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Abstract

Diffusion models have shown tremendous results in im-
age generation. However, due to the iterative nature of the
diffusion process and its reliance on classifier-free guid-
ance, inference times are slow. In this paper, we pro-
pose a new distillation approach for guided diffusion mod-
els in which an external lightweight guide model is trained
while the original text-to-image model remains frozen.We
show that our method reduces the inference computation of
classifier-free guided latent-space diffusion models by al-
most half, and only requires 1% trainable parameters of the
base model. Furthermore, once trained, our guide model
can be applied to various fine-tuned, domain-specific ver-
sions of the base diffusion model without the need for addi-
tional training: this “plug-and-play” functionality drasti-
cally improves inference computation while maintaining the
visual fidelity of generated images. Empirically, we show
that our approach is able to produce visually appealing re-
sults and achieve a comparable FID score to the teacher
with as few as 8 to 16 steps.

1. Introduction

Diffusion models [5, 24, 25] represent a novel category
of generative models that have shown remarkable perfor-
mance on a variety of established benchmarks in genera-
tive modeling. Specifically, conditional diffusion models
[17] emerged with significantly improved sample quality by
classifier-free guidance (CFG) [4].

However, the sampling speed of diffusion models stands
out as a significant obstacle to their adoption in practical
scenarios [20]. Specifically, the process of iteratively re-
ducing noise in images typically requires a considerable
number of iterations, posing challenges for efficient execu-
tion. For example, even when using widely adopted state-
of-the-art diffusion models such as Stable Diffusion [17],
more than 20 denoising steps are required to generate high-
quality images. Moreover, when applying classifier-free
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Figure 1. We trained a guide model to replace classifier-free guid-
ance that can be plug-and-play to other base models with different
domains.

guidance, two forward passes — one for the conditioned
and another for the unconditioned diffusion model — are
needed per denoising step, further increasing the computa-
tional cost.

One standard approach to address the speed issues is
through distillation, where a student model, initialized with
the weights of the teacher diffusion model, is trained to
regress to the output of the teacher that runs for multiple
denoising steps [11, 21]. However, the standard diffusion
distillation approach has the following limitations. First,
the number of trainable parameters of the student model is
the same (or comparable) as that of the teacher diffusion
model. But recent state-of-the-art diffusion models such as
Imagen [19], eDiff-I[1], and SDXL [14] often have billions
of parameters, and distilling these large models requires a
tremendous amount of computation. Second, it has been
shown that diffusion models can be finetuned to different
domains. When finetuned on a collection of customized
images, diffusion models can be adapted to generate con-
tent with novel structures and aesthetic styles. When fine-
tuned with only a few images, prior work has shown that
novel concepts can be learned [18]. However, with standard
distillation on the base model, these finetuned models are
no longer applicable. Re-training on the distilled student
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Figure 2. Applying our trained guide model to different fine-tuned latent diffusion models (LDM).

model is required for all the domains of interest.

In this paper, we propose a plug-and-play distillation ap-
proach to address these issues. Specifically, we introduce
a novel type of distillation that makes the parameters of
the base model remain untouched: we propose an exter-
nal guide model with a lightweight architecture that injects
feature maps to enable the diffusion model to generate text-
conditioned images on one path.

We first experiment with distilling CFG into one forward
pass, which effectively reduces the inference FLOP counts
by 32%. We further study different architectural choices
of the lightweight module and show that the proposed ar-
chitecture is around 1% of the parameters of the base, thus
effectively halving the inference FLOP counts. Finally, we
experiment with the generalizability of the plug-and-play
module. Once our lightweight guided module is trained, it
can be readily integrated with existing finetuned diffusion
models, requiring minimal to no further training.

In summary, our approach has the following advantages:

* Low computational cost for training: The parameters
required to learn from the distillation approach is only
1% (42% for the Full guide model) of the diffusion model,
making the computational cost for training very low com-
pared to other distillation methods.

