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Abstract

Unsupervised fine-grained image hashing aims to learn
compact binary hash codes in unsupervised settings, address-
ing challenges posed by large-scale datasets and dependence
on supervision. In this paper, we first identify a granularity
gap between generic and fine-grained datasets for unsu-
pervised hashing methods, highlighting the inadequacy of
conventional self-supervised learning for fine-grained vi-
sual objects. To bridge this gap, we propose the Asymmet-
ric Augmented Self-Supervised Learning (A2-SSL) method,
comprising three modules. The asymmetric augmented SSL
module employs suitable augmentation strategies for pos-
itive/negative views, preventing fine-grained category con-
fusion inherent in conventional SSL. Part-oriented dense
contrastive learning utilizes the Fisher Vector framework
to capture and model fine-grained object parts, enhancing
unsupervised representations through part-level dense con-
trastive learning. Self-consistent hash code learning intro-
duces a reconstruction task aligned with the self-consistency
principle, guiding the model to emphasize comprehensive
features, particularly fine-grained patterns. Experimental
results on five benchmark datasets demonstrate the superior-
ity of A2-SSL over existing methods, affirming its efficacy in
unsupervised fine-grained image hashing.

1. Introduction
Fine-grained image retrieval [44] in computer vision and

pattern recognition aims to retrieve images from multi-

ple subordinate categories within a super-category, aka a
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Figure 1. Illustration of the unsupervised fine-grained hashing task,

aimed at generating compact binary codes with Hamming distance

for fine-grained images without class labels. The goal is to ensure

that images within a particular subcategory share identical codes,

while images from different subcategories possess distinct codes.

meta-category. Examples include different species of ani-

mals/plants [37], various models of cars [17], assorted types

of defects [1], and diverse types of retail products [43],

among others. The primary challenge lies in discerning

fine-grained visual differences that subtly distinguish ob-

jects with high overall similarity but varying fine-grained

features. Additionally, fine-grained retrieval necessitates the

ranking of all instances so that images depicting the same

sub-category label receive the highest rank, based on the

fine-grained details in the query.

Particularly, given the explosive growth of fine-grained

data in real-world applications [2, 12, 21, 37, 43], fine-

grained hashing emerges as a promising solution for han-

dling large-scale fine-grained retrieval tasks. It has demon-

strated the ability to significantly reduce storage costs and

enhance query speeds [7, 14, 33], leveraging learned com-

pact binary hash code representations. While prior works,

e.g., [7, 14, 33], achieved commendable retrieval perfor-

mance, they still rely on fine-grained category annotations

provided by domain experts. In some cases, obtaining ex-

tensive and accurate fine-grained supervision information is

challenging or even impossible. In this study, aiming to miti-

gate the dependence on supervision, particularly for the task

in Figure 1, we propose the development of an unsupervised

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17648



fine-grained image hashing method, termed as Asymmetric

Augmented Self-Supervised Learning (A2-SSL).

Originally, based on preliminary experiments, we ob-

served that on generic image datasets (e.g., NUS-WIDE [5]),

state-of-the-art methods in both unsupervised and supervised

settings perform similarly. However, on fine-grained image

datasets (e.g., CUB200-2011 [38]), supervised hashing meth-

ods exhibit normal accuracy, achieving approximately 80%

mAP. In contrast, unsupervised hashing methods perform

significantly worse than their supervised counterparts, to the

extent of being ineffective (yielding less than 17% mAP).

This discrepancy highlights a clear “granularity gap” be-

tween fine-grained and generic datasets when it comes to

the performance of unsupervised hashing methods. Given

that numerous existing unsupervised hashing methods rely

on contrastive Self-Supervised Learning (SSL) [3], our hy-

pothesis emerges from a simplification experiment involving

data augmentation in self-supervision. We propose that the

random augmentation commonly employed in conventional

SSL may not be suitable for fine-grained visual objects.

