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Abstract

Domain shift is a challenge for supervised human pose
estimation, where the source data and target data come
from different distributions. This is why pose estimation
methods generally perform worse on the test set than on the
training set. Recently, test-time adaptation has proven to be
an effective way to deal with domain shift in human pose
estimation. Although the performance on the target domain
has been improved, existing methods require a large number
of weight updates for convergence, which is time-consuming
and brings catastrophic forgetting. To solve these issues, we
propose a meta-auxiliary learning method to achieve fast
adaptation for domain shift during inference. Specifically,
we take human pose estimation as the supervised primary
task, and propose body-specific image inpainting as a self-
supervised auxiliary task. First, we jointly train the primary
and auxiliary tasks to get a pre-trained model on the source
domain. Then, meta-training correlates the performance of
the two tasks to learn a good weight initialization. Finally,
meta-testing adapts the meta-learned model to the target
data through self-supervised learning. Benefiting from the
meta-learning paradigm, the proposed method enables fast
adaptation to the target domain while preserving the source
domain knowledge. The carefully designed auxiliary task
better pays attention to human-related semantics in a single
image. Extensive experiments demonstrate the effectiveness
of our test-time fast adaptation.

1. Introduction

Monocular 2D human pose estimation, which aims to locate
body joints in images or videos, has attracted widespread
attention as a fundamental task in computer vision. With the
development of deep learning [30, 37, 43] and the advent of
large-scale datasets [1, 11, 48], human pose estimation has
made steady progress over the past few years. In supervised
learning, the learned model relies heavily on the training
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data, which is fragile to the domain shift that is common in
practical applications. Due to the limited amount of samples
and the coarse division of datasets, it is inevitable that the
training and test sets have differences in data distribution.
Therefore, most pose estimation methods do not perform
as well on the test set as they do on the training set. To
solve this problem, unsupervised domain adaptation (UDA)
[6, 10, 27] is proposed to improve the performance of the
source model on the target domain. There are usually two
requirements in practical applications, which have not been
paid enough attention in the current research. Firstly, the
high overhead of accessing the source domain at test time
is unacceptable. Secondly, domain adaptation is expected to
be completed as soon as possible. Hence, there is a pressing
need for test-time fast adaptation to deal with domain shift
in human pose estimation.

Test-time adaptation [34, 38, 41], i.e. source-free domain
adaptation, adapts the source model to the unlabeled target
data during inference. Recently, TTP [20] has successfully
applied test-time adaptation to 2D human pose estimation
to customize the model for specific instances. Concretely,
TTP builds a correlation between human pose estimation
and an auxiliary task (i.e. image rotation prediction [8] or
unsupervised landmark detection [13]) by a shared encoder.
Before performing keypoint localization on the test data, the
network weights are updated by self-supervised learning to
cope with domain shift. Since network optimization during
inference depends entirely on the auxiliary task, test-time
adaptation based on multi-task learning has the following
drawbacks: (1) Directly tuning the pre-trained model leads
to the forgetting of pose estimation knowledge. (2) The
number of iterations required is large and uncertain, which
is difficult for optimization. Therefore, in 2D human pose
estimation, existing methods are time-consuming and their
updated models are sub-optimal.

Meta-learning has become an important means to
achieve source-free domain adaptation in multiple computer
vision fields [3, 23, 25, 31], because meta-learning is able
to learn a good weight initialization for further optimization.
This allows the meta-learned model to be easily adapted to
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(a) Central region (b) Random block (c) Body-specific area

Figure 1. An example of image with different mask generation
strategies. For human pose estimation, (a) central region overlooks
some body joints due to spatial inductive bias. The proportion
of pixels related to the human body is low, so (b) random block
pays more attention to background restoration. In contrast, (c) our
method captures human body information better.

a wide variety of target domains. For test-time adaptation,
meta-auxiliary learning [3] guarantees that minimizing the
auxiliary loss during inference is always beneficial to the
primary task. In our work, we design body-specific image
inpainting as the auxiliary task and apply meta-learning to
couple its performance with that of human pose estimation,
which overcomes the drawbacks of existing methods and
achieves fast and accurate test-time adaptation.

