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Abstract

While image diffusion models have made significant
progress in text-driven 3D content creation, they often fail
to accurately capture the intended meaning of text prompts,
especially for view information. This limitation leads to the
Janus problem, where multi-faced 3D models are gener-
ated under the guidance of such diffusion models. In this
paper, we propose a robust high-quality 3D content gen-
eration pipeline by exploiting orthogonal-view image guid-
ance. First, we introduce a novel 2D diffusion model that
generates an image consisting of four orthogonal-view sub-
images based on the given text prompt. Then, the 3D content
is created using this diffusion model. Notably, the generated
orthogonal-view image provides strong geometric structure
priors and thus improves 3D consistency. As a result, it
effectively resolves the Janus problem and significantly en-
hances the quality of 3D content creation. Additionally, we
present a 3D synthesis fusion network that can further im-
prove the details of the generated 3D contents. Both quan-
titative and qualitative evaluations demonstrate that our
method surpasses previous text-to-3D techniques. Project
page: https://efficientdreamer.github.io.

1. Introduction
The field of generating photorealistic 2D images from sim-

ple text prompts is experiencing rapid growth, and recent

advancements are largely attributed to the utilization of dif-

fusion models. These advancements have led to the creation

of models capable of producing images of exceptional qual-

ity [23–25]. In contrast, generating high-quality 3D content

from text prompts poses significantly greater challenges due

to the much larger output space and the requirement for

3D consistency. Moreover, the scarcity of adequately large

training pairs containing both text and 3D models further

handicaps the development of effective models.

Early methods [9, 12, 19] explore zero-shot text-guided
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Figure 1. The given prompt is A pig wearing a backpack, high
quality. Left: The pre-trained Stable Diffusion model struggles

to accurately generate images based on specific view instructions,

thereby encountering the Janus problem in the text-driven 3D gen-

eration. Right: EffcientDreamer leverages our newly introduced

orthogonal-view diffusion model, enabling the generation of 3D

consistent images depicting the same scene from multiple orthog-

onal viewpoints.

3D content creation by utilizing guidance from CLIP [22].

These approaches optimize the underlying 3D representa-

tions, such as NeRFs and meshes, to achieve high text-

image alignment scores for all 2D renderings. However,

these methods tend to generate 3D shapes with poor geom-

etry and unsatisfactory appearance. To address these lim-

itations, DreamFusion [21] showcases impressive capabil-

ities in text-to-3D synthesis by leveraging a powerful pre-

trained text-to-image diffusion model [24] as a strong im-

age prior. A NeRF is trained to represent 3D models us-

ing novel Score Distillation Sampling (SDS) gradients [21]

and view-dependent prompts. Subsequent works, such as

TextMesh[30], Magic3D [14], and ProlificDreamer [33],

further improve the quality of the generated 3D contents.

While previous methods have demonstrated impressive

results, a significant drawback is the Janus problem, which
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remains a major challenge. According to recent studies

[1, 16], the primary cause of the Janus problem lies in the

inability of pre-trained 2D diffusion models to accurately

interpret the view instructions specified in the text prompts.

Even though explicit view instructions are given, the diffu-

sion model may still generate images that do not align with

these instructions. Since the stability of the 3D content cre-

ation process relies heavily on accurate guidance from the

diffusion model, imprecise guidance can introduce instabil-

ity and compromise the quality of the generated content.

To cope with these weaknesses, we propose Efficient-
Dreamer, which leverages a viewpoint-aware diffusion

prior to create high-quality and consistent 3D contents.

Our approach introduces a novel image diffusion model

called orthogonal-view diffusion model, which can gen-

erate a composite image comprising four sub-images that

are mutually consistent. These sub-images, within a com-

posite image, can be derived from arbitrary viewpoints

while adhering to orthogonal views. To achieve this, we

maintain the architecture design of the 2D image diffusion

model while adapting it to orthogonal-view image genera-

tion. We render the 3D models in a large-scale open-source

3D dataset called Objaverse [4], from orthogonal views,

and assemble them to fine-tune the pre-trained 2D diffusion

model. This process ensures the geometric consistency of

our orthogonal-view diffusion model while preserving the

capacity of 2D diffusion models to generate detailed and

diverse high-quality objects that may not be present in the

3D datasets.

