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Abstract

We propose the Pose Adapted Shape Learning (PASL) for
large-pose face reenactment. The PASL framework consists
of three modules, namely the Pose-Adapted face Encoder
(PAE), the Cycle-consistent Shape Generator (CSG), and
the Attention-Embedded Generator (AEG). Different from
previous approaches that use a single face encoder for iden-
tity preservation, we propose multiple Pose-Adapted face
Encodes (PAEs) to better preserve facial identity across
large poses. Given a source face and a reference face, the
CSG generates a recomposed shape that fuses the source
identity and reference action in the shape space and meets
the cycle consistency requirement. Taking the shape code
and the source as inputs, the AEG learns the attention
within the shape code and between the shape code and
source style to enhance the generation of the desired tar-
get face. As existing benchmark datasets are inappropriate
for evaluating large-pose face reenactment, we propose a
scheme to compose large-pose face pairs and introduce the
MPIE-LP (Large Pose) and VoxCeleb2-LP datasets as the
new large-pose benchmarks. We compared our approach
with state-of-the-art methods on MPIE-LP and VoxCeleb2-
LP for large-pose performance and on VoxCeleb1 for the
common scope of pose variation.

1. Introduction

Face reenactment refers to the transformation of the action
of a reference face to a source face, and the action includes
facial pose and expression. It is required that the reference
action can be duplicated by the source and the source iden-
tity can be preserved after the transformation. The require-
ments can be concisely stated as the reference action trans-
formation and source identity preservation. As face reenact-
ment has a broad scope of applications in fields such as an-
imation, film making, virtual reality, and others, it received
increasing attention with many approaches proposed in re-
cent years [2, 9, 14, 24, 26, 29, 31–33].

Many approaches rely on a face encoder to warrant
the source identity preservation. VGGFace2 [4] and Arc-

Face [7] are two popular choices to many reenactment ap-
proaches [2, 3, 14, 20, 28]. Most, if not all, face encoders
are made by pose-biased training, i.e., the training set is im-
balanced in pose. More data are close to frontal pose and
fewer data are with large or extreme pose. When encoding
faces within median poses, i.e., yaw< 45◦, these face en-
coders serve well as the encoding confidence is high. How-
ever, when encoding faces of large or extreme poses, the
encoding confidence drops as the encoders are trained on
less data of such poses. We propose the Pose-Adapted face
Encoders (PAEs) to address this issue and better handle the
identity preservation for large-pose face reenactment. Each
PAE learns the identity features for a limited pose range.
We designed 6 PAEs to cover all pose differences between
the source and reference. The Pose-Adapted Encoding can
be considered as a piece-wise approximate solution to en-
coding the nonlinear facial pose variation.

We propose the Cycle-consistent Shape Generator
(CSG) and the Attention-Embedded Generator (AEG) in
the framework to work with the PAEs for handling large-
pose reenactment. Given a source face and a reference
face as inputs, the CSG generates a shape code that fuses
the source identity and reference action in the shape space
and meets the cycle-consistency requirement. Taking the
shape code and the source as inputs, the AEG learns the
self-attention within the shape code and cross-attention be-
tween the shape code and source style to enhance the gen-
eration of the desired target face. Due to the fact that cur-
rent benchmark datasets are inappropriate for the evaluation
of large-pose face reenactment, we propose a scheme to se-
lect large-pose face pairs and construct the MPIE-LP (Large
Pose) and VoxCeleb2-LP datasets from their originals.

We summarize the contributions of this work as follows:
• The PAEs (Pose-Adapted face Encoders) are verified ef-

fective for measuring and preserving facial identity across
large-pose variation, and can be applied to other work
where large-pose identity preservation is a concern.

• The proposed framework with cycle-consistent shape
learning and attention-embedded generation is novel in
architecture and outperforms state-of-the-art approaches
for large-pose face reenactment.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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• The scheme proposed to make the large-pose benchmark
datasets, the MPIE-LP and VoxCeleb2-LP, is simple but
effective in addressing the issue that existing datasets are
inappropriate for evaluating large-pose performance.

The code and pretrained model are available on https:
//github.com/AvLab-CV/PASL.

In the following, we first review previous work in Sec. 2,
then present our approach in Sec. 3, then the experiments in
Sec. 4, and a conclusion to this work in Sec. 5.