* Maintaining the weights of the base model: Our ap-
proach maintains the conditioned diffusion model as-is,
maintaining the integrity of the diffusion model.

* Reducing inference time: Our approach is able to de-
crease the FLOPs count for each sampling step by half,
and is able to produce high-quality images with only 8

steps.

¢ Generalizability: After the trained model is obtained,
it can adapt to different types of fine-tuned base models
without retraining.

* Adaptable with other distillation techniques: The
model can be applied to different approaches such as pro-
gressive distillation, for further sampling steps reduction.

2. Related work

2.1. Reducing inference time in diffusion models

To reduce the expensive computational cost in inference
time of diffusion models, previous papers have attempted
to improve the sampling speed of diffusion models.

One of the straightforward ways is designing accurate
ODE samplers [6, 10, 11]. For example, Denoising Dif-
fusion Implicit Models (DDIM) [5] uses first-order Euler’s
method which enables to reduce the inference timesteps.

On the other hand, there are previous works that attempt
to incorporate distillation techniques to improve model in-
ference efficiency. Distillation in deep learning refers to a
process where a larger and more complex model (referred
to as the “teacher” model) is employed to train a smaller
and simpler model (the “student” model). The goal of dis-
tillation is to transfer the knowledge and information cap-
tured by the teacher model to the student model, enabling
the student model to achieve similar performance with re-
duced complexity and computational requirements. Golnari
et al. [3] proposed optimizing specific denoising steps by
restricting noise computation to conditional noise and elim-
inating unconditional noise computation, thus reducing the

13744



b, “text”, g
Teacher

~

ol H €s(2, D) (—9)
t, o —

+

o UH es(z,¢) (1+9)

kt Stext” 4

€p(21,0) 4

. Lt text”, g
Student

0ol <o
t,“text”* TT* {
Guide model

t,“text”, g —*

Lg

> Ele(ztv C)

Figure 3. The overview of CFG distillation. Instead of using two feed-forward pass and classifier-free guidance, we train a student model
conditioned with the guidance, cross-attention, and time embedding to predict the output image with only one forward pass.

complexity of target iterations. Salimans and Ho [21] and
Meng et al. [12] distilled the model to achieve fewer sam-
pling steps. However, these methods only focus on reducing
inference timesteps and require progressive model distilla-
tion, which may require more time and computing resources
to train these models.

2.2. Controlling diffusion models

Many researchers in the field of diffusion models have
demonstrated the ability to control models using methods
beyond just text input. Notably, the use of external models
to inject features into diffusion models has yielded impres-
sive results [7, 8, 26, 27]. For instance, ControlNet [27]
proposed an external model that uses images, skeletons,
edge maps, etc., as conditions to generate corresponding
images. GLIGEN [8] successfully created desired objects
within specific bounding boxes. IP-adaptor [26] introduced
a method for generating images similar to a given image
condition. These approaches all successfully manipulated
images by injecting values into features through external
models. However, these methods have focused on condi-
tional image generation or editing, with no instances of ap-
plying them to distillation.

3. Preliminary

3.1. Background on diffusion models

Under the continuous time setting, where ¢ ~
Uniform|0,1], the goal of a denoising diffusion model
is to train a model €, that approximates noise given the

diffused noisy real data & ~ DPgqa:

By colw(Me)lleg(ze) — €3] (1

where w()\;) = w(log (af/o?)) is a pre-defined weighted
function that takes into the signal-to-noise ratio \;, which
decreases monotonically with ¢. x; is a latent variable that
satisfied © ~ q(z¢|r) = N(z4; v, 07 1).