By leveraging our innovative orthogonal-view image dif-

fusion model, we can effectively tackle the challenge of the

multi-face Janus problem while generating consistent 3D

models. Specifically, during each training step, we render

the 3D representation (like Neus [32] or DMTet [28]) from

different orthogonal viewpoints in a differentiable manner.

These rendered images are then assembled into a compos-

ite image, which is further utilized to optimize the 3D rep-

resentation via orthogonal-view score distillation. While

our orthogonal-view diffusion model, trained with the Obja-

verse 3D dataset, provides crucial geometric structure priors

for 3D content creation, it is important to note that the scale

of the 3D dataset is considerably smaller compared to the

text-image training pairs. Additionally, the 3D assets in this

dataset typically consist of common objects from the real

world, having relatively simple topology and texture.

Relying solely on such an orthogonal-view diffusion

prior may lead to potential artifacts in the local appearance

of the 3D contents. To address this issue, we also incorpo-

rate the original pre-trained 2D diffusion prior in the opti-

mization of the 3D representation. In particular, we intro-

duce a 3D synthesis fusion network which integrates the

orthogonal-view diffusion model with a pre-trained 2D dif-

fusion model. We also present a dynamic 3D synthesis strat-

egy to balance the guidance of the orthogonal-view diffu-

sion prior and pre-trained 2D diffusion prior during the SDS

optimization process. Initially, our focus is on generating

3D consistent geometric structures, where the high weight

assigned to the orthogonal-view diffusion prior helps effi-

ciently represent the geometry and alleviate the Janus prob-

lem. As the 3D objects become more complete, we grad-

ually reduce the weight of orthogonal-view diffusion prior

and increase the guidance from the original 2D diffusion

prior. This approach allows for the generation of local tex-

ture details and refinement of local appearance.

Overall, our contributions are summarized as follows:

• We propose EfficientDreamer, a novel approach for high-

fidelity and robust 3D creation using orthogonal-view dif-

fusion prior. This method effectively tackles the Janus

problem and significantly enhances the stability of the

generation process.

• We introduce a novel image diffusion model that gen-

erates a composite image composed of four sub-images

from orthogonal viewpoints. These orthogonal-view im-

ages serve as essential geometric structure priors, en-

abling the generation of 3D consistent geometric struc-

tures.

• We present a novel text-driven 3D creation pipeline based

on the orthogonal-view SDS loss. We introduce a 3D syn-

thesis fusion network that combines the newly introduced

orthogonal-view diffusion prior with the original 2D dif-

fusion prior, aiming to ensure high-quality 3D creations.

2. Related Work

2.1. 3D Reconstruction with Neural Fields

Traditional Multi-View Stereo (MVS) methods reconstruct

3D point clouds from predicted depth maps [6, 26, 34, 42].

Benefiting from deep learning, supervised MVS methods

[7, 31, 35–37] have shown impressive performance on

benchmarks but require training on specific datasets [10,

38]. These methods often struggle in less constrained sce-

narios and cannot easily integrate with other learning-based

systems. On the other hand, in recent times, there have been

significant advancements in neural fields that have demon-

strated remarkable results across various tasks. As a famous

neural volume rendering method, NeRF [5, 18, 20, 40] com-

bines classical volumetric rendering with implicit function

to render high-quality 2D images. However, directly ex-

tracting a mesh from a NeRF representation is non-trivial

[29]. Recent works have focused on improving the ge-

ometric network while establishing connections between

density-based and surface-based representations. VolSDF

[39] models the volume density as Laplace Cumulative Dis-

tribution Function applied to an SDF representation. Sim-

ilar to VolSDF, NeuS [32] transforms the SDF field to the

accumulated transmittance for volume rendering with the
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Logistic Cumulative Distribution Function and it is empha-

sized that the weight of the rendering should peak at the

first intersection point from the outside to the inside. To this

end, we adopt the NeuS representation for the convenience

of mesh extraction.

2.2. Text-to-image Generation

In recent years, with the availability of extremely large

datasets of image-text pairs [27], significant progress has

been made in text-to-image generation with diffusion mod-

els. A typical method is the Stable Diffusion model, which

samples from a lower-resolution latent space and decodes

latent into high-resolution images [24]. Such sampling op-

eration in the latent greatly improves the efficiency of image

generation. Another kind of method utilizes a cascade of

super-resolution models [2, 25]. These methods first gen-

erate a low-resolution image from a given text prompt and

then enlarge the images with several super-resolution mod-

els. Recent works design special neural network structures

to control diffusion models by adding extra conditions [41],

it can learn task-specific input conditions and produce cus-

tomized images. Due to the strong generative ability of pre-

trained diffusion models, they are convenient to enable text-

to-3D mesh synthesis.

