Abstract

Generative Zero-shot learning (ZSL) learns a generator
to synthesize visual samples for unseen classes, which is
an effective way to advance ZSL. However, existing gener-
ative methods rely on the conditions of Gaussian noise and
the predefined semantic prototype, which limit the generator
only optimized on specific seen classes rather than charac-
terizing each visual instance, resulting in poor generaliza-
tions (e.g., overfitting to seen classes). To address this issue,
we propose a novel Visual-Augmented Dynamic Semantic
prototype method (termed VADS) to boost the generator to
learn accurate semantic-visual mapping by fully exploiting
the visual-augmented knowledge into semantic conditions.
In detail, VADS consists of two modules: (1) Visual-aware
Domain Knowledge Learning module (VDKL) learns the lo-
cal bias and global prior of the visual features (referred to
as domain visual knowledge), which replace pure Gaussian
noise to provide richer prior noise information; (2) Vision-
Oriented Semantic Updation module (VOSU) updates the
semantic prototype according to the visual representations
of the samples. Ultimately, we concatenate their output as
a dynamic semantic prototype, which serves as the condi-
tion of the generator. Extensive experiments demonstrate
that our VADS achieves superior CZSL and GZSL perfor-
mances on three prominent datasets and outperforms other
state-of-the-art methods with averaging increases by 6.4%,
5.9% and 4.2% on SUN, CUB and AWA2, respectively.

1. Introduction

Zero-shot learning [33], which transfers knowledge from
seen classes to unseen classes, has garnered much attention
recently. By establishing interactions between visual fea-
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tures and semantic prototypes (also referred to as attribute
vectors, side information, or semantic embeddings [47]),
generative ZSL methods exhibit impressive performance,
demonstrating the potential of feature synthesis. One of
the most successful frameworks is the conditional gener-
ative adversarial network (GAN) [17]. The main idea of
generative ZSL methods is to align semantic prototypes and
visual features to synthesize feature of unseen classes. Re-
cent emerging studies have either designed more effective
frameworks [7, 19, 20, 31, 46] or addressed more specific is-
sues related to visual-semantic alignment [4, 8, 12, 43, 53].
These methods have achieved significant improvements.

However, these methods rely on the conditions of Gaus-
sian noise and the predefined semantic prototype (referred
to as the static semantic prototype), which limit the gen-
erator only optimized on specific seen classes rather than
characterizing each visual instance, resulting in poor gen-
eralizations (e.g., overfitting to seen classes). Fig. 1 illus-
trates these issues: (1) The noise is sampled from a Gaus-
sian distribution N (0, 1), which lacks the dataset-specific
visual prior knowledge (e.g., global visual information “fly-
ing” and “still” and background information “sky” and
“grass”). As a result, the domain knowledge shared be-
tween seen and unseen classes cannot be utilized for feature
synthesis of unseen classes, limiting the knowledge trans-
fer. (2) The predefined semantic prototype fails to charac-
terize each instance well. For example, the attributes “wing
black”, “breast white” and “bill orange” of the Laysan Al-
batross are not fixed on different images. Due to these lim-
itations, the visual features synthesized by existing works
[4, 6, 21, 24, 31, 43, 46] struggle to represent the distribu-
tion of real features, leading to poor generalization to un-
seen classes, as shown in Fig. 1(b). More intuitively, as
shown in Fig. 1(d), the features of unseen classes synthe-
sized by these methods are confusing, resulting in the deci-
sion boundary overfitting to the seen classes.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 1. An illustration of the core idea of our method. (a) The semantic prototype (i.e., attribute) of different images of the same category
is not fixed, so the predefined semantic prototype is inaccurate in characterizing each instance. (b) Most existing works utilize Gaussian
noise and the predefined semantic prototype as conditions to train a semantic→visual generator on seen classes, which fails to generalize
to unseen classes. (c)(d) Our method incorporates rich visual prior with an updated semantic prototype to construct a visual-augmented
dynamic semantic prototype of each instance, empowering the generator to synthesize features that faithfully represent the real distribution
of unseen classes. Thus, our method achieves better generalization on seen and unseen classes than existing works (e.g., CLSWGAN [46]).