2. Related Work
Most approaches can be generally divided into three cate-
gories, the warping-based, the landmark-based and the hy-
brid of both. For warping-based approaches, the search for
the description of the motion field good for action trans-
formation and identity preservation is considered [24, 30].
A first-order approximation to the motion field described
by the keypoint-based optical flow is proposed in the First
Order Motion Model (FOMM) [24]. It consists of a key-
point detector, a motion network, and a generator. The mo-
tion network takes the keypoint motion representation to
describe the optical flow from the reference to the source.
The generator takes the optical flow and an occlusion map
to couple with the source image and the reference action
for target face generation. The Mesh Guided One-Shot
(MGOS) [30] learns the optical flow from 3D meshes to
provide the shape and pose to reconstruct the reference ac-
tion on the source.

For landmark-based approaches, the facial landmarks are
explored to combine the reference action and source iden-
tity and guide the synthesis of the target (reenacted) face
[14, 31, 33]. Few-Shot Talking Head [31] trains an em-
bedder to encode the source landmarks, and a pair of gen-
erator and discriminator to transfer the reference action to
the source. FReeNet [33] trains a landmark converter to
transfer the reference landmarks to the source, and a gener-
ator to make the target face show the reference expression.
Although FReeNet shows good performance in transferring
facial expression, it cannot handle pose transformation. The
Dual Generator (DG) [14] fuses reference landmark code
and source facial code to generate the identity-preserving
landmarks that keep the source identity while transferring
the reference action. 3D landmarks are employed to deal
with large-pose reenactment. The DG can be a pioneer in
addressing large pose issues. However, the way to evalu-
ate the performance must be modified as most test data do
not reveal sufficiently large poses. This is the reason that
we propose a scheme to make new benchmark datasets, the
MPIE-LP and VoxCeleb2-LP.

The hybrid approaches consider both the warping mo-
tion fields and facial landmarks [9, 29, 32]. The HeadGAN
[9] uses the 3DMM [35] to decompose a face into expres-
sion and identity parameters, and combines source identity

and reference expression to synthesize target face. How-
ever, identity preservation that solely depends on source
identity parameter cannot preserve sufficient identity char-
acteristics. The Bi-layer [32] consists of a pose-dependent
coarse layer and a pose-independent texture layer. Facial
keypoints are used to predict the coarse component of tar-
get face with a warping field for merging with the texture.
The Face2Faceρ [29] has a motion network for predicting
the motion field and a rendering network driven by pose
and motion field. During training, the 3DMM parameters
of the source and reference are regressed and used to recon-
struct three landmark images. The landmark images and
the source images are fed into the motion network with the
source images sent to the rendering module for generating
the reenacted face. The HyperReenact [2] converts faces to
the StyleGAN2 [16] latent space and uses a hypernetwork to
refine source identity characteristics and conduct facial pose
re-targeting, eliminating external editing that may cause ar-
tifacts. The proposed Pose Adapted Shape Learning (PASL)
belongs to the hybrid category.

3. Proposed Approach
The proposed PASL framework is composed of three mod-
ules, the Pose-Adapted face Encoder (PAE), the Cycle-
consistent Shape Generator (CSG) and the Attention-
Embedded Generator (AEG). The configuration is shown
in Figure 1. The PAE is proposed to better preserve facial
identity across large-pose reenactment. Given a source Is
and a reference Ir as inputs, the CSG generates a recom-
posed shape src that fuses the source identity and reference
action in the shape space and meets the cycle-consistency
requirement. Taking the recomposed shape src and the
source style code cs as inputs, the AEG is trained to learn
the attention within the shape code and the cross-attention
between the shape code and source style to better generate
the desired target face. Details of these modules are pre-
sented in the following sections.

3.1. Pose-Adapted face Encoder (PAE)

As mentioned in Sec. 1, most face encoders suffer from
biased training, i.e., training on pose-imbalanced datasets.
The consequence is that these encoders encode nearly
frontal faces with high confidence, and the confidence de-
creases as the pose changes to profile. When using such
frontal-biased encoders for identity-preserving training, the
facial identity will not be well preserved if the source or ref-
erence pose is close to profile. The proposed 6 PAEs aim to
address this issue.