After training the model €4, during the sampling stage,
x; can be obtained by applying the SDE / ODE solver. For
example, using DDIM:

— 1
xtzat%(xt)—kat%t%(xt), s:t—ﬁ 2)
t

where NNV is the total number of sampling steps and x; ~

N(0,1)
3.2. Classifier free guidance

Classifier-free guidance [4] proves to be a highly effective
strategy for significantly enhancing the quality of samples
in class-conditioned diffusion models. It adopted an uncon-
ditioned class identifier & as a substitute for a separate clas-
sifier that is traditionally required to create a Gaussian dis-
tribution tailored to a specific class.[2] This approach finds
widespread application in extensive diffusion models, in-
cluding notable examples like DALL-E2 [16], GLIDE [13],
and Stable Diffusion [17]. In particular, Stable Diffusion
designs the diffused forward and reverse process in the VAE
latent space, z = E(x),xz = D(z) where FE and D denote
the VAE encoder and decoder. In the process of generating
a sample, classifier-free guidance carries out evaluations on
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both conditional score estimates and unconditional score es-
timates. Specifically, the computation of the noise sample
€4 (24, ¢) follows the formulation

{(ﬁ(zt?c) = (1 + g)€¢(2f,7c) - g€¢(zta Q)a (3)

where € is the score estimate function that is a parameter-
ized neural network (U-Net). €4(2¢, ¢) represents the text-
conditioned term, while €4 (2, @) corresponds to the un-
conditional term (null text). The parameter g stands for the
guidance value that scales the perturbation. In this paper,
we use the Stable Diffusion’s VAE latent and omit the nota-
tion of Encoder and Decoder of VAE for brief.

4. Methodology
4.1. Overview

Inspired by ControlNet [27], we design the external guide
network for CFG distillation by using the guidance num-
ber as the input condition. After the first stage of the dis-
tillation (i.e. CFG distillation) has been accomplished, we
follow prior distillation techniques to reduce the sampling
steps. This is accomplished by enabling the model to pro-
gressively learn how to halve the sampling steps [21]. The
specifics of the whole process will be elucidated in the fol-
lowing sections.

4.2. CFG distillation

The overview of our CFG distillation method is illustrated
in Figure 3. We would like to learn a model €, to achieve

ep(2t,¢;G(g, 2t,¢)) = (14 g)eg (21, ¢) — geg (21, @) (4)

where ¢ is the guidance number, G is our student guided
model, €, (2, @) is the unconditioned U-Net forward pass,
and €4(z, c) is the conditioned U-Net forward pass. Pre-
cisely, G takes the guidance as the input hint, along with
time and text embedding and z;, then injects its output fea-
ture maps to the decoder part of the original U-Net. The fea-
ture map injection can be viewed as the “guidance strength”
that helps the U-Net to trade-off between sample quality and
diversity. The pseudo algorithm is listed in Algorithm 1.

Typically, distillation involves initializing an entirely
new model that has the same structure as the teacher model
and trying to make it learn the teacher’s output and update
the parameters of the entire student network. Instead, we
use a small guide model on top of the teacher model, which
leads to reduced computational overhead during training
because the number of parameters in the guide models is
relatively small compared to the whole U-Net. Also, this
approach does not discard the teacher model after distilla-
tion training, but uses the trained guide model along with
the teacher U-Net for faster inference without CFG. This
feature makes it applicable to ”plug-and-play” to different
types of fine-tuned diffusion models directly without re-
training the guide model G.

Algorithm 1 CFG distillation

Require: real image x, text ¢
Gy 1. Initialize student guide model
while not converged do
Sample a timestep t ~ Uni form|0,1]
Sample a guidance number g ~ Uni form|2, 9]
Sampling noise € ~ N (0, I)
2t = QX + Ot€
€teacher = (1 + g)€¢(zt7 C) - g€¢(2t, @>
e = ep(z,¢;Gol(g, 21, 0))
2
LO = ”eteacher - eHQ
0+ 06— ’yVeLe
end while

4.3. Guide model architecture

In this section, we introduce two types of external guide
model, full guide model and tiny guide model.