2.3. Text-to-3D Generation

In recent years, text-to-3D has received significant attention

due to the desire to create high-quality 3D content from

simple semantics, such as text prompts. Early works at-

tempt to use a CLIP objective to supervise the generation.

CLIPMesh [19] deforms a 3D sphere using a CLIP loss to

obtain a 3D mesh that fits the input prompt. Text2Mesh [17]

stylizes a 3D mesh by predicting color and local geometric

details which conform to a target text prompt. Dreamfield

[9] optimizes a NeRF from many camera views so that ren-

dered images score highly with a target caption according

to a pre-trained CLIP model. However, these methods tend

to generate poor 3D shapes with unsatisfactory geometry as

well as appearance.

To overcome such limitations, DreamFusion [21] em-

ploys text-to-3D synthesis by utilizing a powerful pre-

trained text-to-image diffusion model as a strong image

prior. They optimize NeRF with their proposed Score Dis-

tillation Sampling (SDS) loss. Magic3D [14] extends such

a method to a two-stage coarse-to-fine process, which uti-

lizes DMTet for mesh representation. Fantasia3D [3] dis-

entangles geometry and appearance into a two-stage opti-

mization and introduces the spatially varying Bidirectional

Reflectance Distribution Function (BRDF) into the text-

to-3D task. TextMesh [30] replaces NeRF with VolSDF

for more accurate mesh expression. It proposes a novel

multi-view consistent and mesh-conditioned re-texturing,

enabling the generation of a photorealistic 3D mesh model.

More recently, ProlificDreamer [33] proposes Variational

Score Distillation (VSD), a principled particle-based varia-

tional framework to promote the quality of created 3D mod-

els.

3. Methodology
Given a text prompt y, our goal is to create high-quality 3D

mesh representations with photorealistic texture. To achieve

this, we propose a novel orthogonal-view diffusion model,

denoted as φov , which generates composite images consist-

ing of four orthogonal-view sub-images. Subsequently, we

design a 3D synthesis fusion network that combines the

orthogonal-view diffusion model with a pre-trained diffu-

sion model, denoted as φpre, to enhance the quality of the

generated 3D content.

3.1. Orthogonal-view Diffusion Model

Our objective is to generate a composite image in response

to a given text prompt y using a fine-tuned diffusion model.

The composite image will consist of four sub-images from

orthogonal viewpoints, arranged in a 2×2 grid.

Common text-to-image diffusion models are trained on

large-scale text-image pairs, enabling them to describe ob-

jects from various viewpoints. However, these models do

not explicitly align corresponding parts of the object across

viewpoints. Moreover, they tend to generate images of ob-

jects in canonical poses. Hence, it is essential to introduce

a novel diffusion model that can generate representations of

the same object from diverse viewpoints while maintaining

3D consistency. In this paper, we propose that showcasing

the object from four orthogonal views is suitable as it pro-

vides essential geometric structure priors.

To obtain such a specific image diffusion model, we use

the recently released Objaverse [4] dataset for fine-tuning

the commonly-used diffusion model, i.e., the Stable Dif-

fusion model [24]. This dataset contains 800K+ 3D mod-

els created by 100K+ artists. The descriptions for each 3D

model can be found in the Cap3D [15] dataset, which is pro-

cessed with BLIP2 [13] and GPT4. We first filter some im-

proper 3D models, like complex scene representation, tex-

tureless 3D models, and point clouds, and approximately

420K high-quality 3D models are left. We normalize all as-

sets into a unit cube [−0.5, 0.5]3. The radius (distance away

from the center) is set at 1.8, with a field of view set at 35 de-

grees. For each 3D model, we uniformly render 12 images

in the range of azimuth angle ξcam ∈ (0◦, 360◦) and ele-

vation angle list δcam = [0◦, 15◦, 30◦, 45◦]. Thus, for each

3D asset, we render 48 RGBA images in 512×512 resolu-

tion in total while its corresponding text prompt is denoted

as y. We use the Stable Diffusion 2.1 as the original latent

diffusion architecture with an encoder E , a denoiser U-Net

εθ, and a decoder D. We utilize E and D with pre-trained

weight and only fine-tune εθ for generating composite im-
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Figure 2. The overview of EfficientDreamer involves two key steps. Firstly, we train an orthogonal-view diffusion model by rendering

