
IQ-VFI: Implicit Quadratic Motion Estimation for Video Frame Interpolation

Mengshun Hu1,2 Kui Jiang3 Zhihang Zhong4 Zheng Wang1,2† Yinqiang Zheng5

1National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence, School of
Computer Science, Wuhan University 2Hubei Key Laboratory of Multimedia and Network Communication Engineering

3Harbin Institute of Technology 4Shanghai Artificial Intelligence Laboratory 5The University of Tokyo

Abstract

Advanced video frame interpolation (VFI) algorithms
approximate intermediate motions between two input
frames to synthesize intermediate frame. However, they
struggle to handle complex scenarios with curvilinear mo-
tions since they overlook the latent acceleration informa-
tion between the input frames. Moreover, the supervision
of predicted motions is tricky because ground-truth motions
are not available. To this end, we propose a novel frame-
work for implicit quadratic video frame interpolation (IQ-
VFI), which explores latent acceleration information and
accurate intermediate motions via knowledge distillation.
Specifically, the proposed IQ-VFI consists of an implicit
acceleration estimation network (IANet) and a VFI back-
bone, the former fully leverages spatio-temporal informa-
tion to explore latent acceleration priors between two input
frames, which is then used to progressively modulate linear
motions from the latter into quadratic motions in coarse-
to-fine manner. Furthermore, to encourage both compo-
nents to distill more acceleration and motion cues oriented
towards VFI, we propose a knowledge distillation strategy
in which implicit acceleration distillation loss and implicit
motion distillation loss are employed to adaptively guide la-
tent acceleration priors and intermediate motions learning,
respectively. Extensive experiments show that our proposed
IQ-VFI can achieve state-of-the-art performances on vari-
ous benchmark datasets.

1. Introduction

Video frame interpolation (VFI) aims to generate intermedi-
ate frames between the input frames [4, 13, 19, 21, 24, 33],
The key to this task is to find correspondences between two
consecutive frames to synthesize intermediate frame via
warping operator [28]. Naturally, motion estimation (e.g.,
optical flow) is the most critical step in the well-established
paradigms of VFI networks [1, 8, 9, 12, 18, 29, 39].
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Figure 1. (a) linear methods: synthesizing the intermediate frame
by fitting the linearly approximate intermediate flow (see orange
trajectory). (b) our method: exploring latent acceleration prior (see
yellow dotted line) to promote (a), which can model the complex
scenario, like curvilinear motion (see dark green trajectory).

To predict accurate optical flows, a sort of pioneering
approach is linear methods (see Figure 2(a)) [12, 23, 24].
This scheme typically utilizes an off-the-shelf motion esti-
mator (ME) [14, 35, 36] to predict bidirectional flows f̂01
and f̂10 between input frames I0 and I1, and then approxi-
mates intermediate flows f̂0t and f̂1t using linear multipli-
cation. The aforementioned procedures can be depicted as:

f̂01, f̂10 = ME(I0, I1), ME(I1, I0),

f̂0t, f̂1t = t · f̂01, (1− t) · f̂10.
(1)

However, these methods rely on specific assumptions (e.g.,
linear motion assumption) and thus are less effective on
complex scenarios (e.g., curvilinear trajectory) when the
assumption does not hold (see Figure 1(a)).

Unlike linear methods, task-oriented methods (see Fig-
ure 2(b)) [18, 21] attempt to train ME to directly predict
bidirectional task-oriented flows f̃0t and f̃1t for fitting com-
plex motions. This process is described as:

f̃0t, f̃1t = ME(I0, I1). (2)