full guide model ControlNet is one of the well-designed
external models for image control. When we regard the dis-
tillation with an external guide model as the external con-
trolling, the straightforward way is using the UNet architec-
ture of diffusion model as the guide model. To align with
the original ControlNet architecture, our full guide model
broadcasts the guidance number into a shape that is the
same as the hint size, e.g. (C,H,W). This straightfor-
ward strategy enables the model to have high capacity. The
model architecture is depicted in Figure 4.

tiny guide model Although full guide model is already a
well-designed guide model, this is not an efficient way be-
cause there is not as much information needed to encode
with a simple guidance number. As such, we further sim-
plify the standard ControlNet structure, tiny guide model,
for our guidance-distillation framework:

Yy = Z (ry + Z(Ctimestep; @zl) + Z(Ctext; @z2)§ @z?)) (5)

~ is the guidance vector, which is a vector of guidance
number g. Moreover, the timestep embedding and text em-
bedding will also pass through zero convolution layers, de-
noted Z(-, -). These elements are added together and passed
through the zero convolutions in the decoding layer to get
the corresponding output of the guide model y. Zero con-
volution architecture ensures that undesirable noise or irrel-
evant features are not injected into the base model in the
early stage of the training.

The tiny guide model simplifies the traditional Control-
Net architecture by removing the encoder blocks as shown
in Fig. 4. This design drastically reduces the number of pa-
rameters as z; no longer needs to be encoded by the guide
model.
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Figure 4. Comparison of the full guide model architecture and the
tiny architecture.

In following sections, we will show that our CFG distil-
lation approach works for both the full guide model and the
tiny guide model.

4.4. Sampling steps distillation

After training the guide model, G, we progressively distill
it with fewer sampling steps required by incorporating with
existing sampling-step-based distillation methods [21]. To
elaborate, under the discrete time-step scenario, let N stand
for the original number of sampling steps, we trained a stu-
dent model to the output of two-step DDIM sampling of the
teacher in one step. Precisely, the initial sampler f(z;7)
maps a random noise € to samples x requires N steps, is
distilled into a new sampler f(z; @) that requires IN/2 steps.
f(z;6) will become the new teacher so that we can learn
another sampler that requires N/4 steps. This procedure
will be repeated several times until the ideal sampling steps
needed will be achieved. In this section, again, we only
learn the parameters from the guide model G and fix the
base model (U-Net) throughout the distillation progress.
The small size of the guide model enables the parameters
to be learned quickly.

S. Experiments

Distilling a diffusion model involves a balance between
making the model generate images faster and maintaining
good quality. Initially, we assess the image fidelity of our
model through both qualitative and quantitative analyses,
employing FID [23] and CLIP [15] scores. Subsequently,
we evaluate the effectiveness of our approach across differ-
ent domains with zero additional training. Finally, since our
approach keeps the original model fixed, we can closely ex-
amine latent feature maps from the guide model to better
understand how guidance is applied at different timesteps
during the diffusion process.

Method FLOPs (trillion) # of Params (million)
Ours-full T (338.7) + 116.5 T (859) + 361
Ours-tiny T (338.7)+7.79 T (859) +8.27
Teacher x 2 677.5 859

Table 1. The FLOP counts of single pass and number of param-
eters used for different architectures. Teacher x 2 stands for the
dual pass FLOP counts for classifier-free guidance. T stands for
the parameters or FLOPs counts of the base model.

5.1. Setup

We trained our model with LAION (512 x 512) dataset
[22] with the Stable Diffusion v1.5 as our score-estimation
model. In the training stage, a randomly sampled guidance
number g € [2,9] is broadcast into the shape of (C, H, W),
which becomes the input of the guide model. For the tiny
architecture, the input is a l1d-array with the length of C
that passes through the zero modules along with timesteps
and text embedding. We apply the e-prediction model
through the whole experiment. Since Stable Diffusion v1.5
is trained on 1000 steps, we sample images with 1000 steps
as our Teacher output for our guide model to learn. We
evaluate our methods with the COCO dataset [9]. We com-
pare our method with DDIM [28] sampling and PLMS [10]
sampling. The FLOPs and number of parameters for our
models compared to the teacher classifier-gree guidance are
listed in Table 1. We see that our full guide model only
needs ~ 0.67 of FLOPs of the teacher while our tiny model
only computes 0.51 of FLOPs of the teacher model.