We divide facial pose into three sets according to the
absolute yaw angle θy , and label them as ’f’ for frontal
with θy< 30◦, ’s’ for side with 30◦≤ θy <60◦, and ’p’
for profile with 60◦≤θy . We consider the following six
pose pairs: frontal-vs-frontal (ff), side-vs-side (ss), profile-
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Figure 1. PASL model composed of 6 Pose-Adapted Encoders (PAEs), Cycle-consistent Shape Generator (CSG), Attention-Embedded
Generator (AEG). Red dashed lines indicate losses, black dashed lines indicate recomposed shape parameters

vs-profile (pp), frontal-vs-side (fs), side-vs-profile (sp) and
frontal-vs-profile (fp) when measuring the identity simi-
larity between the source and the reenacted output. Six
Pose-Adapted Encoders (PAEs), denoted as Eff , Ess, Epp,
Efs, Esp and Efp, are trained on the corresponding pose-
conditioned datasets and explored for pose-adapted identity
preservation. The encoder Eff is trained on nearly frontal
faces with yaw angle θy < 30◦. Ess is trained on faces with
yaw angle 30◦≤ θy< 50◦. Epp is trained on faces with yaw
angle θy≥ 50◦. Efs, Esp, and Efp are trained on faces
with poses uniformly distributed within specific orientation
ranges. Efs is trained on faces with poses from frontal to
side (0◦∼ 50◦). Esp is trained on faces with poses from side
to profile (30◦∼ 90◦). Efp is trained on faces with poses in
frontal and profile ranges 0◦ ∼ 30◦ and 50◦∼ 90◦, i.e., the
union of the two sets.

Assuming that face is symmetry in yaw, we flip the faces
with θy< 0◦ to the other side, i.e., |θy|. Therefore, the sim-
ilarity between, for example, θ1y< 0◦ and θ2y> 0◦ is consid-
ered the same as between |θ1y| and θ2y . See Sec. 4 for more
details about implementation and experiments.

3.2. Cycle-consistent Shape Generator

Several recent approaches exploit the decomposition of the
identity and expression shapes from a 3D model, and com-
bine the source identity and reference expression shapes to
synthesize target face [9, 29]. The most popular 3D model
considered is the 3DMM [1]. The Cycle-consistent Shape
Generator (CSG) in our framework was also designed for
the recomposition of source identity and reference expres-
sion shapes. However, two properties make CSG a different
design. The first is that CSG is modified from the DECA
model [10], which offers a better decomposition of identity
and expression shapes than the 3DMM. The second is the
cycle consistency that we built into the CSG to make the
output more consistent with the source input in the identity
shape space than the original DECA.

DECA [10] is an extension of the FLAME model [19]
which reconstructs a 3D face by using identity shape pa-
rameter β, expression shape parameter ψ, and pose param-
eter θ. DECA revised FLAME by using two encoders and
three decoders. One encoder converts a 2D face into a la-
tent code that includes the FLAME parameters {β, ψ, θ}.
The other encoder converts the face into another latent code
that captures expression details. {β, ψ, θ} are decoded to a
reconstructed shape by a decoder. As DECA and FLAME
aim for animation, they only consider the expression and
pose variation for the same subject. For our framework, we
do not just consider the expression and pose transfer across
different subjects, we also impose cycle-consistent shape
generation that requires the reconstructed source shape to
be encoded and re-decoded back to the input source shape
with the original expression and pose.

Our CSG redesigns the workflow and builds in the cycle
consistency that makes the reconstructed output close to the
source input. Figure 1 shows the configuration of the CSG.
The encoder Ūe encodes the source Is into the latent code
gs = [βs, ψs, θs] and the reference Ir into gr = [βr, ψr, θr].
The latent codes gs and gr can be decoded to shapes ss and
sr by the decoder Ud. For recomposition, Ud decodes the
concatenation of source identity code and reference action
code, [βs, ψr, θr], to a recomposed shape src. To the best
of our knowledge, the previous work that takes advantage
of the identity and action decomposition of a 3D model all
ends up using this recomposed shape src to make the target
face [9, 29]. We instead consider src an intermediate shape
which can be encoded by Ue to [βrc, ψrc, θrc]. The recom-
posed identity code βrc and the original source action code
form another recomposed code [βrc, ψs, θs], which can be
decoded by Ud to an output shape so. Note that Ūe and Ue

are the same encoders, but the former takes face image as
input and the latter takes shape map and an add-in texture
as input (see [10] for details). In practice, Ue and Ud are
initialized by the DECA encoder and decoder, respectively,
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and retrained to minimize the cycle-consistent shape loss
defined in (4).

3.3. Attention-Embedded Generator

The AEG (Attention-Embedded Generator) is designed to
learn the self-attention features of the recomposed shape src
and the cross-attention characteristics between the recom-
posed shape src and the source style for improving the tar-
get face generation. It is made of an encoder Ve, a decoder
Vd, a transformer T , a style encoder Es, and a discrimina-
tor Df . The configuration is shown in Figure 1. The trans-
former T works between the encoder Ve and decoder Vd so
that the input to T is a latent code and the output is an atten-
tion feature code. The encoder Ve, made of four res-blocks,
converts the recomposed shape src to a latent code crc. The
transformer T takes the latent code crc and the source style
code cs as inputs to generate an attention feature code F t

at.
F t
at is then decoded by the decoder Vd to make the target

face Ît. The source style code is obtained by entering the
source Is into the style encoder Es. The discriminator Df

is built by using the same structure as the style encoder Es

but with a 1D output to distinguish the generated Ît from
the real Is.