Drawing inspiration from image captioning [36], which
highlights the generalization of instance-conditional learn-
ing, we aim to fully leverage the visual-augmented knowl-
edge into semantic conditions to tackle the aforementioned
challenges. On the one hand, we can exploit rich domain
visual prior knowledge, serving as a prior noise, to enhance
the adaptation and generalization of models [18, 51, 54].
On the other hand, we can update the predefined seman-
tic prototype to align visual representations based on vi-
sual features. As such, incorporating richer and more ac-
curate visual information acts as the semantic condition to
train an instance-conditional generative model, which is op-
timized to characterize each instance (more robust to class
shift) rather than to serve only for specific classes. Accord-
ingly, the generative model can synthesize features of un-
seen classes closer to the real ones, facilitating the classifier
in learning an appropriate decision boundary (see the right
of Fig. 1(d)).

In this paper, we propose an approach called Visual-
Augmented Dynamic Semantic prototype (VADS) to im-
prove generative ZSL methods. Specifically, VADS consists
of two learnable modules: a Visual-aware Domain Knowl-
edge Learning module (VDKL) and a Vision-Oriented Se-
mantic Updation module (VOSU). The VDKL explores
domain visual prior knowledge derived from visual infor-
mation, which provides richer information for represent-
ing instances. The VOSU predicts instance-level semantics

through visual→semantic mapping, guiding the updation of
the predefined semantic prototype and promoting accurate
semantic prototype learning. Finally, the extracted visual
prior and the updated semantic prototype are concatenated
as a visual-augmented dynamic semantic prototype, which
serves as the condition of the generator during training and
feature synthesis, as illustrated in Fig. 1(c). Extensive ex-
periments demonstrate the effectiveness of our VADS.

Our contributions can be summarized as follows:

• We introduce a Visual-Augmented Dynamic Semantic
prototype (VADS) to enhance the generalization of gen-
erative ZSL methods, facilitating substantial knowledge
transfer.

• We devise the VDKL to leverage domain visual prior
knowledge from visual features and design the VOSU
to dynamically update the predefined semantic prototype.
Their outputs together serve as the generator’s conditions,
providing richer and more accurate visual information.

• We conduct extensive experiments on AWA2 [47], SUN
[34] and CUB [44] datasets. The comprehensive results
demonstrate that visual prior knowledge significantly im-
proves the generalization of generative ZSL methods, i.e.,
average improvements of the harmonic mean over ex-
isting generative methods (e.g., f-CLSWGAN [46], TF-
VAEGAN [31] and FREE [7]) 6.4%, 5.9% and 4.2% on
SUN, CUB and AWA2, respectively.
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2. Related Work

Embedding-based Zero-Shot Learning. Embedding-
based ZSL methods are one of the mainstream branches that
project visual information into semantic space to align with
semantic prototypes. Earlier works [25, 39, 48] directly
mapped global visual features to semantic space, failing to
capture local discriminative representation, resulting in sub-
optimal ZSL performance. Also, embeddings are learned
only in seen classes, leading to inevitable seen class bias. In
this regard, some studies [9, 10, 22] have attempted to use
calibration loss to balance the prediction results between
seen and unseen classes. Recently, attention mechanisms
[41] have emerged with surprising localization abilities, so
semantic-guided methods [9, 11, 29, 30, 32, 42, 48, 49]
learn to discover attribute-related local regions, providing
more accurate inter-class discrimination. Among these
methods, APN [49] proposed an attribute prototype network
to learn local features, and DPPN [42] updated attribute and
category prototypes. Inspired by their work, we introduce a
dynamic semantic prototype for generative ZSL methods.

Generative Zero-Shot Learning. Generative ZSL meth-
ods learn semantic→visual mapping to synthesize un-
seen class features, effectively alleviating the lack of un-
seen class data. Consequently, the quality of synthesized
features, which preserves visual-semantic correspondence,
plays a crucial role in classification. Thus, TF-VAEGAN
[31] forced semantic alignment at all stages, and FREE [7]
fine-tuned visual features to address cross-dataset biases.
CE-GZSL [20] and ICCE [24] projected visual features into
the latent space for classification. However, these methods
constructed projection spaces on seen classes, resulting in
inferior generalization ability on unseen classes. Moreover,
they uniformly utilize the predefined semantic prototype as
a condition, making it difficult to achieve accurate visual-
semantic alignment. The method most related to ours is
DSP [12], which updates the prototype by simply adding
the evolved and predefined semantic prototype.

Large-Scale Vision-Language Models Generalization.
Vision-language models like CLIP [35], pre-trained on
large-scale image-text pairs, have demonstrated significant
potential for downstream tasks. When performing zero-
shot recognition, the class prompts are input into the text
encoder to obtain the classification weights, and the co-
sine similarity between the test image and the weights de-
termines the resulting classification score. It is different
from the classical ZSL methods [9, 25, 39, 42, 48, 49].
Recent research has focused on improving the generaliza-
tion to unseen classes, with several previous works propos-
ing prompt learning [1, 51, 54]. Motivated by optimizing
visual conditional prompts, we introduce visual-aware do-
main knowledge learning into generative ZSL methods, fa-
cilitating knowledge transfer to unseen classes.