Contemporaneously, two-stage methods (see Fig-
ure 2(c)) [13] introduce an additional RefineNet to
further refine linear flows f̂0t and f̂1t from linear methods
to obtain task-oriented flows f̃0t and f̃1t, depicted as:

f̃0t, f̃1t = RefineNet(f̂0t, f̂1t, I0, I1). (3)
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Figure 2. Different schemes for VFI. (a) Linear methods: they introduce an off-the-shelf motion estimator (ME) to predict bidirectional
intermediate flows f̂0t and f̂1t via linear multiplication t to synthesize the intermediate frame Ît. (b) Task-oriented methods: they directly
predict bidirectional intermediate flows f̃0t and f̃1t to synthesize the intermediate frame Ît. (c) Two-stage methods: based on (a), they
refine linear flows f̂0t and f̂1t to obtain more accurate flows f̃0t and f̃1t via additional RefineNet (Note that methods (b) and (c) input
ground-truth information It into an off-the-shelf ME to produce pseudo labels f0t and f1t for supervision). (d) Our method: based on (c),
we further introduce implicit acceleration network (IANet) to explore latent acceleration prior (P) and implicit quadratic optical
flows f̃0t and f̃1t via task-oriented implicit acceleration distillation loss LIA and implicit motion distillation loss LIM .

Unfortunately, the above methods remain challenging in fit-
ting quadratic motions due to the neglect of latent accel-
eration prior. Moreover, they introduce ground-truth inter-
mediate frame It to obtain pseudo labels f0t and f1t for
supervision. However, because of the gap between tasks,
there exists undesired knowledge in pseudo labels, which is
sub-optimal for specific VFI task [13, 18, 39].

In this paper, we propose a novel framework for im-
plicit quadratic video frame interpolation (IQ-VFI) (see
Figure 2(d)), which explores latent acceleration prior and
accurate intermediate motions to handle complex scenarios.
Theoretically, the motion state of each pixel can be paramet-
rically defined via the quadratic motion model with specific
parameters, like velocity and acceleration, depicted as:

f0t =

∫ t

0

[v0 +

∫ k

0

aτdτ ]dk = t · f01 +
aτ
2

· (t2 − t),

f1t =

∫ t

1

[v1 +

∫ k

1

aτdτ ]dk

= (1− t) · f10 +
aτ
2

· ((1− t)2 − (1− t)),

(4)

where f0t, f1t, f01 and f10 denote the displacement of pixel
(e.g., optical flow). v0 and v1 are the velocity, and aτ repre-
sents the acceleration (Note that we assume the acceleration
aτ of each pixel is constant within a small time interval).

Since f01 and f10 are known via Eq.(1), technically,
to achieve Eq.(4), only acceleration aτ is required to be
solved. We review VFI task, and regard the accelera-
tion prediction as the complete representation of conven-
tional linear motion fields. To this end, we advise an im-

plicit quadratic video frame interpolation (IQ-VFI) frame-
work, involving an implicit acceleration estimation network
(IANet) and a VFI backbone (e.g., Two-stage methods).
IANet adopts multiple progressive fusion modules (PFMs)
to implicitly explore spatio-temporal information for la-
tent acceleration prediction aτ (Note that explicitly solving
for accurate acceleration aτ via two input frames is chal-
lenging). And then the predicted linear motions from VFI
backbone are modulated into quadratic motions via an im-
plicit motion modulate module (IMM) with the guidance
of aτ . To facilitate the simulation of acceleration and mo-
tion oriented towards VFI, we propose a knowledge dis-
tillation strategy in which implicit acceleration distillation
loss (LIA) and implicit motion distillation loss (LIM ) are
proposed to guide latent acceleration prior and intermedi-
ate motions learning, respectively. Specifically, given three
consecutive frames (e.g., input frames I0, I1 and ground-
truth frame It), IANet can easily predict latent accelera-
tion prior to guide VFI backbone for IQ-VFI, which can
be served as teacher knowledge. Meanwhile, based on the
same procedure but getting rid of the ground-truth frame
It as inputs, we introduce the distillation losses to guide the
student to imitate knowledge learning from the teacher. Our
main contributions can be summarized as follows:
• We advise a novel quadratic motion-based framework for

IQ-VFI, which explore latent acceleration prior and inter-
mediate motions to tackle complex motion scenarios.

• We introduce a novel knowledge distillation strategy in
which implicit acceleration distillation loss (LIA) and im-
plicit motion distillation loss (LIM ) are jointly optimized
to encourage IQ-VFI to distill more acceleration and mo-
tion cues oriented towards VFI.

6411



• Extensive experiments show that our method performs
well against the state-of-the-art (SOTA) methods on vari-
ous benchmark datasets.