The transformer T consists of a multi-headed trans-
former encoder (t-encoder) Te and a multi-headed decoder
(t-decoder) Td. The t-encoder Te converts the recomposed
shape code crc to a self-attention feature sequence fM . fM
is decoded by the t-decoder Td to an attention feature code
F t
at. The t-encoder Te is made of M multi-headed self-

attention layers. Each layer consists of a multi-headed self-
attention module and an MLP (Multilayer Perceptron) to
capture the global and local attention across the entities of
the feature sequence from the last layer. To better preserve
the ordering information of the feature sequence, the posi-
tion encoding in [25] is added to the input feature sequence
at each layer. Denote the feature sequences at layer-m and
m−1 as fm and fm−1, respectively. The multi-headed self-
attention module at layer-m first maps fm−1 into a triplet
representation in terms of query Qm, key Km and value
Vm as shown below.

Qm = fm−1Wq,Km = fm−1Wk, Vm = fm−1Wv (1)

where Wq , Wk, and Wv are the mapping weights to learn
during training for Qm, Km and Vm, respectively. The out-
put om,j from the j-th head is computed as follows:

om,j = softmax

(
QmK

T
m√

dk

)
Vm, j ∈ {1, ..., Nh} (2)

where dk is the dimension of Km, and Nh is the number
of heads. The outputs om,j from all Nh heads are con-
catenated and processed by the MLP to produce the feature
sequence fm. The above learning process is repeated for all
M layers to obtain the self-attention feature sequence fM .

Similar in structure to the t-encoder Te, the t-decoder Td
comprisesN multi-headed attention decoding layers. It per-
forms multi-headed self-attention and encoder-decoder at-
tention operations. The encoder-decoder attention derives
the key and value vectors from the encoder output with
query vectors given by the decoding layer. We take the re-
composed shape src to make the query embeddings Q. Q
is considered as a learned positional encoding to each atten-
tion layer. Each query embedding learns from the attention
features to infer the attributes of the source style code. The
query embedding is processed in parallel at each decoding
layer. The output embeddings will collect the features of
the style attributes across N decoding layers and yield an
attention feature code F t

at. F
t
at is entered to the decoder Vd,

which is made of 4 upsampling res-blocks. AdaIN [16] is
applied to enter the style code cs into all res-blocks of Vd to
enhance style preservation at the target Ît.

When training the AEG, we first trained it for self-
reenactment, where the source and reference were the same
subject and the ground-truth target It was available; and
then retrained it for cross-reenactment, where the source
and reference were different subjects. The following loss
functions are considered:
Pose-Adapted Identity Loss The proposed 6 PAEs are ex-
ploited to compute the following identity loss that depends
on the poses of the source Is and generated target face Ît.

Lid = 1− cos(Eid(Is), Eid(Ît)) (3)

where Eid is chosen from Eff , Ess, Epp, Efs, Esp and
Efp, depending on the yaw angles of Is and Ir.
Cycle-consistent Shape Loss As discussed in Sec. 3.2, the
encoder Ue and decoder Ud are initialized by the DECA-
pretrained encoder and decoder, respectively, and retrained
to minimize the following cycle-consistent shape loss,

Lcc = |Ud(βs, ψs, θs)− Ud(βrc, ψs, θs)|1 (4)

Style Loss To ensure that the generated face keeps the same
style as the source, the following loss is needed to minimize
the difference between the style features of Ît and Is.

Lsty = |Es(Ît)− Es(Is)|2 (5)

Perceptual Loss To enhance the perceptual similarity be-
tween Ît and ground truth It, we consider the following loss
[15] computed by using the multi-layer VGG-19 features
during self-reenactment training,

Lper =

N∑
i

|V GGi(Ît)− V GGi(It)|1 (6)

where V GGi() is the ith layer feature map, and N = 5
determined by experiments.
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Adversarial Loss To make the generated target face Ît ap-
pear as a photo-quality face, the following adversarial losses
for the AEG generator, denoted as G, and the discriminator
Df are needed,

Ladv
G = −Esrc∼p(src),cs∼p(cs) log

[
1−Df (Ît)

]
(7)

Ladv
Df

=EIs∼p(Is) log
[
Df (Is)

]
+

Esrc∼p(src),cs∼p(cs) log
[
1−Df (Ît)

]
(8)

The full objective function for training the AEG is a
weighted sum of the above loss functions:

LAEG = Ladv
G + λidLid + λccLcc

+λstyLsty + λperLper

(9)

where λid, λcc, λsty, λper are the weights determined in the
experiments.