Based on the aforementioned findings, we present the

A2-SSL method, comprising three modules: asymmetric

augmented SSL, part-oriented dense contrastive learning,

and self-consistent hash code learning. In asymmetric aug-

mented SSL, we adopt a straightforward and singular data

augmentation method for the anchor view of an image sam-

ple, preserving its fine-grained pattern to generate positive

views. Conversely, we employ complex and diverse data

augmentation methods to create negative views. Then, rec-

ognizing the significance of fine-grained object parts [44],

e.g., the bird’s head or tail, we utilize the Fisher Vector

framework [30] to capture and model these object parts in

an end-to-end fashion. Leveraging these object parts, we

conduct part-oriented dense contrastive learning to enhance

unsupervised representations with enhanced discriminative

abilities. Lastly, acknowledging that self-supervised learn-

ing primarily emphasizes overall visual similarity between

image samples, potentially overlooking subtle yet discrimi-

native fine-grained patterns, we incorporate a reconstruction

task into hash learning. This addition aligns with the self-

consistency principle [25], directing the model to focus on

comprehensive features, particularly fine-grained patterns.

To evaluate our method, we conduct extensive experi-

ments using five benchmark fine-grained retrieval datasets,

i.e., CUB200-2011 [38], Oxford Flowers [27], Stanford
Dogs [15], and Stanford Cars [17], Food101 [2], for val-

idating its effectiveness. Quantitative results of retrieval ac-

curacy on these datasets show that the proposed A2-SSL

method obviously and consistently outperforms existing

state-of-the-art methods. The ablation studies of these cru-

cial modules in A2-SSL also validate their own effectiveness.

Furthermore, qualitative visualization results confirm that

our method mitigates the limitations of existing SSL methods

in fine-grained tasks.

In summary, our work has a three-fold contribution:

• We are the first to identify the granularity gap between

generic datasets and fine-grained datasets for unsupervised

hashing methods and address the challenge of unsuper-

vised fine-grained image hashing.

• We propose the A2-SSL method, comprising three cru-

cial modules–namely, asymmetric augmented SSL, part-

oriented dense contrastive learning, and self-consistent

hash code learning–tailored for unsupervised fine-grained

hash code learning.

• We conduct experiments on five fine-grained benchmark

datasets to validate the effectiveness of A2-SSL from both

quantitative and qualitative perspectives.

2. Related Work

2.1. Large-Scale Fine-Grained Image Search

Fine-grained image search plays a pivotal role in the com-

prehensive analysis of fine-grained images [44]. This pro-

cess involves ranking all instances in a database, where

images from the same sub-category are prioritized based

on fine-grained details present in the query. These tech-

niques [9, 34] find widespread applications in real-world

scenarios, such as product searches, crime prevention, and

many more. SCDA [40] stands out as one of the pioneering

methods employing pre-trained networks to extract and ag-

gregate meaningful descriptors for fine-grained image search,

all without explicit supervision. To enhance retrieval per-

formance, various supervised approaches have been intro-

duced, including learning discriminative features through

centralized global pooling [52] and improving intra-class

compactness with inter-class separability [53].

While these approaches have demonstrated considerable

success, they grapple with the drawback of significant time

consumption when searching for the nearest neighbor in ex-

tensive image databases [23]. In response to this challenge,

ExchNet [7] and DSaH [14] emerged as pioneers, delving

into the fine-grained hashing problem with a focus on acquir-

ing fine-grained tailored features and generating compact

binary hash codes specifically designed for fine-grained im-

ages. Subsequently, recent research has shifted its focus to-

wards the demanding and practical task of fine-grained hash-

ing, emphasizing the mining of discriminative regions [45]

through double-filtering [4] and the creation of hash codes

with strong correspondence to visual attributes [22, 33, 42].

Notably, these methods still depend on fine-grained category

labels, incurring a high cost for acquisition. To our knowl-

edge, this is the first work tailored for fine-grained hashing

in an unsupervised setting.
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Figure 2. The granularity gap between unsupervised and supervised hashing methods on fine-grained image datasets (e.g., CUB200-
2011 [38]). The retrieval accuracy (% mAP) in the figures is based on 32-bit hash codes. We also report the results of unsupervised and

supervised hashing methods on generic image datasets (e.g., NUS-WIDE [5]). Red bars represent unsupervised methods, while blue bars

represent supervised methods.

2.2. Unsupervised Image Hashing

Existing deep unsupervised hashing methods primarily fo-

cus on generic images, falling into three categories [24].