5.2. Qualitative and quantitative evaluation

Figure 6 illustrates the qualitative comparison between stu-
dent and teacher models on various text prompts with the
same initial noise. We see the quality of images generated
by our guide model is close to the generated images us-
ing classifier-free-guidance while our approach can gener-
ate images and nearly half the FLOP counts. A user study
associated with images from teacher and student models can
be found in the Appendix.

Furthermore, we generate images with fewer timesteps
on Figure 5. We do not observe obvious quality degradation
when decreasing our model steps to 16 and 8 with full guide
model given a certain level of guidance (g = 8). On the other
hand, since tiny guide model has less capacity, it’s challeng-
ing for the student to fully mimic the teacher’s output given
a continuous guidance input during the sampling steps dis-
tillation process (i.e. progressive distillation). We observe
that the tiny guide model can achieve almost the same im-
age quality as full guide model when the sampling steps are
around 50, but when the number of steps are reduced to 8,
then the performance of the tiny model will degrade dras-
tically. This can be partially addressed by training the tiny
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Figure 6. Disparity between the outputs of our method and classifier-free guidance with the same initial noise. Interestingly, our approach
(student) usually presents a stronger contrast compared to classifier-free guidance.

model with fixed guidance. Furthermore, both of the mod-
els can achieve comparable results compared to Classifier-
Free Guidance (DDIM N X 2 steps). The qualitative result
is shown in Table 2.

5.3. Generalizability of the guide model

In this subsection, we show that plug in our guide model
to different types of fine-tuned stable diffusion models from
Dreambooth [18] without any additional training. Our ob-
jective is to demonstrate that our guide model can acquire a
general latent representation of guidance, which possesses
significant adaptability to various types of fine-tuned mod-
els without training. We focus on three different types of

fine-tuned stable diffusion v1.5 models: watercolor style,
realistic style, and 3D cartoon style. Then, we directly
plug in our pretrained guide model G to these fine-tuned
models to modify their outputs. We run the models with-
out classifier-free guidance and pass the guidance value to
our guide module. For other distillation approaches [12], it
may be necessary to distill a new model for each domain,
which can be costly in terms of training and computation.
Our approach removes this burden and make it easy to make
different models finetuned for different domains nearly two
times efficiently with no additional cost. We validate our
approach by measuring FID and CLIP scores in generated
images in different domains. Table 3 shows the FID scores
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g=2 g=4 g=6 g=8
Methods FID CLIP FID CLIP FID CLIP FID CLIP
DDIM 8 x 2-step [28] 64.53 27.64 5756 2839 8256 26.67 11660 24.13
Stable Diffusion v1.5 (PLMS 50 x 2 step) [17]  17.5 25 16 26.63 18.7 2650 21 26.60
Full 8step 109.53 2790 5991 2950 34.15 29.78 29.53 29.84
Full 16 step 4939  29.15 3120 29.70 21.84 2992 20.74 29091
Full 50 step 43.05 29.62 2400 30.13 1847 30.13 1819 30.05
Tiny 8 step 119.18 27.58 7526 29.06 50.11 29.82 3622 3023
Tiny 16 step 70.66 2844 42.06 29.73 29.19 30.29 23.14 30.53
Tiny 50 step 5227 29.19 3227 29.81 2890 30.08 19.74 30.23
Fix guidance tiny 8 step - - - 23.97 3045

Table 2. LAION dataset distillation results for text-guided latent-space diffusion models (Stable-Diffusion). We calculated the FID score
by sampling 10k images from COCO 30k dataset.