Specifically, we first jointly train human pose estimation
and the self-supervised auxiliary task to obtain a pre-trained
model, because it is difficult to perform meta-learning from
scratch. Then, with respect to the network weights updated
by the auxiliary task, meta-training minimizes the primary
loss to correlate the performance of the two tasks for a good
weight initialization. Finally, meta-testing achieves fast and
accurate adaptation of the source model to the target data
with a definite number of iterations. As for the choice of
auxiliary tasks, we propose body-specific image inpainting
to assist human pose estimation, which is superior to image
rotation prediction [8] and unsupervised landmark detection
[13]. During the training phase, we randomly mask the area
around body joints according to the ground-truth heatmaps,
so that our auxiliary task focuses on human body informa-
tion. During the testing phase, by sampling the predicted
heatmaps, there is a tendency to mask those body joints with
high confidence scores, which enhances the robustness of
meta-testing. We show how our mask generation strategy
differs from central region and random block in Fig. 1. It’s
worth noting that the proposed method is also suitable for
inter-dataset domain shift. The main contributions of this
paper are summarized as follows:

• We are the first to use meta-learning to achieve test-time
adaptation for 2D human pose estimation. Our method
enables fast and accurate adaptation to the target domain
for performance gains.

• We propose body-specific image inpainting that is able
to accurately capture human body information, to assist
the source pose estimation model to update the network
weights during inference.

• Experimental results show that our method achieves good
performance due to its ability to cope with the difference
in data distribution between the training and test sets.

2. Related Work
2.1. Human Pose Estimation

After continuous development, human pose estimation has
become an important part of human-centered applications
[42], such as action recognition [2], human parsing [46],
and re-identification [29]. The performance of human pose
estimation is critical for downstream tasks. Nowadays,
most studies focus on the innovation of network structure
to improve the accuracy of keypoint localization, among
which Hourglass [30], SimpleBaseline [43], HRNet [37]
and HRFormer [45] have a profound impact on human pose
estimation. Due to the neglect of domain shift, existing
methods perform much worse on the test set than on the
training set. In light of that, we further develop human pose
estimation from the perspective of domain adaptation. This
is non-trivial because there are many constraints in practical
applications. On the one hand, the distribution of test data
is not known during the training phase. On the other hand,
timeliness requires domain adaptation to be done as soon as
possible. Given these conditions, test-time adaptation is an
ideal scheme to deal with the difference in data distribution
between the training and test sets.

2.2. Test-Time Adaptation

As a type of unsupervised domain adaptation, test-time
adaptation accesses only unlabeled test data to fine-tune the
source model during inference. Due to the nature of source-
free, test-time adaptation has attracted attention in computer
vision fields, including image classification [40, 41], image
dehazing [23, 44], and semantic segmentation [18, 26]. In
contrast, human pose estimation is more complex than the
above tasks, so test-time adaptation for it has not been fully
studied. Existing methods are mainly through self-training
or self-supervision to update the network weights. TTP [20]
correlates supervised and self-supervised pose estimation
in the form of multi-task learning. During inference, the
shared encoder is updated by the self-supervised branch. In
[34], the source-protect module distills source knowledge to
constrain the optimization direction, and the target-relevant
module adapts to the target domain via exponential moving
average. POST [36] ensures the anatomical rationality of
pseudo-labels based on a learned pose prior. Consistency
regularization with respect to image transformations is used
as a criterion for test-time adaptation. However, the number
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Figure 2. Overview of our test-time fast adaptation method. MeTTA takes human pose estimation as the primary task and body-specific
image inpainting as the auxiliary task. During the training phase, the center of the region mask is sampled from the ground-truth heatmaps.
To cope with domain shift, test-time training is performed in three steps: First, the meta-learned weights are used to output the predicted
heatmaps to determine the location of the region mask. Then, the primary network is updated by self-supervised learning from the auxiliary
task. Finally, the source model after fast adaptation achieves more accurate localization than the pre-trained model in the target domain.

of iterative steps required to converge in existing methods is
numerous and uncertain, which limits performance due to
catastrophic forgetting and does not meet the requirements
for high efficiency. To accelerate test-time adaptation for
human pose estimation, we propose a novel meta-auxiliary
learning method. Compared to the pre-trained model in pre-
vious works [20, 38], our meta-learned model has the ability
to complete fine-tuning with few iterations.