4. Experiment
We first introduce the datasets and the new specifications
and protocols good for evaluating large-pose performance,
then an ablation study on the performance of PAEs and dif-
ferent settings of our model, and then a comparison with
state-of-the-art approaches.

4.1. Datasets and Protocols

The cleaned MS1M-V3 dataset (5.1M images of 93k sub-
jects) [8] was selected to train and validate the 6 Pose-
Adapted face Encoders (PAEs). 85% subjects were selected
for training, and the rest 15% for validation. The IJB-C
dataset [27] was used to test the performance. The 3DDFA2
[12] was used to annotate the facial landmarks and head
pose for each face. Six pose subsets were made from the
training set to train the 6 PAEs (Eff , Ess, Epp, Efs, Esp,
Efp), which were tested on the six pose subsets formed
from the testing set. The network and feature embedding
settings of each PAE followed those for making the VG-
GFace2 [4] with a modified ResNet-50 as the backbone. See
Supplementary document for more details about the PAEs.

We selected MPIE [11], VoxCeleb1 [22]and VoxCeleb2
[6] datasets for evaluating the proposed PASL model. To
better evaluate large-pose performance, we made MPIE-LP
(Large Pose) and VoxCeleb2-LP subsets from MPIE and
VoxCeleb2. The VoxCeleb1 was used the same way as
previous approaches as this dataset did not provide enough
large-pose data.

MPIE-LP is made from MPIE [11] as it provides close-
to-ground-truth images for performance comparison. Due
to the requirement that each subject must have 4 facial ex-
pressions, the MPIE-LP is made with 127 subjects with
13 poses across 9 illumination conditions. As the pose
in MPIE is labeled by a specific yaw angle θy , we define

θy = 0◦,±15◦ as frontal pose, θy = ±30◦,±45◦ as side
pose, and θy = ±60◦,±75◦,±90◦ as profile pose. Only
4 pose pair sets (ss, pp, fp and sp), which exhibit sufficient
large-pose differences between the source and reference, are
included in the MPIE-LP. This results in minimum pose dif-
ference 45◦ (in fp set) and maximum 180◦ (in pp set). We
split 127 subjects into 80 for training and 47 for testing. As
MPIE offers near ground-truth images of large poses, it was
selected for ablation study.

VoxCeleb1 offers over 100k videos of 1,251 celebrities
and is divided into training and testing sets. In our ex-
periments, images were extracted from the videos sampled
at 1 fps, resized to 2562 pixels, and each face with land-
marks detected by 3DDFA2 [12]. We followed the protocol
same as previous work and trained the model on the training
set. Note that the experiments on VoxCeleb1 cannot reveal
large-pose performance as too few data of large pose in this
dataset. However, it is a fair benchmark to compare with
other approaches as many reported performance on it.

VoxCeleb2-LP is made from the VoxCeleb2, which is
an extension of the VoxCeleb1. VoxCeleb2 contains over 1
million utterances of 6,112 celebrities, and is divided into
training and testing sets. We extracted images from each
selected video at 5 fps to capture fast pose change, and pro-
cessed the images the same way as we performed for Vox-
Celeb1. It offers more faces in large or extreme poses than
other datasets, and thus is good to benchmark large-pose
performance. To make VoxCeleb2-LP, we selected 1259
celebrities from the training set that contained large poses
to form 4.5 million large-pose pairs for training, and 196
celebrities from the testing set to form 700k large-pose pairs
for performance testing. We also segmented the data into 6
pose pair sets, same as we did when using the MS1M-V3
[8] to make the 6 PAEs. The minimum pose difference is
20◦ in ff pose set, and maximum 180◦ in pp pose set. We
again selected the subsets ss, pp, fp, and sp for evaluating
large-pose performance. See Supplementary document for
more dataset specifications.

Evaluation Metrics were selected to test the source
identity preservation, reference action transformation and
image quality of the generated target faces, including the
Frechet-Inception Distance (FID) [13], Cosine Similarity
(CSIM), Average Rotation Distance (ARD), Learned Per-
ceptual Image Patch Similarity (LPIPS) [34]. As these are
common metrics, see Supplementary document for details.