3. Visual-Augmented Dynamic Semantic Pro-
totype Method

Fig. 2 shows the framework of our VADS. Next, we first
present the problem formulation and briefly review the gen-
erative ZSL model. Then, we introduce the detailed design
of our method.
Problem Formulation. Conventional zero-shot learning
(CZSL) recognizes unseen classes in the inference stage.
Generalized zero-shot learning (GZSL) recognizes both
seen and unseen classes. Both settings generalize from seen
data Ds to unseen domains Du. Ds = {(xs

i , y
s
i )|xs

i ∈
X s, ysi ∈ Ys}Ns

i=1, where Ns is the sample number of seen
classes, xs

i is a feature vector in X s and ysi is the corre-
sponding lable from Ys. The Ds is split into a training set
Ds

tr and a testing set Ds
te following Xian et al. [47]. Sim-

ilarly, Du = {(xu
i , y

u
i )|xu

i ∈ X u, yui ∈ Yu}Nu
i=1, where xu

i

is a feature vector in X u and yui is the lable from Yu. Ys

and Yu are disjoint. Define attribute semantic prototypes
A = As ∪ Au, corresponding to each category, as a bridge
to transfer knowledge from seen classes to unseen classes.
In this paper, we dynamically update A to learn accurate
visual-semantic alignment.

3.1. Generative ZSL Model

The goal of the generative ZSL methods is to learn a
semantic→visual generative model (G) on seen classes and
then use it to synthesize samples of unseen classes to train a
classifier. Existing methods use Gaussian noise and the pre-
defined semantic prototype as input conditions to supervise
G synthetic features (i.e., A × Z → X̂). In our method,
G represents an off-the-shelf CLSWGAN [46], which con-
tains a generator and a discriminator. We develop the dy-
namic semantic prototype as a condition, allowing G to
characterize more accurate visual-semantic relationships.

3.2. Visual-aware Domain Knowledge Learning
(VDKL)

Drawing inspiration from previous prompt learning [51,
54], we exploit the rich information in visual features to as-
sist in synthesizing features. VDKL is a data-efficient mod-
ule allowing the visual features to be used to improve gen-
eralization. As shown in Fig. 2, we design a Visual Encoder
(VE ) and a Domain Knowledge Learning network (DKL).
First, the VE encodes visual features into a latent feature
l and a latent code z. The latent feature enables inter-class
alignment of visual features, and latent code is subsequently
confined to a prior distribution Z. The optimization of the
VE is achieved via contrastive loss [13] and evidence-lower
bound given by the equation as follows:

Lcon = E[log
exp(lTi l

+/τ)

exp(lTi l
+/τ) +

∑K
k=1 exp(l

T
i l

−
k /τ)

], (1)
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Figure 2. The architecture of our proposed VADS. It consists of two learnable modules: a Visual-Oriented Semantic Updation module
(VOSU) and a Visual-aware Domain Knowledge Learning module (VDKL). First, we obtain the prior distribution Z by the Visual Encoder
(VE). Following this, the Domain Knowledge Learning network (DKL) transforms Z into a local bias b, which is subsequently added to
global learnable prior vectors (p) to construct the domain visual prior noise (i.e., Z

′
). At the bottom, VOSU notably updates the semantic

prototype in two stages (depicted by the blue and green arrows). Finally, the visual prior noise and the updated semantic prototype together
form a dynamic semantic prototype, used for the reconstruction of features by the generator.

Lkl = KL(V E(x)||p(z)), (2)

where l+ and l−k represent positive and negative latent fea-
tures, τ is a temperature parameter set as 0.15, K is the class
numbers, KL denotes the Kullback-Leibler divergence and
p(z) is a prior distribution that is assumed to be N (0, 1).

To further utilize visual prior knowledge during the train-
ing and synthesis stages, we propose a Domain Knowledge
Learning network (DKL) to obtain a local bias b of visual
features (i.e., b = DKL(Z)). Additionally, we employ a
learnable prior vector p to capture global visual informa-
tion (p is randomly initialized). Subsequently, we obtain
domain-specific visual prior noise as follows:

Z
′
= α · (b+ p) + (1− α) · noise(0,1), (3)

where the noise(0,1) represents Gaussian noise aimed
at enhancing diversity in synthesis, α is the combination co-
efficient set as 0.9. Through this operation, we argue that
Z

′
includes rich domain visual knowledge and feeds it into

the generator to provide instance conditions, promoting the

generator learning and utilizing it for feature synthesis of
unseen classes. Note that unseen class samples are unavail-
able in the feature synthesis stage, so we randomly sam-
ple Gaussian noise input to DKL, transferring the domain
knowledge acquired from seen classes to unseen classes.