2.3. Meta-Auxiliary Learning

Meta-learning, also known as learning to learn, is a broad
concept used to acquire learning algorithms for specific
meta-knowledge. Lately, weight initialization represented
by model-agnostic meta-learning (MAML) [5] has been
widely used [4, 9, 35], since a good weight initialization
can avoid local optimal and accelerate convergence. Due to
these advantages, meta-learning is associated with auxiliary
learning to achieve test-time adaptation, which has shown
remarkable results on multiple visual tasks. For dynamic
scene deblurring, [3] adopts image reconstruction to quickly
capture and adapt to internal information in test images. In
[23], the helper network is used to learn the haze patterns
in the source domain and update the dehazing network with
few iterations during inference. Similarly, [24] uses image
reconstruction as self-supervision to achieve fast adaptation
for future depth prediction. In 2D human pose estimation,
compared to the previous work [20], we use meta-auxiliary
learning instead of multi-task learning to achieve test-time

adaptation, in which a better auxiliary task, body-specific
image inpainting, is proposed. Given the test image, after
a small and definite number of iterations are performed by
self-supervised learning, our pose estimation model obtains
a significant performance improvement.

3. Proposed Method
In this section, we describe the proposed method to deal
with domain shift, called MeTTA, in which body-specific
image inpainting is used to assist human pose estimation to
achieve test-time adaptation. This well-designed auxiliary
task is able to accurately capture human body information
from a single image. Compared to the previous test-time
adaptation methods [20, 34, 36], introducing meta-auxiliary
learning brings two benefits: accurate adjustment and fast
adaptation. An overview of MeTTA is shown in Fig. 2.

3.1. Network Architecture

The proposed MeTTA contains a primary network used for
human pose estimation and an auxiliary network for image
inpainting, as shown in Fig. 2(a). Our method provides a
simple and effective framework for fast adaptation during
test time, which is compatible with most pose estimation
methods. We introduce the purpose and implementation of
these two networks as follows:

The primary network. Given an input image x of size
W×H×3, the mainstream pose estimation methods predict
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the heatmaps of all body joints ŷ ∈ RH′×W ′×J for keypoint
localization, where W ′, H ′ = W

4 , H
4 . The 2D coordinates

are calculated through a post-processing operation.
In the primary network, we use SimpleBaseline [43] and

HRNet [37] as the backbone to extract feature maps. We
attach a convolution-based Y-shaped structure used to yield
supervised and self-supervised heatmaps. After the shared
convolution, a branch acts as a regression head to output the
predicted heatmaps ŷ. The primary loss is formulated as:

Lpri = ∥ŷ − y∥2 , (1)

where y is the ground-truth heatmaps. If the rest of MeTTA
is ignored, it is no different from general pose estimation
methods. In the other branch, the self-supervised heatmaps
ŷself ∈ RW ′×H′×K are obtained by a 1 × 1 convolution
and a heatmap bottleneck, where K denotes the number of
keypoints. For domain adaptation, [12, 40] demonstrate that
significant performance gains can be achieved by adjusting
just a few layers in the network. Since it is time-consuming
to update the entire primary network during inference, only
the Y-shaped structure is involved in meta-optimization and
the backbone is fixed after joint training (see Sec. 3.2 for
details). For the sake of description, we uniformly denote
the learnable weights in the primary network as θpri without
further distinction.