Training began for self-reenactment with minimum 2
images per identity and then for cross-reenactment, starting
from scratch to minimize the losses in LAEG. A compari-
son study determined the weights for the losses as λid = 10,
λcc = 10, λsty = 1 and λper = 1. Our programs were
written in the Pytorch deep learning framework [23]. All
experiments were run with batch size 8 on a Ubuntu 20.04
with NVIDIA 3090 GPU. We used the Adam [18] optimizer
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Accuracy (%)

Pose FF FS SS FP SP PP

ArcFace[7] 82.1 49.2 59.3 31.2 38.7 28.1
MagFace[21] 80.7 48.1 58.5 28.6 35.5 26.4
VGGFace2[4] 86.7 69.8 79.8 58.6 63.3 60.7
AdaFace[17] 90.6 74.2 77.3 43.8 49.5 43.2

PAE 92.2 80.1 84.7 67.2 71.4 73.8

Table 1. Face verification performance of face encoders on six
pose test sets.

Accuracy (%)

Pose FF FS SS FP SP PP

ArcFace[7] 83.1 58.7 63.4 41.6 49.5 43.2
MagFace[21] 81.6 59.8 68.4 43.8 55.4 55.5
VGGFace2[4] 89.7 84.9 83.6 65.6 69.2 63.9
AdaFace[17] 91.3 79.5 83.2 66.8 68.5 70.2

PAE 92.2 80.1 84.7 67.2 71.4 73.8

Table 2. Face verification performance of face encoders fine tuned
on PAE training sets.

Figure 2. Precision and recall of PAE, Magface (Mag), Arcface
(Arc), Adaface (Ada), and VGGFace2 (Vgg) encoders.

Metrics FID↓ CSIM↑ ARD↓ LPIPS↓
Recomposed Shape Encoder/Decoder

w/o Lcc 23.9 0.38 2.84 0.28
CSG 18.1 0.46 2.24 0.21

Attention Mechanism
StarGAN2[5] 28.4 0.37 2.41 0.26

AEG 18.1 0.46 2.24 0.21

Table 3. Self-reenactment performance with and without cycle-
consistent shape loss Lcc, and with and without attention mecha-
nism in the generator.

with β1 = 0.01, β2 = 0.99 and learning rate 1e−4.

4.2. Ablation Study

In the first part of our ablation study, we conducted a com-
parison experiment to verify the performance of PAEs in
face verification. Several face encoders released in recent
years were selected, including the Magface [21], Arcface

Figure 3. Qualitative comparison of with and without cycle-
consistent shape loss (quantitative comparison in Table 3).

Figure 4. Qualitative comparison of with and without attention
mechanism in the generator (quantitative comparison in Table 3).

[7], Adaface [17], and VGGFace2 [4]. Table 1 shows the
comparison with the off-the-shelf pretrained versions of the
selected encoders. The PAEs outperform all in 6 subsets
with clear margins and the margin increases with pose dif-
ference. Table 2 shows the performance that we fine-tuned
those encoders on our training set. Only VGGFace2 out-
performs PAEs on the FS (frontal-side) subset, indicating
that pose-adapted training may improve verification per-
formance within the specified pose scope. However, the
PAEs maintain satisfactory performance even for subsets
of small pose differences. Figure 2 shows the Precision-
Recall curves of PAEs and off-the-shelf encoders on 4 sub-
sets of larger pose differences, offering a more comprehen-
sive comparison. This study verifies that PAEs are better
encoders, especially for faces of large poses.

In the second part of ablation study, we compared the
performance with and without the cycle-consistent shape
loss Lcc, and with and without the attention mechanism in
the generator. The model without Lcc uses the DECA en-
coder and decoder as the encoder Ue and decoder Ud in the
CSG. As for the generator without attention mechanism, we
selected StarGAN2 [5] and trained it the same way as we
did for the AEG. Table 3 shows the quantitative compari-
son for self-reenactment on the MPIE-LP testing set, and
Figures 3 and 4 illustrate the differences in visual quality.
It is verified that both cycle-consistent shape and attention-
embedded generator improve the performance.
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side-vs-side (ss) side-vs-profile (sp) frontal-vs-profile (fp) profile-vs-profile (pp)

Method(N) FID↓ CSIM↑ ARD↓ LPIPS↓ FID↓ CSIM↑ ARD↓ LPIPS↓ FID↓ CSIM↑ ARD↓ LPIPS↓ FID↓ CSIM↑ ARD↓ LPIPS↓
MPIE-LP

MagFace[21] 21.57 0.431 1.88 0.252 22.56 0.433 1.92 0.259 23.39 0.391 2.09 0.264 27.21 0.354 2.23 0.275