3.3. Visual-Oriented Semantic Updation (VOSU)

We observe that the predefined semantic prototype struggles
to represent each visual sample accurately, so we propose a
Visual-Oriented Semantic Updation module (VOSU), opti-
mizing the semantic prototype dynamically. Our semantic
prototype updation involves a two-stage process. In the first
stage, we feed visual features xs into the Visual-Semantic
Prediction network (VSP ) to generate a predictive semantic
â that explicitly captures specific visual patterns of the tar-
get image. Then, the predefined semantic prototype is input
into a Semantic Updation Mapping network (SUM ) to learn
an updated semantic ȧ. This mapping can be expressed as:

ȧ = SUM(a). (4)
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To maintain the attribute information of the prototype
and integrate the visual information, we jointly optimize
them by the cross-entropy loss Lce. Lce is defined as:

Lce = − 1

N

N∑
i=1

log
exp(V SP (xi)

T ȧy)∑
c̄∈Cs∪u exp(V SP (xi)T ȧc̄)

, (5)

where N is the batch numbers. Accordingly, the updated
semantic prototype incorporates rich visual information. In
the second stage, we employ SUM to update ȧ during the
conditional generative model training and use it as a condi-
tion to learn together with the generator G and the discrim-
inator D . This implementation facilitates dynamic updation
and accurate visual-semantic matching. To this end, we pro-
pose the semantic consistency loss Lsc as follows:

Lsc = E [∥SUM (ȧ)− ȧ∥1] . (6)

In summary, the first stage leverages visual features to
assist semantic updation, and the second stage dynamically
updates the prototype of each sample. Then, we concatenate
the updated semantic prototype with the visual prior noise
Z

′
, called the dynamic semantic prototype, which serves as

the condition for the generator, as depicted in Fig. 2.

3.4. Overall Objective and Inference

VADS Objective Loss Function. Overall, the objective
loss function of VADS is:

Ltotal = LG + λconLcon + λklLkl + λscLsc, (7)

where LG is the loss of conditional generative model G,
λcon, λkl and λsc are the hyper-parameter to balance each
loss term. To fully validate our method, by using this loss,
we train on various mainstream generative models (e.g.,
CLSWAGN [46], TFVAEGAN [31], and FREE [7]). Next,
we illustrate feature synthesis and classifier training.

Visual-Augmented Feature Synthesis for Unseen
Classes. To fully utilize the visual knowledge and accurate
semantic prototypes, we sample Gaussian noise input DKL
to obtain the prior noise Z

′
(i.e., Eq. (3))and use SUM

to update the semantic prototypes of unseen classes (i.e.,
ȧu = SUM(âu)). They serve as conditions to synthesize
visual samples closer to the real features for training the
classifier. The form can be written as:

x̂u = G(Z
′
, ȧu), (8)

where ȧu is updated semantic prototype of the unseen
classes and x̂u is the synthesized features of unseen classes.

ZSL Classifier Training and Inference. After synthesiz-
ing features, we input the seen class training features and

synthesized unseen class features into VE to extract la-
tent features and concatenate them to enhance the original
features, alleviating cross-dataset bias [7]. Then, we train
a CZSL classifier using enhanced-synthetic features (i.e.,
fCZSL : X → Yu) and train a GZSL classifier using en-
hanced seen class training features and enhanced-synthetic
features (i.e., fGZSL : X → Ys ∪Yu). Finally, we perform
inference using the test sets Ds

te and Du.