The auxiliary network. As a common pretext task to
learn visual representations, image inpainting [33] aims to
restore missing patches in masked images. Since no ad-
ditional manual annotation is required, image inpainting is
chosen as our auxiliary task to update the network weights
according to the test data. Nowadays, central region and
random block are the two main mask generation strategies
to remove one or more regions. However, these region
masks are determined independently of the input image,
which makes it difficult for image inpainting to focus on
human body information. To better assist 2D human pose
estimation, we design a body-specific image inpainting task
as shown in Fig. 1. Specifically, given an input image and
its heatmaps, we randomly sample the likelihood that each
pixel has human body information to determine the location
of the region to be removed. We calculate the likelihood as:

p(u, v) =
maxj h(u, v, j)∑H′

v=1

∑W ′

u=1 maxj h(u, v, j)
, (2)

where p(u, v) denotes the probability of sampling at (u, v).
For the training data, we use its ground-truth heatmaps y as
h(u, v, j), where j indicates the j-th keypoint. This means
that every visible body joint is considered equally in the
selection of the mask region, which is conducive to learning
comprehensive human body information. For the test data,
we take the predicted heatmaps ŷ as h(u, v, j) to calculate
the likelihood. As a result, the mask regions are more likely

to be located near those body joints with high confidence,
which makes the auxiliary task more reliable to improve
human pose estimation during inference. The distribution
of the masked regions is illustrated in Fig. 2(b). Compared
to the auxiliary tasks [8, 13] used in TTP [20], body-specific
image inpainting focuses better on human body information
based on a single image.

Taking the masked image as input, the auxiliary network
faux performs image inpainting under the guidance of a
pose prior. Concretely, there are two encoders ϕapp and
ϕpos to obtain appearance features F app from the masked
image and pose features F pos from the self-supervised
heatmaps ỹ. Then F app and F pos are concatenated and fed
into a decoder to predict the missing patch. The auxiliary
loss consists of a local term and a global term, where the
region mask is denoted as M :

Laux = ∥M ⊙ (x̂− x)∥22 + λPerceptualLoss(x̂, x) (3)

where x̂ = faux((1 −M) ⊙ x, ŷself ). The MSE loss for
the missing patch prompts the learning of human-relevant
semantics and the Perceptual loss [15] for the entire image
enforces the global consistency of reconstruction.

3.2. Test-Time Fast Adaptation

In human pose estimation, slow convergence is a common
shortcoming of existing test-time adaptation methods [20,
34, 36]. To solve this problem, meta-auxiliary learning is
proposed to achieve fast adaptation. In MeTTA, each image
is treated as a single “task” in which we force the network
weights updated by the auxiliary network to minimize the
primary loss. In this way, the number of iterations for fine-
tuning is a predefined parameter, which makes our test-time
adaptation deterministic and controllable. Compared to the
baseline TTP [20], our meta-learned model from the source
domain, as a better initialization than pre-trained models,
adapts more easily to the test data (i.e. new “task”). What’s
more, meta-auxiliary learning correlates the performance of
the primary and auxiliary tasks. This ensures that human
pose estimation during inference always benefits from self-
supervised learning. The optimization process consists of
three stages: joint training, meta-training, and meta-testing,
and we introduce them below.

Joint training. It is quite difficult to train deep neural
networks from scratch using meta-learning. Instead, in the
beginning, we jointly train the primary and auxiliary tasks
on the source domain. After that, a pre-trained model is
obtained to prepare for subsequent meta-optimization. The
loss function for joint training is formulated as:

L = Lpri(ŷ, y; θpri) + µLaux(x̂, x,M ; θpri, θaux), (4)

where hyper-parameter µ ∈ (0, 1] is the weight coefficient
used to balance the primary and auxiliary tasks.
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Meta-training. In order to accelerate adjustment and
improve performance for test-time adaptation, it is crucial
to find a good weight initialization that is easy to approach
the global optimal of various domains. For the training data
(xi, yi,Mi), the process of updating the network weights
by self-supervised learning is given by:

θ̂i ← θ − α∇θLaux(x̂i, xi,Mi), (5)

where α denotes the adaptation learning rate in the inner
loop. For illustration, θ̂i is the network weights adjusted
once by gradient descent. Actually, the above process is
iteratively executed several times.