images from the Objaverse dataset. Secondly, we optimize the 3D scene representation by leveraging both the newly introduced orthogonal-

view diffusion model and the pre-trained text-to-image diffusion model. To ensure high-fidelity and robust 3D creation, we employ a

dynamic 3D synthesis strategy.

ages from orthogonal views. As illustrated in Fig. 2(a), for

each training step, we first sample an elevation angle from

the elevation angle list and then select four render images

in this elevation angle, the rendered images are required to

be 90 degrees apart from each other in azimuth angle. Then

these four images are tiled on a 2×2 grid in a clockwise

rotation. To match the diffusion model, we resize this com-

posite image into 512×512 resolution, which is denoted as

x. At the diffusion time step t ∼ [1, 1000], let c(y) be the

embedding of y, and zt be the noisy latent image by adding

noise ε to a clean latent image z, we then solve for the fol-

lowing objective to fine-tune the model:

min
θ

Ez∼E(x),t,ε∼N (0,1)||ε− εθ(zt, t, c(y))||2. (1)

We find the trained diffusion model is capable of learning

a generic mechanism to explicitly align the correspondence

of an identical object from different viewpoints, even for

objects never appearing in the training dataset. The com-

parison between the orthogonal-view diffusion model and

the pre-trained diffusion model is depicted in Fig. 3.

3.2. Text-to-3D via the 3D Synthesis Fusion Network

Once the orthogonal-view diffusion model is trained, we

can generate our initial 3D model by training a neural dis-

tance field using the score distillation sampling strategy.

The scene is represented as a differential render g(ψ), where

ψ denotes the learnable parameters. Given a randomly sam-

pled camera pose with azimuth angle ξcam, elevation angle

δcam and radius r, we fix δcam and r and sample four cam-

era poses by extending ξcam to [ξcam, ξcam + 90◦, ξcam +
180◦, ξcam+270◦]. Then we render images with these cam-

era poses, which are denoted as I0, I1, I2, I3. We also tile

them on a 2×2 grid in a clockwise rotation and resize the

composite image into 512 × 512 resolution, which is de-

noted as Î . Then we sample random normal noise accord-

ing to time step t and add it to Î . The noisy images Ĩt, to-

gether with text embedding c(y) are fed to our orthogonal-

view diffusion model φov , which attempts to predict the

noise ε. The denoiser U-Net of φov is denoted as εφov

and the score function of noise estimation is denoted as

εφov (Ĩt; t, c(y)). This score function guides the direction

of the gradient for updating the scene parameters, and the

gradient is calculated by orthogonal-view Score Distillation

Sampling (SDS):

∇ψLov
SDS = Et,ε[ω(t)(εφov (Ĩt; t, c(y))− ε)

∂Î

∂ψ
], (2)

where ω(t) denotes a weighting function.

Motivated by [8] and to enhance the stability of the train-

ing procedure, we decrease the time step (t) as training pro-

gresses, resulting in a gradual decline in the degree of added

noise. As our training procedure supervises the 3D creation
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Figure 3. Comparison between The orthogonal-view diffusion

model and the pre-trained Stable Diffusion model with additional

viewpoint instructions. The pre-trained Stable Diffusion model

struggles to generate images based on specific view instructions,

while the orthogonal-view diffusion model can generate compos-

ite images from orthogonal views.

from four orthogonal views at each time step, the neural dis-

tance field can receive semantic structure guidance from dif-

ferent viewpoints. This fundamentally eliminates the possi-

bility of creating multi-face problems.

Our orthogonal-view diffusion model, trained on the Ob-

javerse 3D dataset, provides essential geometric structure

priors for 3D creation. However, it is important to note

that the scale of the 3D dataset is relatively small compared

to the text-image training pairs. Additionally, the included

3D assets mainly consist of simple objects with uncompli-

cated topology and texture. Therefore, relying solely on the

orthogonal-view diffusion prior may introduce potential ar-

tifacts in the local appearance of the generated 3D contents.