The first group adopts a pseudo-label-based approach, uti-

lizing pseudo-labels as semantic information and framing

the problem as supervised hashing [50]. The second group,

similarity reconstruction-based methods, employs pairwise

methods to address the issue [36, 46, 47]. Due to the ab-

sence of label information, these methods typically follow

a two-step framework, first extracting deep representations

and then inferring similarity through distance metrics in the

deep feature space. The third group embraces prediction-

free self-supervised learning methods, integrating popular

techniques like auto-encoders [32] and generative adversar-

ial networks [54] into deep unsupervised hashing to extract

more information through deep neural networks. Recently,

leveraging the success of contrastive learning [3] in gener-

ating discriminative representations, several methods have

incorporated contrastive learning into contemporary unsu-

pervised hashing [13, 31, 39], contributing to the generation

of high-quality hash codes. However, these unsupervised

methods are tailored for generic images, posing challenges

when applied to the task of searching images belonging to

fine-grained categories.

2.3. Self-Supervised Learning

Self-supervised learning aims to acquire feature represen-

tations by minimizing a pretext task, with the supervision

derived from the data itself. Examples of pretext tasks in-

clude image colorization [49], image inpainting [29], rota-

tion prediction [8], and instance-level discrimination [3, 10].

Specifically, contrastive learning in SSL focuses on minimiz-

ing instance-level discrimination, attempting to bring embed-

dings of augmented views of the same image closer while

pushing away embeddings from different images. While

contrastive learning performs reasonably well in the unsu-

pervised setting, it relies on overall visual similarity to group

image samples, neglecting discriminative and subtle fine-

grained patterns crucial for fine-grained image hashing.

3. Preliminary

Observations As is customary in evaluating the effec-

tiveness of a proposed method, we conducted experiments

comparing our unsupervised fine-grained image hashing

approach with state-of-the-art methods. To do this, we

tested existing unsupervised hashing methods, such as CIB-

Hash [31], SPQ [13], and MeCoQ [39], on fine-grained

benchmark datasets like CUB200-2011 [38].

However, the empirical results of existing unsupervised

hashing methods on CUB200-2011 were less than satisfac-

tory, with some even failing to yield meaningful outcomes.

To illustrate, the retrieval accuracy, specifically mean Aver-

age Precision (mAP), for CIBHash [31] was only slightly

above 15%. Similarly, other methods did not exceed 17%

in accuracy. These findings raised a question: Is there am-

ple room for improvement in the realm of unsupervised

fine-grained image hashing? As a means of validation, we

conducted parallel experiments involving supervised hashing

methods on the CUB200-2011 dataset, where retrieval accu-

racy fell within the range of 74% to 77% for methods like

GreedyHash [35], CSQ [48], and OrthoCos+BN [11]. To

further scrutinize this observed gap, we extended our investi-

gations to encompass generic image hashing datasets, such

as NUS-WIDE [5]. Strikingly, for the same methods applied

in both unsupervised and supervised settings, retrieval accu-

racy appeared uniform. That is, when dealing with generic

images, all methods from both unsupervised and supervised

paradigms demonstrated comparable retrieval accuracy, as

illustrated in Figure 2. This overarching observation begs

the significant question: Why does a granularity gap per-
sist between unsupervised and supervised methods when it
comes to fine-grained datasets?

Conjecture & Discussions We have noticed that contem-

porary state-of-the-art unsupervised hashing methods are

predominantly rooted in self-supervised learning techniques,

specifically, contrastive learning [3],. Consequently, we have

formulated the conjecture: Is it possible that the existing
contrastive learning methods are ill-suited for fine-grained
visual objects?

To substantiate this hypothesis, we conducted a prelimi-

17650



GMM

GMM

As negative
sample

Asymmetric Augmented SSL Part-Oriented DenseCL

Encoder Decoder

Encoder Decoder

Self-Consistent Hash Code Learning

ColorJitter
+ Elastic

Transform

Image

Figure 3. Overall framework of the proposed A2-SSL method, which consists of three crucial modules, i.e., asymmetric augmented SSL,

part-oriented dense contrastive learning and self-consistent hash code learning. All parameters of the two branches are shared.

Table 1. Preliminary results (% mAP) of 48-bit hash codes

on CUB200-2011 in the unsupervised setting. “Traditional CL”

presents contrastive learning with traditional augmentations w.r.t.

the augmented views. The rest row denotes gradually removing the

corresponding augmentation.