Arcface[7] 20.11 0.457 1.63 0.234 21.27 0.451 1.74 0.243 22.97 0.408 1.98 0.248 24.61 0.377 2.13 0.261

VGGFace2[4] 19.58 0.466 1.38 0.227 20.85 0.469 1.48 0.236 21.56 0.411 1.71 0.241 22.95 0.381 1.89 0.248

PAE 16.96 0.491 1.14 0.192 17.48 0.483 1.19 0.198 18.84 0.427 1.38 0.214 21.60 0.401 1.47 0.227

VoxCeleb2-LP

MagFace[21] 41.02 0.483 3.26 - 42.46 0.471 3.34 - 43.95 0.459 3.58 - 45.62 0.442 3.77 -

Arcface[7] 39.51 0.498 3.13 - 41.53 0.487 3.22 - 42.76 0.473 3.42 - 44.39 0.465 3.53 -

VGGFace2[4] 37.61 0.526 2.88 - 40.92 0.513 2.99 - 41.76 0.497 3.18 - 42.93 0.480 3.35 -

PAE 36.45 0.541 2.67 - 39.54 0.535 2.81 - 39.86 0.510 3.02 - 40.63 0.498 3.22 -

Table 4. Cross-reenactment performance using different face encoders for computing identity loss Lid

Figure 5. Samples from cross-reenactment on VoxCeleb2-LP with
identity loss made by different face encoders, performance in Ta-
ble 4.

In the third part of ablation study, we compared the reen-
acted faces synthesized by the proposed approach but us-
ing different face encoders for source identity preservation.
Figure 5 shows the cross-reenacted faces associated with
the quantitative performance comparison in Table 4. The
PAEs consistently outperform other encoders in all met-
rics and exhibit superior performance in faithfully captur-
ing facial features.The PAEs demonstrate enhanced fidelity,
resulting in a more accurate reconstruction of these facial
components. The difficulty level of identity preservation
can be seen from the CSIM of each pose set. The MPIE-
LP-pp with CSIM 0.401 appears the most difficult as many
pairs are 180◦ apart, as required in the controlled settings.
The VoxCeleb2-LP-ss with CSIM 0.541 seems the easiest
as many pairs collected in the wild have smaller pose differ-
ences. Other metrics also reveal some interesting character-
istics of the pose sets.

Metrics FID↓ CSIM↑ ARD↓ LPIPS↓
MPIE-LP

Bi-layer[32] 106.8 0.12 / 0.03 / 0.22 3.22 0.54
FOMM[24] 62.7 0.06 / 0.08 / 0.08 10.86 0.37

DG[14] 23.4 0.23 / 0.26 /0.33 2.15 0.24
HyperReenact[2] 83.9 0.22 / 0.26 / 0.35 6.71 0.47

PASL 17.5 0.25 / 0.21 / 0.47 1.21 0.18
VoxCeleb1

Bi-layer[32] 52.8 0.64 2.19 0.23
FOMM[24] 35.6 0.65 4.63 0.27

HeadGAN[9] 58.0 0.68 1.35 0.24
Face2Faceρ[29] - - - 0.21

DG[14] 41.1 0.65 1.53 0.18
HyperReenact[2] 38.2 0.68 1.99 0.32

PASL 32.4 0.71 1.32 0.15
VoxCeleb2-LP

Bi-layer[32] 108.3 0.2 / 0.11 / 0.28 3.18 0.53
FOMM[24] 49.1 0.26 / 0.22 / 0.33 3.67 0.35

DG[14] 36.1 0.28 / 0.29 / 0.46 2.94 0.24
HyperReenact[2] 78.5 0.39 / 0.38 / 0.52 3.03 0.23

PASL 32.8 0.42 / 0.39 / 0.58 2.71 0.21

Table 5. Self-reenactment performance on MPIE-LP, VoxCeleb1
and VoxCeleb2-LP (CSIM by ArcFace/VggFace2/PAE)

4.3. Comparison with State of the Art

Table 5 and 6 show the performance for self- and cross-
reenactment compared with state-of-the-art approaches. As
CSIM is a common metric for measuring identity preserva-
tion, we followed the common practice of using ArcFace
as the feature extractor for experiments on VoxCeleb1. For
experiments on MPIE-LP and VoxCeleb2-LP, we computed
CIM by using ArcFace, VggFace2, and PAEs. Based on
the performance comparison study in Sec. 4.2, the PAEs are
more reliable than ArcFace and VggFace2 in measuring the
identity similarity between faces of large poses.