2. Related Work
Video Frame Interpolation. Advanced VFI methods are
mainly categorized into motion-free and motion-based, de-
pending on whether or not cues like optical flow are in-
volved [12]. Motion-free: Motion-free methods rely on
implicit spatio-temporal modeling [5, 6, 10, 11, 17] to
generate the intermediate frame. For example, CAIN [5]
transfers spatial information into channels and then utilizes
channel attention to extract motion information for VFI.
FLAVR [17] explores spatio-temporal information via 3D
convolution to learn motion properties. However, this sort
of method lacks explicit constraints for motion modeling,
arising undesired artifacts in interpolated results. Motion-
based: Motion-based methods aim to predict bidirectional
intermediate flows, which then are used to interpolate in-
termediate frame via the warping operation [12, 13, 16, 26,
28, 29, 33]. Previous methods either linearly approximate
or directly predict bidirectional task-oriented flows to pro-
duce intermediate frames. To predict accurate intermediate
optical flows, additional auxiliary priors (e.g., context [27],
depth [1], occlusion [28]) or RefineNet [2, 13, 15, 41] are
introduced to compromise intermediate flow errors. Un-
fortunately, they struggle to handle complex scenarios with
quadratic motions since they overlook the latent accelera-
tion information between input frames. Some efforts have
been developed to depicted VFI tasks as the quadratic mo-
tion with acceleration information [22, 38]. However, more
input frames are required as auxiliary information (e.g., four
frames). In this paper, we propose a novel framework for
IQ-VFI, which explores latent acceleration information be-
tween only two input frames to progressively modulate lin-
ear motions into quadratic motions via knowledge distilla-
tion.
Knowledge Distillation in VFI. Advanced methods [13,
18, 21] have achieve impressive performance via optical
flow distillation. For example, Huang et.al. [13] design a
priviledge distillation scheme that employs a teacher model
with access to the intermediate frame to guide the opti-
cal flow learning of the student model. However, teacher
model overuses privileged knowledge (e.g., overfitting) due
to lack of regularization, making it challenging for students
to distill flow knowledge [20]. Kong et.al. [18] propose a
flow distillation loss that selectively distills useful off-the-
shelf flow knowledge for VFI. However, considering off-
the-shelf optical flow is often a sub-optimal representation
for VFI [5, 39], this scheme fails to explore abundant flow
knowledge. Unlike them, our proposed method prevents
teacher model from overusing privileged knowledge to al-
leviate overfitting. Moreover, rather than using an off-the-

shelf optical flow model, an implicit motion distillation loss
is designed to focus on task-oriented optical flow knowl-
edge from our trained task-oriented teacher.

3. Methodology
3.1. Overview

Given two consecutive frames (I0 and I1), video frame in-
terpolation (VFI) aims to synthesize an intermediate frame
It (0<t<1). As illustrated in Eq.(1) and Eq.(3), exist-
ing two-stage methods typically utilize an off-the-shelf mo-
tion estimator (ME) [35] to predict intermediate flows (f̂0t
and f̂1t) by linear multiplication, which then are compro-
mised to obtain refined flows (f̃0t and f̃1t) via RefineNet.
To convert linear motions to match quadratic motions, as
shown in Figure 3, based on the two-stage framework for
VFI, we further propose an implicit acceleration estimation
network (IANet) to explore latent acceleration prior P for
IQ-VFI. Specifically, we cleverly design a teacher network
(IANetT ), which takes as inputs of triplet frames I0, It and
I1 to extract latent acceleration prior PT for VFI backbone
(V FIT ) optimization. This process is expressed as:

PT = IANetT (I0, It, I1),

f̃T
0t,f̃

T
1t, Î

T
t = V FIT (I0, I1, P

T ),
(5)

where f̃T
0t and f̃T

1t denote task-oriented intermediate flows,
and ÎTt is predicted intermediate frame. To target to PT

of the V FIT , we then advise a student network (IANetS),
which takes the frames I0 and I1 as inputs to learn the ac-
celeration prior PS , approaching to PT , for VFI backbone
(V FIS) optimization. This process is expressed as