Augmentation CUB200-2011
Traditional CL 15.36

w/o GaussianBlur 16.69

w/o ColorJitter 19.65

w/o ColorJitter & GrayScale 21.72

w. only RandomCrop 23.57

nary experiment on the CUB200-2011 dataset, involving a

gradual reduction of data augmentation within the context of

contrastive learning. As depicted in Table 1, traditional con-

trastive learning yielded the lowest unsupervised retrieval

accuracy. However, as we progressively reduced the de-

gree of augmentation, retrieval accuracy exhibited steady

improvement. Notably, the simple addition of a random

crop resulted in the highest retrieval accuracy, surpassing

the result achieved by traditional contrastive learning by a

substantial margin (23.57% compared to 15.36%).

Therefore, the findings presented in Figure 2 and Table 1

compellingly demonstrate that the observed disparity in fine-

grained visual object retrieval, often referred to as the “gran-

ularity gap”, is, in fact, a consequence of self-supervised

learning, specifically contrastive learning. Intriguingly, this

granularity gap aligns remarkably well with the concept of

coarse-grained bias introduced in [6], suggesting a connec-

tion between these phenomena.

4. Methodology
We propose an Asymmetric Augmented Self-Supervised

Learning (A2-SSL) method, which consists of three crucial

Purple Finch Orange Crowned

Parakeet Auklet Least Auklet

Laysan Albatross Sooty Albatross

ColorJitter

GrayScale

Blurring

Figure 4. Several SSL augmentations (on the left) can unintention-

ally interfere with the inherent discriminative patterns of a specific

fine-grained category, to the extent of potentially altering the cate-

gory. On the right, we illustrate a case of category confusion.

modules as follows, cf. Figure 3.

4.1. Asymmetric Augmented SSL

Table 1 demonstrates that when it comes to fine-grained vi-

sual objects, employing a single and straightforward augmen-

tation technique (such as RandomCrop) for self-supervised

learning (SSL) yields superior results compared to using

a diverse and complex set of augmentations (including

GrayScale and ColorJitter, among others). This

underscores the fact that not all augmentation strategies are

equally suitable for fine-grained image hashing.

More specifically, traditional contrastive learning incor-

porates a stochastic data augmentation strategy [3], which

randomly transforms any given data example to produce two

related views of the same example/sample. These two views
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are considered a positive pair, while other examples (usu-

ally from different categories) are treated as negative pairs.

When we visualize the augmented views of fine-grained

objects, we notice that certain types of augmentation can

disrupt the original discriminative patterns of a specific fine-

grained category to the extent of fundamentally altering that

category, as depicted in Figure 4. Consequently, such aug-

mentation methods introduce confusion in the context of

self-supervised learning for fine-grained objects.

To address this challenge, we introduce a novel augmenta-

tion strategy, referred to as asymmetric augmentation, specif-

ically designed to accommodate the unique characteristics

of fine-grained objects within the context of SSL. In the case

of a sample I , asymmetric augmentation involves creating

three augmented views: the anchor view I(a), the positive

view I(p), and the negative view I(n).

However, what sets this approach apart is the “asymmetry”

in the augmentations applied to these views:

• The anchor view I(a) is generated solely by applying the

Resize operation to I .

• The positive view I(p) is created exclusively through the

RandomCrop operation on I .

• The negative view I(n) undergoes two destruc-

tive augmentations1, namely ColorJitter and

ElasticTransform, on I to induce substantial

changes w.r.t. fine-grained objects.

During training, for a sample Ii (i = (1, 2, . . . , N)) in a

minibatch, we initially designate it as the anchor view I
(a)
i

and proceed to generate one positive view. In relation to I
(a)
i ,

the combination of other anchor views and positive views

from the remaining N − 1 samples, along with its original

negative view I
(n)
i , results in 2(N−1)+1 = 2N−1 negative

views w.r.t. I
(a)
i . Subsequently, we directly calculate the

similarity between the learned binary hash codes u for self-

supervised learning, which is formulated by

Lasymm = −
∑
i

log
exp

(
u
(a)
i · u(p)

i /η
)

ri +
∑2N−1

j=1 exp
(
u
(a)
i · u(n)

j /η
) ,

(1)

where u
(a)
i corresponds to the hash code of I

(a)
i , u

(p)
i

is for I
(p)
i , and u

(n)
j is for the negative views. ri =

exp
(
u
(a)
i · u(p)

i /η
)

is the contrastive loss for the positive

view. The temperature hyper-parameter η is set to 0.3.