Several selected methods do not offer code or models
for testing, except for the FOMM [24], Bi-layer [32], DG
[14] and HyperReenact[2]. In that case, we duplicated
the reported performance and image samples directly from
their papers. Note that LPIPS can only be computed for
self-reenactment or when the ground-truth target face is
available; therefore, it is not available for VoxCeleb1 and
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Metrics FID↓ CSIM↑ ARD↓ LPIPS↓
MPIE-LP

Bi-layer[32] 106.3 0.13 / 0.03 / 0.21 3.22 0.54
FOMM[24] 68.9 0.19 / 0.21 / 0.25 10.91 0.39

DG[14] 24.2 0.21 / 0.23 / 0.28 2.35 0.24
HyperReenact[2] 85.2 0.2 / 0.26 / 0.31 6.65 0.48

PASL 18.1 0.27 / 0.24 / 0.46 2.24 0.21
VoxCeleb1

Bi-layer[32] 52.9 0.56 2.18 -
FOMM[24] 52.9 0.53 10.9 -

HeadGAN[9] 48.1 0.62 2.35 -
Face2Faceρ[29] 44.5 0.61 3.68 -

DG[14] 45.1 0.57 2.11 -
HyperReenact[2] 40.3 0.61 2.2 -

PASL 38.4 0.68 2.05 -
VoxCeleb2-LP

Bi-layer[32] 110.8 0.16 / 0.01 / 0.24 3.22 -
FOMM[24] 62.5 0.25 / 0.29 / 0.39 5.82 -

DG[14] 44.2 0.25 / 0.26 / 0.39 3.21 -
HyperReenact[2] 79.2 0.33 / 0.34 / 0.45 4.63 -

PASL 37.9 0.35 / 0.39 / 0.52 2.93 -

Table 6. Cross-reenactment performance on MPIE-LP, VoxCeleb1
and VoxCeleb2-LP (CSIM by ArcFace/VggFace2/PAE)

VoxCeleb2-LP. The Face2Faceρ[29] uses LPIPS and other
metrics for evaluating self-reenactment, and FID, CSIM
and ARD for evaluating cross-reenactment. For the ap-
proaches with code and models available, we trained and
tested their models the same way as we performed for the
PASL. The performance comparison is shown in Table 5 for
self-reenactment and Table 6 for cross-reenactment. The
PASL outperforms the selected SOTA approaches in all
metrics on the three benchmark datasets. For the general
scope of pose and expression variation, the PASL demon-
strates the performance on VoxCeleb1. For handling large
pose scenarios, the PASL shows the performance on the
MPIE-LP and VoxCeleb2-LP datasets.

Figures 6, 7 and 8 show the reenacted face samples for
the comparison with state-of-the-art methods reported in
Table 5 and 6. The Bi-layer [32] can transform the pose and
expression for minor pose variation, but cannot preserve the
source identity, as shown in Figure 7. The identity preser-
vation is worsened when handling large pose, as shown in
Figure 6, 8 and in Table 5, 6. The FOMM [24] cannot
handle large pose, either, as shown in Figure 6, 7 and 8.
The DG [14] demonstrates good performance in handling
large poses, although it exhibits a slight deficiency in iden-
tity preservation, as evidenced by the quantitative results
presented in Tables 5 and 6, as well as qualitative analy-
sis illustrated in the figure. The HyperReenact [2] emerges
as the second-best method in terms of identity preservation,
but displays comparatively lower efficacy across other eval-
uation metrics.

5. Conclusion
Different from most previous approaches that deal with
common pose variation scope, we propose the Pose-

Figure 6. Samples from comparison with state of the art on MPIE-
LP, with performance in Table 5 and 6.

Figure 7. Samples from comparison with state of the art on Vox-
Celeb1, with performance in Table 5 and 6.

Figure 8. Samples from comparison with state of the art on Vox2-
LP, with performance in Table 5 and 6.

Adapted Shape Learning for handling large-pose face reen-
actment. We develop a set of Pose Adapted Encoders
(PAEs) to better preserve the source identity across large
pose and serve as a strong pose-robust face encoder. We de-
sign the Cycle-consistent Shape Generator (CSG) and the
Attention-Embedded Generator (AEG) to better generate
the desired target face. To better evaluate the performance,
we propose a scheme to make MPIE-LP and VoxCeleb2-
LP datasets with sufficient large-pose data. The proposed
approach is successfully verified on MPIE-LP, VoxCeleb1
and VoxCeleb2-LP datasets.
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