PS = IANetS(I0, I1),

f̃S
0t,f̃

S
1t, Î

S
t = V FIS(I0, I1, P

S).
(6)

To encourage student network to distill more acceleration
and motion cues oriented towards VFI, we propose an im-
plicit acceleration distillation loss (LIA) and an implicit
motion distillation loss (LIM ) to adaptively guide acceler-
ation prior and intermediate motions learning, respectively.
The entire distillation loss LDL is defined as

LDL = LIA(P
S , PT ) + LIM (f̃S

0t, f̃
S
1t, f̃

T
0t, f̃

T
1t). (7)

3.2. Implicit Acceleration Estimation Network

Inspired by the notion that thoroughly exploring spatio-
temporal information can assist in modeling motion charac-
teristics from videos [5, 17], we devise an implicit accelera-
tion estimation network (IANet) to explore spatio-temporal
information for latent acceleration prediction. Taking the
teacher model as an example in Figure 3, we first apply
shuffle operation [32] to generate down-shuffled images
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Figure 3. The overall architecture of IQ-VFI. The proposed IQ-VFI consists of an implicit acceleration estimation network (IANet) and
a VFI backbone (ME and RefineNet). To optimize IQ-VFI, we first train a teacher network: It takes two input frames and ground-truth
intermediate frame to learn latent acceleration prior and accurate intermediate motions for IQ-VFI. Then we train a student network: It
only takes two input frames to learn the same prior and motions for IQ-VFI via the proposed distillation loss.

(Ĩ0, Ĩt and Ĩ1 ∈RH/4×W/4×48) from the corresponding in-
put images (I0, It and I1 ∈RH×W×3), which can capture
contextual information from a broader area to perceive sce-
nario motions [5]. And then the commonly used 3D convo-
lution is employed to extract spatio-temporal features (F0,
Ft and F1) followed by N lightweight progressive fusion
modules (PFM) to fully explore spatio-temporal relations.
Finally, these features derives latent acceleration prior PT

via a Block, which contains three convolution layers and
Avgpool operator (Note that avgpool operator is to prevent
teacher model from overusing ground-truth information).
Progressive Fusion Module. As shown in Figure 3, the
spatio-temporal features (F0, Ft and F1) extracted from 3D
convolution are fully aggregated to derive the mixed tempo-
ral information Fm via a temporal aggregation block (TA)
(Note that the inputs from the student model are two features
F0 and F1), depicted as:

Fm = TA([F0, Ft, F1]). (8)

Then we combine self-independent spatial information (F0,
Ft and F1) and mixed temporal information (Fm) to extract
spatio-temporal information Oi via a 3×3 convolution layer
C1, respectively. this process can be described as:

Oi = C1
i ([Fi, Fm]), ∀i∈{0, t, 1}. (9)

More specifically, the temporal aggregation block (TA) is
advised to exploit long-range dependencies from temporal

information, which facilitates the latent acceleration pre-
diction. Technically, the spatial features from sequential
frames are fused to generate the coarse mixed temporal fea-
tures Fcm via a 3×3 convolution layer C2, depicted as:

Fcm = C2([F0, F1, Ft]). (10)

To adaptively handle various motions, Fcm is decomposed
into four-part components via a channel split operation (S),
which then are packed into multi-scale structure to obtain
different receptive fields via pooling, 3×3 depth-wise con-
volution layers (DW) and upsampling operation. By con-
catenating these outputs of individual components, we pro-
duce the residues for refinement via a convolution layer C3.
The aforementioned procedures are described as:

[Fcm(0), Fcm(1), Fcm(2), Fcm(3)] = S(Fcm),

F̂cm(i) = U2i(DW (D 1

2i
(Fcm(i)))), ∀i∈{0, 1, 2, 3},

Fm =Fcm + C3([F̂cm(0), F̂cm(1), F̂cm(2), F̂cm(3)]),

(11)

where D 1

2i
(·) denotes the pooling operation to sample the

input features to the size of 1
2i . U2i(·) refers to the nearest

upsampling features to the original resolution.