4. Experiments
4.1. Experimental Setup

Benchmark Datasets. We conduct extensive experiments
on three prominent ZSL benchmark datasets: Animals with
Attributes 2 (AWA2 [47]), SUN Attribute (SUN [34]) and
Caltech-USCD Birds-200-2011 (CUB [44]). We follow the
Proposed Split (PS) setting [47] to split each dataset into
seen and unseen classes, as detailed in Tab. 2.
Evaluation Protocols. During inference (i.e., performing
CZSL and GZSL classification), we follow the evaluation
protocols in [47]. In the CZSL setting, we calculate the av-
erage per-class Top-1 accuracy of unseen classes, denoted
as Acc. For the GZSL scenario, we measure the Top-1 ac-
curacy of the seen and unseen classes, defined as S and U ,
respectively. We also compute the harmonic mean, defined
as H = (2× S ×U)/(S +U).
Implementation Details. We follow PSVMA [26] using
the ViT-Base Backbone [15] without fine-tuning as the fea-
ture extractor, obtaining 768-dimensional visual features for
all samples. The global prior p has the same dimension as
the semantic prototype. We set the mini-batch to 64, 128
and 128 for AWA2, SUN and CUB, respectively. We use
the Adam optimizer [23] with β1 = 0.5, β2 = 0.999, and set
the initial learning rate to 0.0001. We synthesize 5600, 100,
and 400 samples for each class on AWA2, SUN and CUB.
Our experiments are based on the PyTorch and implemented
on a NVIDIA GeForce RTX 3090 GPU.

4.2. Comparison with State-of-the-Art Methods

We report the performance of our proposed VADS using
CLSWGAN as a generative model compared to state-of-
the-art methods. Tab. 1 shows the results, including the
embedding-based and generative ZSL methods. In the
CZSL scenario, our method notably outperforms the sub-
optimal results by 8.4%, 10.3%, and 8.4%, achieving the
best results on AWA2, SUN, and CUB. The results con-
firm that our method incorporating dynamic semantic pro-
totypes is more generalizable to unseen classes than static
semantic prototypes. In the GZSL scenario, our method ob-
tains the best harmonic mean H on all datasets (i.e., AWA2
(H = 79.3), SUN (H = 55.7) and CUB (H = 74.3)). Our
method significantly outperforms CLSWGAN+DSP [12],
which proposed an evolved semantic prototype, indicat-
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Table 1. Compared our VADS with the state-of-the-art on AWA2, SUN and CUB benchmark datasets in the CZSL and GZSL settings. The
best and second-best results are marked in Red and Blue, respectively. Symbol “–” denotes no results are reported.

Type Methods Venue Backbone
AWA2 SUN CUB

CZSL GZSL CZSL GZSL CZSL GZSL
Acc U S H Acc U S H Acc U S H

E
m

be
dd

in
g

PREN [52] CVPR’19 ResNet-101 74.1 32.4 88.6 47.4 62.9 35.4 27.2 30.8 66.4 35.2 55.8 43.1
DAZLE [22] CVPR’20 ResNet-101 67.9 60.3 75.7 67.1 59.4 52.3 24.3 33.2 66.0 56.7 59.6 58.1
DVBE [28] CVPR’20 ResNet-101 – 63.6 70.8 67.0 – 45.0 37.2 40.7 – 53.2 60.2 56.5
CN [38] ICLR’21 ResNet-101 – 60.2 77.1 67.6 – 44.7 41.6 43.1 – 49.9 50.7 50.3
GEM-ZSL [27] CVPR’21 ResNet-101 67.3 64.8 77.5 70.6 62.8 38.1 35.7 36.9 77.8 64.8 77.1 70.4
ViT-ZSL [3] IMVIP’21 ViT-Large – 51.9 90.0 65.8 – 44.5 55.3 49.3 – 67.3 75.2 71.0
IEAM-ZSL [2] DGAM’21 ViT-Large – 53.7 89.9 67.2 – 48.2 54.7 51.3 – 68.6 73.8 71.1
DUET [14] AAAI’23 ViT-Base 69.9 63.7 84.7 72.7 64.4 45.7 45.8 45.8 72.3 62.9 72.8 67.5
PSVMA [26] CVPR’23 ViT-Base – 73.6 77.3 75.4 – 61.7 45.3 52.3 – 70.1 77.8 73.8