So far, there is no difference between our method and
multi-task learning for test-time adaptation. Without extra
constraints, the direction of optimization during inference is
entirely determined by the auxiliary task rather than human
pose estimation. In this case, no matter how well-designed
auxiliary tasks are, the difference between the primary and
auxiliary tasks inevitably leads to error accumulation over
time. To ensure that Laux correctly guides the update of
network weights to improve the performance of keypoint
localization, the meta-objective is defined as:

argmin
θ

N∑
i=1

Lpri(ŷi, yi; θ̂i), (6)

where N represents the number of batch size. It is worth
noting that the primary loss Lpri is calculated for θ̂i, while
the optimization is performed on θ. The meta-objective is
achieved by gradient descent as follows:

θ ← θ − β

N∑
n=1

∇θLpri(ŷi, yi; θ̂i), (7)

where β denotes the meta-learning rate in the outer loop.
The overall procedure of meta-training is summarized in
Algorithm 1. Since updating the entire model incurs a large
computational cost, we freeze the backbone of the primary
network during meta-learning.

Meta-testing. Starting with the meta-learned weights,
the source model easily adapts to the target data with few
iterations. In the meta-testing stage, we randomly mask
the test image based on its predicted heatmaps as input to
our MeTTA. The auxiliary network adjusts θ based on the
reconstruction results of the missing patch. The updated
model is used to perform human pose estimation on the test
image, as shown in Fig. 2(c). Due to the constraint of the
outer loop in meta-optimization, the design requirements
for auxiliary tasks (i.e. relevance to the primary task) are
relaxed to some extent, which makes MeTTA both simple
in structure and superior in performance.

Algorithm 1: Meta-training
Require: Pre-trained networks fpri and faux
Require: Learning rates α and β
Output: Meta-learned network weights θ

while not converged do
Sample a batch of training data {xi, yi}Ni=1

for each xi do
Generate the body-specific mask Mi

Update the network weights:
x̂i = faux((1−Mi)⊙xi, ŷ

self
i = fpri(xi))

θ̂i ← θ − α∇θLaux(x̂i, xi,Mi)
end
Minimize Lpri by gradient descent:
θ ← θ − β

∑N
n=1∇θLpri(ŷi = fpri(xi), yi; θ̂i)

end

4. Experiments
4.1. Datasets and Evaluation Metrics

Our experiments on the Penn Action [48], Human3.6M
[11], and MPII [1] datasets show that MeTTA narrows the
performance gap of pose estimation models between the
training and test sets. Unlike most existing methods that
focus on innovation in network structure, taking the impact
of data distribution into account, we improve human pose
estimation from the aspect of optimization. As a test-time
adaptation method, MeTTA is also suitable for inter-dataset
domain shift (e.g. SURREAL [39]→ Human3.6M [11] and
SURREAL [39]→ LSP [16]). We adopt the Percentage of
Correct Keypoint (PCK) metric to evaluate the accuracy of
keypoint localization.

Penn Action [48] is a single-person video dataset that
consists of 2326 sequences and involves 15 activities. The
human body is represented as 13 keypoints annotated with
2D locations. In Penn Action, there are 1258 videos as the
training set and 1068 videos as the test set.

Human3.6M [11] is a standard dataset for human pose
estimation and contains 3.6 million images with 2D pose
annotations for 17 pose joints. We follow the standard pro-
tocol to take 5 subjects (S1, S5, S6, S7, S8) as the training
set and 2 subjects (S9, S11) as test set.

MPII [1] is a large-scale image-level dataset containing
around 25k images and over 40k person instances. These
images cover 410 human activities with pose annotations
for 16 body joints. Following the standard split, we take
22k samples for training and 3k samples for testing.

SURREAL [39] is a synthetic human pose dataset that is
used as a source dataset for domain adaptation in previous
works [14, 34, 36]. The photo-realistic videos are generated
from human motion capture data with indoor scenes as the
background. There are over 6 million frames in it.
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Method Venue Backbone Hea. Sho. Elb. Wri. Hip Kne. Ank. Mean
Conventional pose estimation methods