To resolve such a problem, we introduce a 3D synthesis

fusion network which integrates the proposed orthogonal-

view model with the original text-to-image diffusion model

to guide the 3D model generation with a 3D synthesis dy-

namic strategy. As shown in Fig. 2(b), let εφpre denote the

denoiser U-Net of the pre-trained Stable Diffusion model,

and rearrange the original rendered images I0, I1, I2, I3
as an image batch Î. Ĩt denotes the noisy result of Î. The

corresponding SDS loss is formulated as:

∇ψLpre
SDS = Et,ε[ω(t)(εφpre

(Ĩt; t, c(y))− ε)
∂Î

∂ψ
]. (3)

We propose a new prior loss for the novel view supervi-

sion to combine both two priors:

∇ψLSDS = (1− (
l

L
)λ)∇ψLov

SDS + (
l

L
)λ∇ψLpre

SDS , (4)

where l is the current iteration while L is the total iterations.

λ is a hyperparameter to determine the strength of two dif-

fusion priors, which is set as 1 in our experiments.

Initially, we prioritize generating 3D content with con-

sistent geometric structures by emphasizing the orthogonal-

view diffusion prior. As the generation progresses, we grad-

ually shift the focus towards incorporating guidance from

the original 2D diffusion prior to enhance local texture de-

tails and refine the overall appearance.

3.3. Implementation Details

Orthogonal-view Diffusion Model Training: Our model

is implemented on the PyTorch platform with 8 NVIDIA

Tesla A100 GPUs. We train the model utilizing AdamW

optimizer with a learning rate of 1e-5. The whole training

procedure takes 200K iterations with a batch size of 256,

which takes about 5 days.

Text-to-3D Generation: We employ a two-stage coarse-

to-fine optimization process to generate high-quality 3D

mesh representations with photorealistic textures from text

prompts. In the coarse stage, we utilize NeuS [32] as the 3D

scene representation, as density-based representations such

as NeRF are not well-suited for extracting 3D geometry

and obtaining meshes [39]. The rendering resolution is set

at 64x64, and the 3D representation is optimized for 5000

steps with 3D Synthesis Fusion Network. In the refinement

stage, we employ DMTet [28] as the scene representation,

enabling efficient rendering of textured meshes with differ-

entiable rasterization at 512x512 resolutions. Additionally,

we utilize SDS and VSD guidance [33] to optimize the ge-

ometry and texture for another 5000 steps.

4. Experiments
In this section, we conduct extensive experiments to eval-

uate the effectiveness of our proposed method for text-to-

3D content creation. We present qualitative and quantitative

results, compare our method with state-of-the-art methods,

perform a user study, and analyze the effectiveness of our

proposed techniques through an ablation study.

4.1. Comparison with State-of-the-arts

We present comprehensive experiments to evaluate the ef-

fectiveness of our proposed method for text-to-3D content
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A blue poison-dart frog sitting on 
a water lily, high detail 3D model.

A squirrel, animated movie 
character, high detail 3D 
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Shepherd.

A 3D model of an adorable 
cottage with a thatched roof.

Figure 4. Comparison with other text-to-3D methods. We render each 3D model from two views. Our method outperforms other techniques

by generating more high-fidelity 3D models without encountering the Janus problem.

creation. The compared methods include three crucial Text-

to-3D methods, i.e., DreamFusion [21], Magic3D [14] and

TextMesh [30]. All these methods are implemented with a

unified framework for 3D content creation *. As DreamFu-

sion and TextMesh generate 3D contents with volume ren-

dering of 64×64 resolution, the generated 3D models may

suffer from over-smoothness and lack of details. However,

Magic3D can generate higher-quality 3D shapes with im-

proved geometry and texture. Since our method also utilizes

a coarse-to-fine two-stage optimization, we are able to cre-

ate high-quality 3D mesh models. Furthermore, all of the

compared methods may be confronted with the Janus prob-

lem as they rely on open-source pre-trained diffusion priors

that do not enforce valid 3D consistency constraints. Our

method can resolve the multi-face problem with our newly

introduced orthogonal-view diffusion prior. Please refer to

the supplementary material for more comparison results.