4.2. Part-Oriented Dense Contrastive Learning

Object parts, e.g., the red head and dotted tail of a bird, play a

pivotal role in the characterization of fine-grained visual ob-

jects [44]. The ability to capture these discriminative object

1The term “destructive” is used in the context of fine-grained objects, as

these operations can potentially alter their fine-grained categories.

parts and subsequently derive powerful part-level features

is essential for accurate fine-grained image hashing. In our

work, we advocate for the acquisition of part-oriented rep-

resentations by integrating deep features into an end-to-end

framework based on Fisher Vector (FV) [30]. Significantly,

this approach enables us to perform dense contrastive learn-

ing using these part-level representations, facilitating more

discriminative unsupervised feature learning.

Specifically, for an input sample I , by feeding it into a

CNN model (without fully connected layers), we can obtain

a 3D activation tensor by

T = ΦCNN(I) ∈ R
C×H×W , (2)

where C, H and W are the depth, height, and width of the

activation tensor, respectively. Alternatively, T can also be

viewed as a set of H × W deep descriptors [40], denoted

as, X = {xt}, t = (1, 2, . . . , H ×W ). Subsequently, for

X , we employ Gaussian Mixture Model (GMM) to cluster

these deep descriptors into K clusters shared across all cat-

egories, where each cluster could correspond to a specific

part-level semantic [20, 51]. Mathematically, we represent

the parameters of GMM with K components/clusters by

λ = {ωk,μk,σk; k = 1, . . . ,K}, where ωk, μk and σk

are the mixture weight, mean vector and covariance matrix

of the k-th Gaussian component, respectively. Notably, the

mixture weights ωk are subject to the constraint:

∀k : ωk ≥ 0,
∑K

k=1
ωk = 1 , (3)

which also serves as the soft-assignment weight for the deep

descriptor xt w.r.t. the k-th cluster. Following the assign-

ment, the mean of deep descriptors within each cluster is

calculated to derive the part-level prototype:

pk =
1

|Ωk|
∑
t∈Ωk

xt , (4)

where Ωk represents the set of indices of deep descriptors

corresponding to the k-th cluster.

After that, we perform dense contrastive learning by ex-

tending the original contrastive loss function (i.e., Eqn. (1))

to a part-oriented paradigm, which can be formulated by

Ldense = −
∑
i

∑
k

ωk log
exp

(
p
(a)
i,k · p(p)

i,k/η
)

exp
(
p
(a)
i,k · p(p)

i,k/η
)
+ si,k

,

(5)

where pi,k denotes the k-th part-level representation of Ii,
and its superscript is the anchor/positive/negative view, re-

spectively. si,k =
∑2N−1

j=1 exp
(
p
(a)
i,k · p(n)

j,k /η
)

is the dense

contrastive loss for the negative view.

Beyond the dense contrastive learning, we can also aggre-

gate these K part-oriented clusters into a high dimensional
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vector containing high-order statistics and pool them to form

an image-level signature. The inclusion of high-order statis-

tics is beneficial for modeling fine-grained patterns [19, 41].

Specifically, utilizing the mean vector μk and covariance

matrix σk of the k-th Gaussian component, we can derive

the first-order and second-order statistics through:

fμk
=

1√
ωk

∑
t

γt(k)

(
xt − μk

σk

)
,

fσk
=

1√
2ωk

∑
t

γt(k)

[
(xt − μk)

2

σ2
k

− 1

]
,

(6)

where γt(k) represents the soft assignment, which is in detail

the probability for xt generated by the k-th Gaussian:

γt(k) = p(k|xt, λ) =
ωkpk(xt|λ)∑K
j=1 ωjpj(xt|λ)

, (7)

where pk(·) denotes the k-th Gaussian component in GMM.

Eventually, the final Fisher Vector fFV ∈ R
2CK is the

concatenation of both fμk
and fσk

from all K clusters.