3.3. Video Frame Interpolation Backbone

As shown in Figure 3, we utilize two-stage framework
as our VFI backbone, which consists of motion estima-
tor (ME) and RefineNet. To convert linear motions into
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quadratic motions, the RefineNet is equiped with multiple
implicit motion modulation modules (IMM) for progressive
refinement in coarse-to-fine manner.
Motion Estimator. Similar to the SOTA methods [12, 28],
we first utilize an off-the-shelf network PWC [35] to predict
optical flows f̂01 and f̂10, and then approximates interme-
diate flows f̂0t and f̂1t using linear multiplication.
RefineNet. We improve the U-Net [31] framework, and ad-
vise an more effective RefineNet to progressively upgrade
linear motions into quadratic motions for IQ-VFI. The key
components of RefineNet involve an encoder and a decoder.
Encoder: The role of the encoder is to extract the contex-
tual information from input frames for compromising inter-
mediate motions in decoder [13, 18, 21, 41]. Specifically,
we extract multi-scale pyramid features (Fei0 and Fei1) via
pyramid encoder Eni (i=1,2,3,4), which consists of two
3×3 convolutions with strides 2 and 1, respectively. De-
coder: The role of the decoder Dei is to progressively re-
fine linear motions for IQ-VFI via predicted acceleration
prior, contextual information and generated intermediate
features. Specifically, taking one layer of the decoder as
an example, we first utilize all-pairs correlations in [21] to
update (Lui) linear motions. It involves the bidirectional
correlation volumes building, correlation scale lookup and
retrieved correlation update. And then an elaborate im-
plicit motion modulation module (IMM) is introduced to
further modulate linear motions into quadratic motions via
predicted acceleration prior. At the final, a mutual update
module (Mui) in [18, 21] is used to jointly refine interme-
diate flows together with the reconstructed intermediate fea-
ture, benefiting each other until desired output is achieved.
Implicit Motion Modulation Module. Advanced meth-
ods directly utilize RefineNet to improve linear flows for
VFI [12, 13, 41]. However, they struggle to handle com-
plex motion scenarios. Since the state of motion of each
object is diverse and complex, a more reasonable solution
with quadratic motions is required. To this end, we propose
implicit motion modulation module (IMM) to modulate lin-
ear motions via latent acceleration prior. Specifically, as
shown in Figure 3, we transform latent acceleration prior
into dynamic modulation parameters via two 1×1 convolu-
tion layers C4 and C5 for global linear motions f̃ li refine-
ment:

f̃gi = C4(P ) · f̃ li + C5(P ), (12)

where f̃gi refers to the global refined motions. To further
explore the neighboring relation for local refinement, in-
spired by [40], a two-path fusion scheme is introduced.
Specifically, we first utilize 3×3 convolution layer C6 to
extract motion feature, which is fed into two separate path-
ways. One pathway aggregates neighboring pixels through
3×3 depth-wise convolution layer C7, while the other path-
way adopts the gating mechanism to enhance useful local

information through 3×3 depth-wise convolution layer C8

and GELU [40]. Finally, we utilize a 3×3 convolution layer
C9 to predict the residues to generate quadratic flows f̃qi.
The aforementioned procedures are described as:

f̃qi = C9(C8(C6(f̃gi)) · C7(C6(f̃gi))) + f̃ li. (13)

3.4. Model Objectives

Reconstruction Loss. We adopt Laplacian loss func-
tion [27] as our reconstruction loss LR, which calculates the
distance between the predicted result and the ground truth
among multiple pyramid levels (5 in this study), defined as:

LR =
5∑

i=1

2s−1||Li(ÎSt )− Li(It)||1, (14)

where Li(·) means the i-th level image.
Implicit Acceleration Distillation Loss. Since explicitly
predicting high-accuracy acceleration via two input frames
is challenging, we propose to implicitly learn latent acceler-
ation prior via knowledge distillation. Specifically, we first
train the teacher to learn latent acceleration prior PT via
three consecutive frames, which serves as targets to guide
the optimization of the student network via implicit accel-
eration distillation loss LIA, depicted as:

LIA = ||PS − PT ||1. (15)