We also evaluate our method using the CLIP score [22]

and FID [11] metrics. The CLIP score measures how

well images rendered from the generated objects correlate

with the provided input text prompt, while FID evaluates

the quality and photorealistic appearance of the generated

shapes. We render four images with fixed camera poses for

each 3D model. The results are depicted in Table 1, which

demonstrates that our methods achieve better performance

than the state-of-the-art methods.

*https://github.com/threestudio-project/threestudio

Table 1. Comparison with state-of-the-arts. Comparing our

method against the state-of-the-arts using CLIP score and FID. ↓
indicates the lower the better, and ↑ indicates the higher the better.

Methods CLIP ↑ FID ↓
DreamFusion [21] 28.40 374.44

Magic3D [14] 29.15 310.57

TextMesh [30] 27.65 305.77

Ours 30.33 284.98

4.2. Comparison with Perp-Neg

In addition, we conduct a comparison between our method

and another approach, Perp-Neg [1], which is designed

to mitigate the Janus problem. We integrate Perp-Neg

into DreamFusion and evaluate its performance against our

method. The results, shown in Figure 5, reveal that Perp-

Neg can address the Janus problem to some extent. For in-

stance, it is capable of generating 3D models with only one

head and face. However, these results may exhibit unrea-

sonable details such as three ears or five legs. In contrast,

our method, which incorporates guidance from orthogonal

views simultaneously, enables us to avoid such issues.

4.3. Coarse-to-fine Two-stage Optimization Results

In Figure 6, we demonstrate the 3D contents generated

through the coarse and fine stages of our optimization pro-

cedure. In the coarse stage, we achieve precise 3D represen-

4954



A blue poison-dart frog sitting on a water lily, 
high detail 3D model.

A pig wearing a backpack,
high quality.

A 3D model of a German Shepherd.
A squirrel, animated movie character, 

high detail 3D model.

Perp-Neg

Perp-Neg

Ours

Ours

Figure 5. Comparison between the Perp-Neg method and our ap-

proach: Our method offers a more comprehensive solution to the

Janus problem compared to Perp-Neg.

FineCoarse

A product photo of 
a toy tank, high 
detail 3D model.

A DSLR photo of a 
yellow duck.

An astronaut is 
riding a horse, high 

detail 3D model.

Prompt

Figure 6. Coarse-to-fine two-stage optimization results. In the

coarse stage, we get semantically reasonable 3D scene representa-

tion. In the fine stage, we improve the visual quality of generated

3D assets.

tations for the given text prompts while effectively address-

ing the challenging Janus problem. This is accomplished

with the guidance of the orthogonal-view diffusion model,

which provides essential geometric structure priors for 3D

creation. In the fine stage, we initialize the mesh representa-

tion with the results obtained from the coarse stage and pro-

ceed to optimize the geometry using SDS guidance. Addi-

tionally, we leverage VSD guidance to enhance the texture,

ensuring that the generated 3D model is visually appealing

and realistic. As a result, this process enables the generation

of significantly higher-quality 3D models.

Table 2. Results of our user study. The rating score represents the

average rating results for different methods, while the preference

indicates the ratio of user preference for the results of each method

with higher quality.

Methods Rating Score ↑ Preference(%) ↑
DreamFusion [21] 2.09 4.55

Magic3D [14] 2.44 6.27

TextMesh [30] 1.73 4.91

Ours 3.74 84.27

4.4. User Study

We conduct a user study with Fuxi Youling Crowdsourc-

ing * for quantifying the subjective quality. Concretely, we

evaluate the study on 22 prompts. At each evaluation time,

the participants are shown the created 3D models by Dream-

Fusion [21], Magic3D [14], TextMesh[30] and our method,

and asked to rate them on a scale of 1 to 4. In total, we

collect 1100 responses from 50 participants. The average

rating scores for the different methods are shown in Table

2. Notably, our method receives the highest average rating,

indicating that it produces the most visually high-fidelity 3D

models. Furthermore, we calculate the preference ratios for

each method based on the quality of the results. The anal-

ysis reveals that 84.27% of the users consider the results

of our method to be of higher quality than those generated

by all competing methods. This finding further validates

the effectiveness of our method in generating visually high-

fidelity 3D models.