To achieve a holistic image representation, we pass T
through two fully-connected layers to aggregate fFC ∈ R

d′
,

then concatenate fFV as

f =

[
fFV

fFC

]
∈ R

2CK+d′
, (8)

which contains both image-level information (i.e., fFC) and

part-level cues (i.e., fFV).

4.3. Self-Consistent Hash Code Learning

Given that the contrastive loss in SSL has a tendency to

group image samples based on overall visual similarity [6],

there is a risk that the model might neglect subtle yet dis-

criminative fine-grained patterns. To enhance the model’s

capability to learn comprehensive patterns, especially those

that are fine-grained, we introduce a reconstruction task in

the hash code learning module, guided by the principle of

self-consistency [25].

The self-consistency principle [25] advocates that an au-

tonomous intelligent system should strive for a highly self-

consistent model, minimizing the internal discrepancy be-

tween observed and regenerated data from the external world.

In other words, the intelligent system should be proficient

at reconstructing the distribution of observed data from its

compressed representation to the extent that internal distinc-

tions become indistinguishable despite its best effort. Thus,

according to the self-consistency principle, the expectation

is to learn more comprehensive features, encompassing not

only overall visual patterns but also valuable fine-grained

patterns.

More specifically, we realize the self-consistency prin-

ciple through an encoder-decoder structure applied to the

holistic image embedding f . In detail, f is projected

into the q-dimension latent space using an encoder matrix

W ∈ R
q×(2CK+d′) to obtain the internal latent representa-

tion v ∈ R
q . Following the principle of self-consistency, we

also aim to reconstruct the input f using a decoder W� as

a counterpart of the encoder. This process can be mathemati-

cally formulated as:

min
W

‖F −W�WF ‖2F s.t. WF = V ′ = tanh(V ) ,

(9)

where F = {f1;f2; . . . ;fN} ∈ R
(2CK+d′)×N denotes the

image embeddings in a minibatch, and V ∈ R
q×N corre-

sponds to the latent representation v in a minibatch. Directly

minimizing Eqn. (9) with a hard constraint is difficult to opti-

mize. Therefore, we relax the constraint into a soft constraint,

and the learning objective can be rewritten as

Lself cons =
∥∥F −W�V ′∥∥2

F
+ ‖WF − V ′‖2F . (10)

Finally, we can derive the q-bit binary hash code u from

v by

u = sgn(tanh(v)) . (11)

4.4. Out-of-Sample Extension

Overall, the proposed A2-SSL method is end-to-end train-

able by considering Eqn. (1), Eqn. (5) and Eqn. (10) as

L = Lasymm + Ldense + Lself cons , (12)

where the trade-off parameters between these terms are uni-

formly set to 1, underscoring the non-tricky and practical

nature of our method.

After training, our learned model can be applied for gen-

erating binary codes for query points including unseen query

points in the training phase. Specifically, we can use the

following equation to generate the binary code for I ′:

u′ = sgn(tanh(W · f ′)) . (13)

5. Experiments
5.1. Empirical Protocols and Implementations

Datasets By following ExchNet [7] and SEMICON [33],

our experiments are conducted on five fine-grained bench-

mark datasets, i.e., CUB200-2011 [38], Oxford Flowers [27],

Stanford Dogs [15], and Stanford Cars [17], Food101 [2].

Dataset details can be found in the supplementary materials.

Baselines In experiments, we compare our proposed

method to the following competitive baselines, i.e., Unsu-

pervisedGreedyHash (UGH) [35], MLS3RUDH [36], Bi-

Half [18], CIBHash [31], SPQ [13], MeCoQ [39] and

SDC [26]. For MLS3RUDH, SPQ and MeCoQ, we uti-

lize the open-source repository from authors and for UGH,

BiHalf, CIBHash and SDC, we use the reimplementation

provided by [26].
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Table 2. Comparisons of retrieval accuracy (% mAP) on five fine-grained datasets.