SimpleBaseline [43] ECCV’18 ResNet-101 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1
HRNet [37] CVPR’19 HRNet-W32 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3
DARK [47] CVPR’20 HRNet-W32 97.2 95.9 91.2 86.7 89.7 86.7 84.0 90.6
PRTR [19] CVPR’21 HRNet-W32 97.3 96.0 90.6 84.5 89.7 85.5 79.0 89.5
TokenPose [21] ICCV’21 HRNet-W48 97.1 95.9 90.4 86.0 89.3 87.1 82.5 90.2
SimCC [22] ECCV’22 HRNet-W32 97.2 96.0 90.4 85.6 89.5 85.8 81.8 90.0
Posur [28] ECCV’22 HRNet-W32 − − − − − − − 90.5

Test-time adaptation methods
TTT [38] ICML’20 ResNet-101 96.9 96.0 89.8 84.8 88.9 84.9 81.0 89.4
MeTTA(Ours) − ResNet-101 97.3 96.1 90.9 85.9 90.0 87.3 84.2 90.6
MeTTA(Ours) − HRNet-W32 97.4 96.2 91.5 87.7 90.5 88.6 85.4 91.4

Table 1. Evaluation results on MPII [1]. By test-time adaptation to deal with domain shift, we bring SimpleBaseline and HRNet to the
level of state-of-the-art conventional pose estimation methods. Given a test image, MeTTA achieves better performance than TTT due to
our more suitable auxiliary task and the introduction of meta-learning. We indicate the best value in red and the second best value in blue.

Method TA MO Penn Action Human3.6M
SimpleBaseline [43] 85.23 85.42

video-based TTP [20] ✓ 87.27(+2.04) 89.43(+4.01)
TTP† [20] ✓ 87.75(+2.52) 91.70(+6.28)

image-based
TTT [38] ✓ 85.86(+0.63) 88.01(+2.59)
MeTTA ✓ 86.67(+1.44) 89.50(+4.08)
MeTTA ✓ ✓ 87.60(+2.37) 90.16(+4.74)

Table 2. Comparison of MeTTA and existing test-time adaptation
methods on Penn Action [48] and Human3.6M [11]. TA: test-time
adaptation. MO: meta-optimization. † indicates that TTP adopts
Transformer design. To be fair, all models take ResNet-50 as the
backbone and do not use flip test during adaptation.

LSP [16], full name Leeds Sports Pose, is a real-world
human pose dataset. There are 2k images collected from the
wild, covering various sports activities. In our work, we use
the LSP dataset as the target domain that is clearly different
from SURREAL in terms of data distribution.

4.2. Implementation Details

We set the batch size to 32 and use the Adam optimizer [17]
for joint training. The hyper-parameters λ and µ are set to
0.01 and 0.001. In experiments with intra-dataset domain
shift, the base learning rate is initialized to 1 × 10−3 and
decays twice at a rate of 0.1 in joint training. We use the
learning schedule [90, 120, 140] in epochs for Penn Action
and MPII, and [45, 60, 70] in epochs for Human3.6M. In
meta-learning, we fix the learning rate α = β = 1× 10−4,
and perform 5 iterations through SGD for fast adaptation. In
experiments with inter-dataset domain shift, following the
previous work [36], we set the base learning rate to 1×10−4

and train our MeTTA for 30 epochs on SURREAL, with
500 iterations executed in per epoch. The base learning rate
decays to 1× 10−5 after 5 epochs and to 1× 10−6 after 20

epochs. In meta-learning, the learning rate α and β are set to
1×10−5. After 5 iterations, the meta-learned source model
fast adapts to the test data from LSP and Human3.6M. We
set the size of the region mask to 30 × 30 for the 128 × 128
input image and to 60 × 60 for the 256 × 256 input image.
Our experiments are conducted on an open-source machine
learning, PyTorch [32].

4.3. Results under Intra-Dataset Domain Shift

We compare the proposed MeTTA with the conventional
pose estimation methods on MPII [1], as shown in Table 1.
Note the fact that even in the same dataset, the training data
and the test data are not identical in distribution. From this
perspective, our method uses test-time adaptation to handle
domain shift for performance gains, which enables two sim-
ple pose estimation models SimpleBaseline [43] and HRNet
[37] to achieve superior performance. In recent studies of
human pose estimation, Transformer has been sought after
due to its long-range modeling capabilities. However, at the
cost of excellent performance, Transformer-based models
require a long training process and a large amount of data,
which is not friendly for most practical applications. The
experimental results show that for human pose estimation,
the improvement brought by domain adaptation is no less
than that brought by structural innovation.