Implicit Motion Distillation Loss. Existing approaches in-
troduce ground-truth intermediate frame to obtain pseudo
label via an off-the-shelf ME for distillation [18, 21, 26].
However, the off-the-shelf optical flow is often a sub-
optimal representation for VFI [39]. Though some efforts
are developed to fine-tune or retrain motion estimator ori-
ented towards for VFI distillation [13, 42], they are prone to
overuse ground-truth intermediate frame rather than model-
ing the latent motions. Consequently, the student network
struggles to borrow any valuable information for modeling
intermediate motion. Unlike them, our optical flow from
the teacher is oriented towards VFI and is prevented from
overusing ground-truth intermediate frame, which is more
conductive to guiding the student learning via our implicit
motion distillation loss LIM :

M =

{
1, ||ÎSt − It||1 > ||ÎTt − It||1
0, ||ÎSt − It||1 ≤ ||ÎTt − It||1

LIM = M · ||f̃S
0t − f̃T

0t||1 +M · ||f̃S
1t − f̃T

1t||1,

(16)

where M is the binary mask indicating the interpolation er-
ror regions caused by inaccurate optical flows.

With the balanced parameters of λ1, λ2 and λ3, the over-
all model objective is formulated as

Ltotal = λ1LR + λ2LIA + λ3LIM . (17)
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Methods Venue Vimeo90K [39] UCF101 [34] SNU-FILM [5] Xiph [28]

Easy Medium Hard Extreme 2K 4K
ToFlow [39] IJCV’19 33.73/0.968 34.58/0.967 39.08/0.989 34.39/0.974 28.44/0.918 23.39/0.831 33.93/0.922 30.74/0.856

DAIN [1] CVPR’19 34.71/0.976 34.99/0.968 39.73/0.990 35.46/0.978 30.17/0.934 25.09/0.858 35.95/0.940 33.49/0.895
CAIN [5] AAAI’20 34.78/0.974 35.00/0.969 39.95/0.990 35.66/0.978 29.93/0.930 24.80/0.851 35.21/0.937 32.56/0.901

BMBC [29] ECCV’20 35.01/0.976 35.15/0.969 39.90/0.990 35.31/0.977 29.33/0.927 23.92/0.843 32.82/0.928 31.19/0.880
AdaCoF [19] CVPR’20 34.38/0.972 35.20/0.970 39.85/0.991 35.08/0.976 29.47/0.925 24.31/0.844 34.86/0.928 31.68/0.870
ABME [29] ICCV’21 36.22/0.981 35.41/0.970 39.59/0.990 35.77/0.979 30.58/0.937 25.42/0.864 36.53/0.944 33.73/0.901
RIFE [13] ECCV’22 35.65/0.978 35.28/0.969 40.06/0.991 35.75/0.979 30.10/0.933 24.84/0.853 36.19/0.938 33.76/0.894

M2M-VFI [12] CVPR’22 35.49/0.978 35.32/0.970 39.66/0.991 35.74/0.980 30.32/0.936 25.07/0.860 36.44/0.943 33.92/0.899
VFIFormer [26] CVPR’22 36.50/0.982 35.43/0.970 40.13/0.991 36.09/0.980 30.67/0.938 25.43/0.864 OOM OOM

IFRNet [18] CVPR’22 36.20/0.981 35.42/0.970 40.10/0.991 36.12/0.980 30.63/0.937 25.27/0.861 36.21/0.937 34.25/0.895
EMA-VFI [41] CVPR’23 36.50/0.980 35.42/0.970 39.58/0.989 35.86/0.979 30.80/0.938 25.59/0.864 36.74/0.944 34.55/0.906

AMT [21] CVPR’23 36.53/0.982 35.45/0.970 39.88/0.991 36.12/0.981 30.78/0.939 25.43 /0.865 36.38/0.941 34.63/0.904
IQ-VFI (Ours) — 36.60/0.982 35.48/0.970 40.24/0.991 36.24/0.980 30.83/0.938 25.45/0.863 36.68/0.942 34.72/0.905

Table 1. Quantitative comparisons (PSNR/SSIM) of SOTA methods with our proposed IQ-VFI on UCF101 [34], Vimeo90K [39], SNU-
FILM [5] and Xiph [28] datasets. The numbers in bold represents the best score.