A panda A boat
eating sailing on
bamboo the sea at
night

“v

=0

Figure 7. Visualizing the feature map injection from the guide model with guidance 8. The early stage of the iteration process has stronger
injection (larger absolute values) strength, and in the later stage, the injections mainly focus on high-frequency details with lower strength.
Also, the lower guidance number has lower feature map injections, higher guidance number has stronger feature map injections.

and CLIP scores of the teacher CFG on these fine-tuned guide model G. To this end, we visualize the feature maps

models versus the results of our tiny guide model injection
approach. The generated pictures are sampled with 50 steps
with guidance 8. We see that FID and CLIP scores of our
tiny model which runs two times faster are comparable with
CFG. In addition, qualitative results are shown in Figure 2
for the full guide model plug-ins and Figure 8 for tiny guide
model plug-ins. The results indicate the great generalizabil-
ity of our approach without needing to train the model for
different domains.

5.4. Latent representations of the feature map

In this experiment, our objective is to elucidate the latent
representations within the feature map injections of our

at various stages of the iteration process and under different
guidance values. To the best of our knowledge, we are the
first to visualize how classifier-free guidance emphasizes
different patches of image generation in different timesteps.
We are able to study this due to the architecture choice of
our model that freezes the original model and adds the guide
module as an additional component. By looking into feature
maps of our guide module, we are able to get a better un-
derstanding of how classifier-free guidance impacts image
generation.

For each layer of feature map injection, we computed
the mean across various channels for each pixel and applied
normalization. The number of DDIM steps used for sam-
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Realistic 3D Cartoon  Water Color
Score FID CLIP FID CLIP FID CLIP
Ours-Tiny 19.88 31.04 22.23 31.07 41.87 30.70

CFG 1471 32.15

18.00 32.11 3842 31.37

Table 3. We calculated the CLIP scores of our guide model plug into different fine-tuned models from DreamBooth without training.

Guidance values are set to 8.

tiny guide model
16 steps
+ watercolor

tiny guide model
16 steps
+ cartoon

tiny guide model
16 steps
+ realistic

Figure 8. Plug in the tiny guide model with different fine-tuned U-Nets.

pling was 50.

Figure 7 displays the feature map injections throughout
the sampling process. The values indicate that the initial
stages of the sampling process are more critical with respect
to Classifier-Free Guidance (CFG), as this is when the pri-
mary structure of the image is formed. In the middle stage,
the main subjects of the image (e.g., a panda, bamboo) are
more important. Thus CFG continues to play a role in these
areas, while the background becomes less significant. Fi-
nally, in the last stage of the sampling, the feature map in-
jections mainly focus on detail refinement on the edges with
low strengths (i.e. values).

Additionally, an examination of the feature maps with
varying guidance values, as shown in Figure 7, reveals a
clear trend: with lower guidance, the feature map injections
are less pronounced, whereas higher guidance results in
more robust injections that more effectively steer the orig-
inal diffusion model. Visualizations of other layers of fea-
ture maps can be found in the Appendix.

6. Limitation

Although our method can significantly reduce the FLOP

count in a single pass while maintaining image quality, it
is important to note that, unlike CFG, our approach is not
as simple to run in batch of two. It requires to run U-Net
and guide module in parallel. This is a disadvantage from
implementation point of view, but it is important to mention
that in practice larger GPU memory consumption result in
slower inference time.

7. Conclusion

In this paper, we introduced a method for distilling guided
diffusion models [4]. The approach allows us to effi-
ciently train a lightweight model that modifies the outputs
of the conditioned diffusion model while maintaining the
base model parameters. We demonstrate that our technique
substantially lowers the computational demands for latent-
space diffusion models, which are classifier-free, by de-
creasing in the FLOP counts by half. Also, our method can
be plug-and-play to different fine-tuned models without re-
training and generate visually pleasing figures.
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