Datasets # bits UGH [35] MLS3RUDH [36] Bihalf [18] CIBHash [31] SPQ [13] MeCoQ [39] SDC [26] Our A2-SSL

CUB200-2011

12 5.65 6.32 7.61 9.83 10.16 10.61 10.01 20.14
24 8.46 8.79 10.15 12.58 13.53 13.34 14.44 26.67
32 9.40 10.22 10.90 14.87 15.26 15.41 15.80 27.77
48 10.41 10.95 11.35 17.05 18.01 18.80 18.13 29.19

Oxford Flowers

12 7.28 11.56 13.56 18.47 20.25 19.12 17.91 34.21
24 10.71 14.69 17.87 26.41 27.77 26.58 23.13 43.02
32 12.09 18.94 19.15 29.78 30.09 30.31 26.07 44.82
48 12.38 20.35 21.15 33.04 34.89 35.44 28.41 46.37

Stanford Dogs

12 23.97 30.08 32.42 34.55 38.94 36.16 35.34 54.80
24 35.35 40.17 44.34 46.14 48.52 46.96 47.96 61.20
32 39.55 44.00 48.57 48.96 53.21 50.45 52.13 62.70
48 44.10 48.22 51.88 51.67 56.55 53.76 55.56 64.56

Stanford Cars

12 1.86 2.01 1.96 2.56 2.92 2.71 2.73 3.30
24 2.32 2.42 2.34 3.36 3.53 3.33 3.27 4.38
32 2.53 2.50 2.64 3.39 4.08 3.83 3.68 4.81
48 2.66 2.68 2.84 3.73 4.36 4.18 4.00 5.28

Food101

12 4.32 5.11 6.20 7.27 7.95 7.87 7.51 8.48
24 6.33 7.45 8.25 10.62 11.22 10.95 9.50 12.89
32 7.29 8.63 9.24 11.74 12.20 11.56 10.43 14.08
48 8.40 9.59 10.18 12.17 13.33 13.24 11.64 15.38

Implementation Details We implement the proposed

method based on PyTorch [28] with 4 GeForce RTX 3060

GPUs. We follow the standard evaluation protocol [31, 39],

and for fair comparisons, we directly use raw image pix-

els resized to 224 × 224 as input and adopt the VGG-16

as the backbone network in experiments to extract 4096-

dimension global features, i.e., fFC. Regarding fFV, a

2CK-dimension Fisher Vector, it is further improved by

the power normalization with the fact of 0.5, followed by

�2-normalization [30]. Thus, the dimension of holistic rep-

resentation f is 2CK + 4096 and then is projected by a

one-layer ReLU feed-forward neural network with 4096 hid-

den units for the latter self-consistent hash code learning.

The optimizer is Adam [16] with the weight decay as 10−4,

and the learning rate is set to 0.0005. The total number of

training epochs is 100, and the number of batch size is 64.

5.2. Main Results

Table 2 presents the mean average precision (mAP) results of

unsupervised fine-grained retrieval on these five aforemen-

tioned fine-grained benchmark datasets. For each dataset, we

report the results of four lengths of hash bits, i.e., 12, 24, 32,

and 48, for evaluations. As shown in that table, our proposed

A2-SSL method significantly and consistently outperforms

the other baseline methods on these datasets.

In particular, compared with the state-of-the-art method

SDC [26], MeCoQ [39] and SPQ [13], our A2-SSL achieves

12.23% and 9.49% improvements of 24-bit and 32-bit ex-

periments on CUB200-2011 and Stanford Dogs. Moreover,

A2-SSL obtains superior results on among small-scale fine-

grained datasets, e.g., Oxford Flowers , medium-scale fine-

grained datasets, e.g., CUB200-2011, Stanford Dogs and

Stanford Cars, and large-scale fine-grained datasets, e.g.,

Food101. These observations validate the effectiveness of

the proposed A2-SSL, as well as its promising practicality
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Figure 5. The mAP difference between RandomCrop and other

augmentations for positive and negative views. For clear compar-

isons, the mAP results of RandomCrop for positive views are

presented as the coordinate origin.

in real applications of unsupervised fine-grained retrieval.

5.3. Ablation Studies

Key modules We validate the indispensability of A2-SSL

modules through ablation studies on the CUB200-2011 and

Stanford Dogs datasets. Table 3 presents ablation studies for

key components, using different configurations based on the

baseline (#1) that employed conventional contrastive learn-

ing in the hashing task. Specifically, a comparison between

#2 and #1 reveals a substantial improvement in mAP by

11.21% and 9.16% with the introduction of asymmetric aug-

mented SSL. The addition of part-oriented dense contrastive

learning without the weight ωk for each cluster results in a

marginal 0.56% improvement (#3 vs. #2). However, incorpo-

rating the weight ωk yields a more substantial improvement

of 1.75% (cf. #5 vs. #2). Furthermore, by integrating self-

consistent hash code learning, additional enhancements of

17654



Table 3. Retrieval accuracy (% mAP) of different configurations in ablation studies of A2-SSL.