Further, we compare MeTTA with existing test-time
adaptation methods on Penn Action [48] and Human3.6M
[11], as shown in Table 2. Although TTP [20] makes the
source model perform well on the target data, there is a
harsh constraint: unsupervised landmark detection [13] as
the auxiliary task limits the input to video with the same
background. TTT [38] implements test-time adaptation for
a single image, but it cannot guarantee that self-supervised
learning from image rotation prediction [8] relies on human
semantics rather than other visual cues. In our MeTTA,

1797



Method OL Sld. Elb. Wri. Hip Kne. Ank. All
Source-only − 51.5 65.0 62.9 68.0 68.7 67.4 63.9
MMT [7] × 60.9 70.9 70.3 81.1 79.3 72.8 71.5
RegDA-SF [14] × 54.8 70.5 67.6 65.4 73.2 70.0 66.5
POST [36] × 66.5 83.9 81.0 84.6 83.1 82.6 80.3
SP+TR [34] × 70.7 85.4 83.8 86.6 85.2 85.0 83.2
MeTTA ✓ 71.0 84.7 83.2 85.4 84.4 84.1 82.5

Table 3. PCK@0.05 on SURREAL [39] → LSP [16]. OL: online.

Method OL Sld. Elb. Wri. Hip Kne. Ank. All
Source-only − 69.4 75.4 66.4 37.9 77.3 77.7 67.3
MMT [7] × 73.2 83.5 72.4 45.1 80.8 83.9 73.9
RegDA-SF [14] × 70.6 82.0 69.8 43.3 79.1 79.4 71.5
POST [36] × 81.3 88.5 77.4 46.1 83.4 83.4 76.7
SP+TR [34] × 77.9 88.8 80.4 52.3 84.2 86.9 78.7
MeTTA ✓ 78.1 88.6 80.6 51.3 83.8 86.5 78.5

Table 4. PCK@0.05 on SURREAL [39] → Human3.6M [11].

body-specific image inpainting is used to assist human pose
estimation. In contrast, this auxiliary task focuses more on
human body information in a single image. To ensure that
self-supervised learning is always beneficial for human pose
estimation during inference, we deeply couple the primary
and auxiliary tasks via meta-optimization. For intra-dataset
domain shift, MeTTA is superior to existing image-based
methods and comparable to video-based TTP.

4.4. Results under Inter-Dataset Domain Shift

Although the original intention of this paper is to address
performance degradation caused by domain shift within a
dataset, our method is also valid for inter-dataset domain
shift. Recently, deploying pose estimation models trained
on synthetic datasets to real-world data through domain
adaptation, which has been an effective strategy to reduce
the need for manual annotation. In human pose estimation,
four SOTA source-free domain adaptation methods MMT
[7], RegDA-SF [14], POST [36] and SP+TR [34] are used
for comparison with our method. The experimental results
from SURREAL [39] to LSP [16] and to Human3.6M [11]
are given in Table 3 and Table 4. In the above methods,
domain adaptation is designed for the entire target domain,
which requires access to all test data or even multiple times
until domain adaptation is completed. In contrast, MeTTA
obtains comparable performance while also enabling online
adaptation to one or a batch of images.

4.5. Ablation Study

In this section, we investigate the number of inner loops
in meta-optimization, which dictates how many updates
needed in test-time fast adaptation. For the auxiliary task
in MeTTA, we implement ablation experiments to study the
impact of mask size and the design of auxiliary loss.

Method MO Penn Action Human3.6M GFLOPs
K = 0 − 85.74 87.49 2.15

K = 1
86.18 88.31 16.59

✓ 86.48 88.66

K = 5
87.12 89.77 62.07

✓ 87.60 90.16

K = 10
87.37 90.08 118.92

✓ 87.71 90.34

Table 5. The effect of the number of updates K on performance
and computation costs. K = 0 indicates that the base model
does not perform test-time adaptation. Meta-optimization enables
MeTTA to achieve fast adaptation with low computation costs.