4.5. Ablation Study

Impact of the 3D synthesis Fusion Network: We intro-

duce a 3D synthesis fusion network with the dynamic 3D

synthesis strategy. Here we provide analysis and experi-

ments to show its effectiveness. Given several text prompts,

we employ 3D creation with different diffusion model guid-

ance. The corresponding results are shown in Fig. 7. The

first two columns show the results generated without the

orthogonal-view diffusion model, which is equivalent to

λ = 0. Obvious Janus problems and inaccurate 3D rep-

resentation can be found for the first two prompts. As for

the creation of a cottage, we get similar shapes from differ-

ent viewpoints. The next two columns demonstrate the re-

sult guided without the pre-trained diffusion model, which

is equivalent to λ = ∞. While the orthogonal-view diffu-

sion model can provide comprehensive structure constraints

for 3D generation and restrain multi-face issues, we can see

local distortion and unreasonable roughness. The last two

columns demonstrate the results with our 3D synthesis fu-

sion network, which means λ = 1. We get complete and

smooth meshes and eliminate the possible Janus problem.

*https://fuxi.163.com/solution/data
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Full
w/o Pre-trained
Diffusion Prior

w/o Orthogonal-view 
Diffusion Prior 

A 3D model of a German Shepherd.

A 3D model of a fox holding a videogame controller.

A 3D model of an adorable cottage with a thatched roof.

Figure 7. Ablation study on the impact of the 3D synthesis fusion

network.

Quantitative results are depicted in Table 3, which demon-

strate the effectiveness of the 3D synthesis fusion network.

Impact of Varying Number of View Supervision: Here

we present an ablation study on the effects of varying the

number of view supervisions on our orthogonal-view diffu-

sion model. For two-view supervision, we randomly mask

the opposite viewpoints in the rendered images during train-

ing, resulting in the optimization of the 3D representation

using only two views. In the case of three-view supervi-

sion, we randomly mask one viewpoint, allowing the opti-

mization of the 3D representation using three views. The

corresponding results are shown in Figure 8. Generally, su-

pervising the 3D creation with our orthogonal-view diffu-

sion model can mitigate Janus problems. However, creat-

ing 3D models with two-view supervision may still suffer

from slight multi-face problems, such as two barrels in a

tank or multiple faces in a squirrel and a horse. With three-

view supervision, these problems are alleviated to some ex-

tent. Nevertheless, there are still local distortions in gener-

ated 3D models, such as unexpected sags or bulges. These

issues can be addressed by using the intact four-view su-

pervision of our orthogonal-view diffusion model. Quanti-

tative results are also presented in Table 3, illustrating the

impact of reducing the number of view supervision signals

during training. It is evident that there is a decrease in per-

formance observed in this scenario. This highlights the sig-

nificance of optimizing a 3D representation using a set of

four orthogonal-view images, as it provides sufficient geo-

metric structure priors for ensuring consistent 3D content

creation.

A squirrel, animated movie character, high detail 3d model.

An astronaut is riding a horse, high detail 3d model.

A product photo of a toy tank, high detail 3D model.

Two-view supervision Three-view supervision Four-view supervision

A product p

Figure 8. Ablation study on the impact of varying number of view

supervision.

Table 3. Ablation study results using CLIP and FID. ↓ indicates

the lower the better, and ↑ indicates the higher the better.

Impact of the 3D synthesis Fusion Network

Metrics w/o Orthogonal-view w/o Pre-trained Full

CLIP ↑ 31.13 32.05 32.55
FID ↓ 372.86 369.73 342.62

Impact of Varying Number of View Supervision

Metrics Two-view Three-view Four-view

CLIP ↑ 30.92 30.48 31.47
FID ↓ 399.58 373.04 345.72

5. Conclusion

In this paper, we present EfficientDreamer, a novel ap-
proach for high-fidelity and robust 3D creation using
orthogonal-view diffusion priors. We introduce a novel dif-
fusion model that can create composite images comprising
sub-images from different orthogonal viewpoints. These
composite images provide important geometric structure
priors for 3D model generation by showcasing an object
from multiple perspectives. We enhance the text-to-3D gen-
eration framework by leveraging the orthogonal-view diffu-
sion model. Additionally, we introduce a 3D synthesis fu-
sion network that integrates the orthogonal-view diffusion
prior with the pre-trained diffusion prior. We also introduce
a dynamic 3D synthesis strategy to balance the guidance of
these two diffusion models during the SDS optimization.
Our method effectively addresses the challenging Janus
problem while ensuring the fidelity of the generated 3D
models.
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