G
en

er
at

iv
e

f-VAEGAN-D2 [47] CVPR’19 ResNet-101 71.1 57.6 70.6 63.5 64.7 45.1 38.0 41.3 61.0 48.4 60.1 53.6
TF-VAEGAN [31] ECCV’20 ResNet-101 72.2 59.8 75.1 66.6 66.0 45.6 40.7 43.0 64.9 52.8 64.7 58.1
FREE [7] ICCV’21 ResNet-101 – 60.4 75.4 67.1 – 47.4 37.2 41.7 – 55.7 59.9 57.7
HSVA [8] NeurIPS’21 ResNet-101 – 56.7 79.8 66.3 – 48.6 39.0 43.3 – 52.7 58.3 55.3
CE-GZSL [20] CVPR’21 ResNet-101 70.4 63.1 78.6 70.0 63.3 48.8 38.6 43.1 77.5 63.9 66.8 65.3
FREE+ESZSL [5] ICLR’22 ResNet-101 – 51.3 78.0 61.8 – 48.2 36.5 41.5 – 51.6 60.4 55.7
ICCE [24] CVPR’22 ResNet-101 72.7 65.3 82.3 72.8 – – – – 78.4 67.3 65.5 66.4
TDCSS [16] CVPR’22 ResNet-101 – 59.2 74.9 66.1 – – – – – 44.2 62.8 51.9
CDL + OSCO [4] TPAMI’23 ResNet-101 – 48.0 71.0 57.1 – 32.0 65.0 42.9 – 29.0 69.0 40.6
CLSWGAN+DSP [12] ICML’23 ResNet-101 – 60.0 86.0 70.7 – 48.3 43.0 45.5 – 51.4 63.8 56.9
TFVAEGAN+SHIP [43] ICCV’23 ViT-Base – 61.2 95.9 74.7 – – – – – 22.5 82.2 35.3
VADS (Ours) – ViT-Base 82.5 75.4 83.6 79.3 76.3 64.6 49.0 55.7 86.8 74.1 74.6 74.3

Table 2. A detailed illustration of the ZSL benchmark datasets. s
and u are the number of seen and unseen classes. NA refers to
semantic prototype dimensions. We follow CE-GZSL [20] using
1024-dimensional semantic prototypes generated from textual de-
scriptions [37] on CUB.

Datasets # images # classes (s | u) # NA

AWA2 [47] 37322 50 (40 | 10) 85
SUN [34] 14340 717 (645 | 72) 102
CUB [44] 11788 200 (150 | 50) 1024

ing that our design is reasonable. Meanwhile, our method
is also competitive compared to the recent PSVMA [26],
DUET [14], and TFVAEGAN+SHIP [43] methods using
the ViT Backbone. Furthermore, our method achieves op-
timal results in unseen class accuracy U , demonstrating
that the features synthesized by the generator are closer to
the real features of unseen classes, effectively alleviating
the over-fitting problem. Noted that TFVAEGAN+SHIP
[43] using CLIP Encoder and ViT-ZSL [2] using ViT-Large
achieve the best and second-best accuracy for seen classes,
but they fail to generalize well to unseen classes. These
results consistently demonstrate that our method synthe-
sizes reliable features of unseen classes to facilitate clas-
sifier learning, resulting in superior ZSL performance.

4.3. Ablation Study

Component Analysis. In this section, we perform a se-
ries of experiments to analyze the effectiveness of signif-
icant components. Tab. 3 summarizes the results of abla-
tion studies on CUB and AWA2. We first use ViT-Base

Table 3. Ablation study of VADS on modules, feature enhance-
ment and loss terms on CUB and AWA2. We use CLSWGAN
[45] as a generative model. The best result is marked in boldface.

Configurations
CUB AWA2

Acc H Acc H
(1) VADS w/o VDKL & VOSU 80.1 65.2 71.3 69.3
(2) VADS w/o VDKL 84.9 72.8 78.1 78.5
(3) VADS w/o VOSU 83.8 70.4 75.4 77.0
(4) VADS w/o enhancement 85.1 73.4 81.8 79.1
(5) VADS w/o Lcon (i.e., Eq. (1)) 85.3 73.1 79.4 78.6
(6) VADS w/o Lsc (i.e., Eq. (6)) 86.0 73.5 79.5 78.7
(7) VADS (full) 86.8 74.3 82.5 79.3

to extract visual features to train CLSWAGN as the base-
line. Compared to the baseline (i.e., configuration (1)),
our VADS (configuration (7)) performance improves signif-
icantly (i.e., the Acc/H increases by 6.7%/9.1% on CUB
and 11.5%/10% on AWA2). Configurations (2) and (3) cor-
respond to the effectiveness of the VDKL and VOSU mod-
ules. When there is no VDKL, that is, no visual prior is
introduced to generate samples, the performance drops by
1.9%/1.5% and 4.4%/0.8% for CUB and AWA2, indicat-
ing that visual prior is beneficial for transferring knowl-
edge to unseen classes. When without VOSU, the perfor-
mance drops most severely, verifying visual-semantic align-
ment is crucial for learning an accurate generator G . Next,
without VE enhancing classification features, the results
of configuration (4) drop slightly in both CZSL and GZSL
settings, which shows that feature enhancement mitigates
cross-dataset bias. Lastly, we conduct experiments to study
the impact of the loss terms on performance. Configura-
tion (5) without contrastive loss Lcon, Acc/H decreases
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Table 4. Evaluation of VADS with multiple generative ZSL models on three prominent datasets using ViT-Base Backbone. Each row pair
shows the effect of adding VADS to a particular generative ZSL model. We use the same hyperparameter optimization policy in all cases
to make results comparable.