Masked images Local Local+MSE Ours GT images

Figure 3. The effect of image inpainting under different losses.
The combination of local MSE loss and global Perceptual loss [15]
outputs more realistic results for the missing patches.

Number of weight updates. Limited by the multi-task
learning framework, existing test-time adaptation methods
[20, 38] cannot know the required number of updates that
are not the same for different test images. The consequence
is that insufficient updates cannot fully adapt to the target
domain, and excessive updates lead to overfitting for the
auxiliary task. In MeTTA, the number of updates becomes
a hyper-parameter to control the execution of inter loops in
meta-optimization. We demonstrate the performance and
computation cost of our method with different number of
updates K = {0, 1, 5, 10} in Table 5. In order to balance
accuracy and efficiency, we set the number of updates K to
5 in the rest of our experiments.

Design of the auxiliary loss. We use self-supervised
image inpainting as the auxiliary task in MeTTA. To achieve
fast adaptation, the implementation and optimization of the
auxiliary network should not be too complicated. Under
such requirements, the design of the auxiliary loss is quite
important to correctly reconstruct the missing patch to learn
human body information. We illustrate the output of the
auxiliary network trained by different losses in Fig. 3. The
experimental results show that the reconstruction quality is
poor when only the local critic is used for the missing patch.
The global critic for the entire image effectively reduces the
difficulty of image reconstruction. Compared with the MSE
loss that focuses on pixel-level differences, the Perceptual
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Figure 4. Visualization of MeTTA on Penn Action [48]. For the primary task, we show the input images and supervised keypoints on the
left side. For the auxiliary task, we show the masked images, reconstructed images, and self-supervised keypoints on the right side.

Dataset Mask size
small middle large

Penn Action [48] 86.80 87.60 86.05
Human3.6M [11] 89.46 90.16 89.68
MPII [1] 90.49 91.41 90.72

Table 6. Performance under different mask sizes. For the input
image of 128 × 128 from Penn Action, the mask size is set to 10
× 10, 30 × 30, and 60 × 60 to reflect small, middle, and large. For
the 256 × 256 input image from Human3.6M and MPII, the mask
size is set proportionally to 20 × 20, 60 × 60, and 120 × 120.

loss [15] based on semantic information is more suitable
for our purpose. Therefore, the training objective consists
of local MSE loss and global Perceptual loss.

Different sizes of the body-specific mask. The mask
size is critical for image inpainting tasks, so it affects the
performance of test-time adaptation for human pose esti-
mation. The experimental results in Table 6 show that the
best performance is achieved when the mask size is set to
30 × 30 for the 128 × 128 input image and to 60 × 60 for
the 256 × 256 input image. As shown in Fig 1, a part of the
human body in the input image is removed, which prompts
the auxiliary network to learn human-related semantics (the
appearance from the remaining body pixels and the pose
from the self-supervised heatmaps). If the mask size is set
too small, the image inpainting task can be easily completed
without the need for pose information. If the mask size is
set too large, the pose information is not enough to recover
the missing patch when most of the body pixels are lost.

4.6. Visualization

To better illustrate the effectiveness of MeTTA, we provide
visualization on Penn Action, as shown in Fig. 4. Human
pose estimation as the primary task aims to predict the 2D
coordinates of body joints. Masking body parts in images,
the auxiliary task is to reconstruct the missing patches based
on self-supervised keypoints to correlate with the primary
task. In Fig. 4, the consistency between self-supervised
and supervised keypoints indicates that body-specific image
inpainting indeed captures human body information.

5. Conclusion

In this paper, we propose a test-time fast adaptation method
MeTTA based on meta-auxiliary learning for human pose
estimation. We use novel body-specific image inpainting as
the auxiliary task to focus on human-related semantics in a
single image. For test-time adaptation, the introduction of
meta-auxiliary learning brings two major benefits: Firstly,
meta-optimization ensures that self-supervised learning of
the auxiliary task facilitates human pose estimation during
inference. Secondly, a good weight initialization learned
from the source domain enables fast adaptation to the target
data. Extensive experiments show that our method achieves
superior performance on pose estimation benchmarks.
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