Configurations
+ Asymmetric + Part-oriented + Part-oriented + Self- CUB200-2011 Stanford Dog

augmented SSL DenseCL w/o ωk DenseCL w/ ωk consistent 12-bit 48-bit 12-bit 48-bit

#1 8.41 15.36 30.08 47.57

#2 � 17.62 26.57 48.16 56.93

#3 � � 18.33 27.13 49.29 59.18

#4 � � � 19.53 28.85 52.46 62.04

#5 � � 19.02 28.32 51.51 61.66

#6 � � � 20.14 29.19 54.80 64.56

Table 4. Comparisons of different numbers of clusters.

# of clusters
CUB200-2011
12-bit 48-bit

2 19.77 28.32

3 19.81 28.64

4 20.14 29.19
5 20.06 28.90

8 18.93 28.02

1.72% and 0.87% are achieved, as observed in #4 vs. #3 and

#6 vs. #5, respectively.

Asymmetric augmentations To comprehensively in-

vestigate the influence of data augmentation in fine-

grained hashing, we explore various common augmen-

tation techniques. Geometric transformations, including

RandomCrop, RandomRotate, and CutOut, represent

one category of augmentation. Another category encom-

passes appearance transformations, such as ColorJitter,

Solarize, and ElasticTransform.

To assess the impact of individual data augmentations

on fine-grained objects, we examine the performance un-

der setting #1 in Table 3, applying augmentations individ-

ually as per [3]. To maintain consistency, we resize all

images to the same resolution due to varying sizes. The

targeted transformation is then applied to generate positive

or negative views, while the anchor view remains unchanged.

Figure 5 illustrates the retrieval differences between the

RandomCrop operation and others on CUB200-2011 with

a 48-bit hash code. We observe a notable decrease in per-

formance when applying appearance transformations, such

as ColorJitter, which may distort attributes. However,

when applied to generate negative views, the retrieval accu-

racy increases. The most pronounced effects are observed

with ColorJitter and ElasticTransform. Conse-

quently, considering both time efficiency and accuracy en-

hancement, we employ them as negative augmentations, with

RandomCrop serving as the positive one.

Number of clusters In the proposed part-oriented dense

contrastive learning module, deep descriptors of each image

are organized into K clusters. Table 4 presents the results

for different values of K. When K = 2, the descriptors are

roughly segmented into two parts, distinguishing between

foreground and background. This baseline achieves 19.77%

and 28.32% mAP. Substantial performance improvement is

Figure 6. Examples of top-10 retrieved images on CUB200-2011
of 48-bit hash codes by our A2-SSL.

observed when increasing the number to 4. However, further

increments in cluster number yield marginal or even negative

gains, attributed to overparameterization.

5.4. Visualization

We visualize retrieved images on CUB200-2011 in Figure 6,

showcasing the system’s proficiency in retrieving images

across various subordinate categories. This capability is

evident when dealing with diverse variations of the same

bird species against different backgrounds. However, some

failure cases are observed, particularly in instances where

careful observation is needed to discern minute differences,

such as those caused by variations in views between the

query image and the returned images.

6. Conclusion

This study dealt with the observed “granularity gap” be-

tween fine-grained and generic datasets in the context of

unsupervised hashing methods. We proposed the Asymmet-

ric Augmented Self-Supervised Learning (A2-SSL) method

for large-scale fine-grained image retrieval under unsuper-

vised settings. A tailored asymmetric augmentation strategy

accommodated fine-grained object characteristics within the

SSL framework. Leveraging the end-to-end Fisher Vector

framework for modeling object parts, we employed part-

oriented dense contrastive learning to enhance unsupervised

representations. Integration of a reconstruction task, guided

by the self-consistency principle, yielded high-quality hash

codes with comprehensive features. Experiments on five

fine-grained datasets validated the effectiveness of A2-SSL

and its components. Future work aims to explore the inter-

pretability of unsupervised fine-grained hashing methods.
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