Generative ZSL Methods
AWA2 SUN CUB

CZSL GZSL CZSL GZSL CZSL GZSL
Acc U S H Acc U S H Acc U S H

CLSWGAN [46] 71.3 66.2 72.6 69.3 66.0 46.9 42.6 44.6 80.1 60.0 71.3 65.2
CLSWGAN + VADS 82.5+11.5 75.4 83.6 79.3+10.0 76.3+10.3 64.6 49.0 55.7+11.1 86.8+6.7 74.1 74.6 74.3+9.1

TFVAEGAN [31] 78.2 66.7 87.1 75.6 73.1 60.6 48.6 54.0 81.6 64.8 74.6 69.3
TFVAEGAN + VADS 80.2+2.0 75.7 83.3 79.3+3.7 76.3+3.2 61.9 51.0 55.9+1.9 83.6+2.0 70.1 70.9 70.5+1.2

FREE [7] 70.6 62.9 85.9 72.6 71.7 45.4 50.4 47.8 84.3 68.7 73.5 70.9
FREE + VADS 79.4+8.8 70.1 84.6 76.6+4.0 75.0+3.3 57.6 50.7 53.9+6.1 85.5+1.2 70.9 75.4 73.1+3.2

Seen classes: Spotted_Catbird Gray_Catbird Yellow_breasted_Chat Eastern_Towhee Chuck_will_Widow
Unseen classes: Red_head_Woodpecker Yellowthroat           Groove_billed_Ani Brandt_Cormorant Black_billed_Cuckoo

Figure 3. t-SNE visualizations on CUB. The 10 different colors
refer to the 5 seen classes and 5 unseen classes that are randomly
selected. Please zoom in for a better view.

by 1.5%/1.2% and 3.1%/0.7% on CUB and AWA2, respec-
tively. The main reason is that contrastive loss achieves
feature alignment, without which the network may learn
category-agnostic redundant information. For the lack of
semantic consistency loss Lsc (i.e., configuration (6)), there
is no guarantee that the semantic prototype maintains the
original definition when training on seen classes, thus hurt-
ing the performance of seen classes. Note that the cross-
entropy loss Lce and KL loss Lkl are necessary for single
network training, so we did not perform ablation.

Qualitative Evaluation. To further demonstrate that our
method synthesizes reliable unseen class features for clas-
sifier training, we project various visual features into two
principal components via t-SNE [40]. Fig. 3 shows the t-
SNE visualization on CUB. Each color of ’⋆’ represents a
class, and we randomly select 5 seen classes and 5 unseen
classes. From left to right, they represent the real visual
features extracted by ViT-Base [15], the features synthe-
sized by CLSWGAN, and the features synthesized by our
VADS. We observe that the real visual features are inter-
class dispersion and intra-class aggregation. In Fig. 3(b),
Gaussian noise and the predefined semantic prototype serve
as conditions to synthesize samples by CLSWGAN. There
are two apparent phenomena: first, the feature distribu-
tions are scattered, which cannot truly reflect each class;
second, the synthesized seen and unseen class features
are confusing (e.g., “⋆” and “⋆”, which denote seen class

“Yellow breasted Chat” and unseen class “Yellowthroat”,
respectively). Therefore, the decision boundary of the
CZSL/GZSL classifier trained with these features is unclear,
consistent with the motivation of Fig. 2(d). In contrast, the
features generated with our VADS are closer to the real fea-
tures and are inter-class separated, as shown in Fig. 3(c). On
the one hand, we analyze that visual-augmented dynamic
semantic prototype motivates the generator to learn accurate
semantic→visual mapping. On the other hand, synthesized
unseen class features are more reliable, leading to learning
appropriate classification boundaries of unseen classes.

4.4. Generative ZSL Models with VADS

To further evaluate VADS as a generic technology to im-
prove generative ZSL, we integrate it into three preva-
lent generative ZSL frameworks: CLSWGAN [45], TF-
VAEGAN [31], and FREE [7]. We use the official repos-
itory to reproduce the results and then insert our module to
verify our method’s effectiveness. Note that TF-VAEGAN
and FREE contain a visual encoder, so we maintain their
design. When inserting our modules, we keep the hyper-
parameters unchanged to make the results comparable. The
results on the three datasets are presented in Tab. 4. In
terms of Acc and H , we observe varying degrees of perfor-
mance improvements (e.g., a maximum of 11.5 points and
a minimum of 1.2 points). Average growth is 7.4%/5.9%,
5.6%/6.4% and 3.3%/4.2% for Acc/H on AWA2, SUN
and CUB. Overall, the consistent improvement over com-
petitive benchmarks validates the effectiveness of our pro-
posed method.

4.5. Generalization Analysis of Visual Prior
In our method, we learn a local bias and a fixed global
prior vector representing domain visual prior knowledge
to generalize to unseen classes. Therefore, we investigate
the impact of different forms of prior knowledge on perfor-
mance. The results are detailed in Tab. 5. “Random” refers
to the prior knowledge sampled from Gaussian distribution,
“VGSE” [50] indicates that we take the semantic knowl-
edge extracted from the visual representation as the prior,
and “Other domain” means using the global vector learned
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Figure 4. Effect of (a) synthesized samples Nsyn, (b) loss weights λcon, (c) loss weights λkl, and (d) loss weights λsc on CUB.

Table 5. We evaluate different forms of prior knowledge on CUB.
The best result is marked in boldface.

Condition Learnable
CUB

Acc U S H
w/o prior 84.9 69.1 75.5 72.2
Random 85.6 72.7 74.7 73.4
VGSE [50] ✓ 85.5 69.2 72.3 70.7
Other domain ✓ 84.0 66.7 72.0 69.3
VADS (Ours) ✓ 86.8 74.1 74.6 74.3

from SUN to transfer to CUB. The results indicate that our
method utilizes the global prior and the local bias, which
yields the best performance. Knowledge transfer from SUN
to CUB suffers from a negative impact, underscoring the
importance of dataset-specific global information. VGSE
captures semantic side information from seen classes, lim-
iting the performance of unseen classes.

4.6. Hyper-parameters Analysis

We study the impact of different hyper-parameters of our
VADS on the CUB dataset. Fig. 4(a) shows the results of
synthesizing different numbers per unseen class. The un-
seen class accuracy varies with the number of synthesized
samples, and when Nsyn = 400, the performance is opti-
mal. This result demonstrates that the features synthesized
by our method alleviate the lack of unseen class data. Next,
we evaluate the influence of individual loss weights (i.e.,
λcon of the Lcon, λkl of the Lkl and λsc of the Lsc). The
results are presented in Fig. 4(b)(c)(d). The performance of
S and U changes slightly as Lcon increases. When Lcon

is set to 1.5, H obtains the maximum value. For Lkl loss,
we find that larger λkl achieves better performance because
the prior distribution assumption of the data is crucial. Fi-
nally, Lsc loss forces the semantic update process to main-
tain semantic consistency. Its weight λsc is insensitive to
performance.

4.7. Predefined Semantic Prototype vs Updated Se-
mantic Prototype

To give a clearer insight into the predefined semantic proto-
types and the semantic prototypes updated by our method,
we randomly select 10 classes on CUB and calculate their
cosine similarity. Then, we visualize them in Fig. 5. We

(a) Predefined semantic prototype (b) Updated semantic prototype

Figure 5. Visualization of the heatmap of semantic prototype sim-
ilarity. We randomly select 10 classes on CUB.

observe that the similarity between the predefined semantic
prototypes is very high. Our method dynamically refines
the visual-semantic relationships of each instance based on
visual information, making the updated semantic prototype
easier to distinguish between categories and achieving more
accurate semantic-visual alignment.

5. Conclusion

In this work, we propose a novel Visual-Augmented Dy-
namic Semantic prototype method (VADS) to boost the
generator to synthesize reliable features of unseen classes.
Considering that rich visual knowledge can effectively gen-
eralize to unseen classes, our proposed VADS fully lever-
ages visual information. Specifically, we design a Visual-
aware Domain Knowledge Learning module (VDKL) to ac-
quire visual prior and a Vision-Oriented Semantic Updation
module (VOSU) to dynamically update the predefined se-
mantic prototype. Ultimately, we concatenate their output
to form a dynamic semantic prototype, serving as the condi-
tion of the generator to learn accurate semantic-visual map-
ping and synthesize features of unseen classes. Extensive
experiments demonstrate remarkable results in both CZSL
and GZSL scenarios. In summary, our study provides a
timely insight into reliable feature synthesis, improving the
generalization to unseen classes. Additionally, tasks related
to knowledge transfer can draw inspiration from this con-
cept.
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