Overlaid AdaCoF [19] RIFE [13] IFRNet [18] AMT [21] Ours Ground Truth

Figure 4. Visual comparisons of different VFI methods on Vimeo90K dataset.

4. Experiment Results

4.1. Benchmarks

We evaluate our model IQ-VFI on various benchmarks with
diverse motion scenes for a comprehensive comparison, and
use Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-
ilarity Index (SSIM) [37] for evaluation metrics. The statis-
tics of benchmarks are presented as follows.
Vimeo90K [39]. This dataset consists of more than 60,000
triplets with the image resolution of 448×256, where
51,312 triplets are cropped into small patches with a fixed
size of 256×256 pixels for training, and 3,782 triplets are
used for testing.
UCF101 [34]. This dataset consists of 101 videos with
human actions, where 379 triplets with the resolution of
256×256 are chosen for testing [23].
SNU-FILM [5]. This testset contains 1,240 triplets of
videos of resolution up to 1280×720, which is very chal-
lenging for large motions and occlusions scenarios. It is
partitioned into four exclusive parts, namely Easy, Medium,
Hard, and Extreme.
Xiph [28]. This dataset consists of eight video with a 4K
resolution. Following [28], we downsample and center-crop

the original image to 2K resolution to get “Xiph-2K” and
“Xiph-4K”.

4.2. Training Details

We train our model in two stages. (1) We first train the
teacher model via Eq.(14), where it inputs three frames in-
cluding ground-truth frame into IQ-VFI (2) We then train
the student model via Eq.(17), where it only inputs two
frames into IQ-VFI. Specifically, the number of IAM (N) is
6. We implement two-stage training using Pytorch 1.7 with
AdamW optimizer [25] through RTX 3090 GPU. we use
Vimeo90K trainset [39] to train our model for 300 epochs
with batch size 24 and patch size 224×224. The learning
rate is initially set to 2 ×10−4, and gradually decays to 2 ×
10−5 following a cosine attenuation schedule.

4.3. Comparisons with the SOTAs

We compare our proposed IQ-VFI with twelve SOTA meth-
ods, including motion-free methods CAIN [5] and Ada-
CoF [19], motion-based methods ToFlow [39], DAIN [1],
BMBC [29], ABME [30], RIFE [13], M2M-VFI [12], VFI-
Former [26], IFRNet [18], EMA-VFI [41] and AMT [21].
Quantitative Comparison. Quantitative results are shown
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Methods VFI backone IANet KD Vimeo90K [39]
ME RefineNet

IQ-VFIT (Ours) ✔ ✔ ✔ ✘ 36.00
IQ-VFIS1 (Linear) ✔ ✘ ✘ ✘ 32.59

IQ-VFIS2 (Task-oriented) ✘ ✔ ✘ ✘ 34.98
IQ-VFIS3 (Two-stage) ✔ ✔ ✘ ✘ 35.35
IQ-VFIS4 (w/o KD) ✔ ✔ ✔ ✘ 35.33

IQ-VFIS5 (Ours) ✔ ✔ ✔ ✔ 35.52

Table 2. Effects of Individual components (PSNR).

Method LR LIA LIM Vimeo90K [39]
LF1 ✔ ✘ ✘ 35.33
LF2 ✔ ✔ ✘ 35.44
LF3 ✔ ✘ ✔ 35.43

LF4 (Ours) ✔ ✔ ✔ 35.52

Table 3. Effects of loss function (PSNR).

in Table 1. It is evident that motion-based methods out-
perform motion-free methods in terms of PSNR and SSIM
comparisons across datasets. In particular, the SOTA
motion-free method CAIN [5] is 1.75 dB lower than the
SOTA motion-based method AMT [21] on Vimeo90K
dataset. We have conducted a thorough comparison of
motion-based methods and have found that the SOTA task-
oriented scheme AMT [21] and the two-stage scheme VFI-
Former [26] produce similar results. Furthermore, com-
pared to the SOTA motion-based methods, our proposed IQ-
VFI outperforms AMT [21] and VFIFormer [26] by 0.07dB
and 0.1dB on the Vimeo90K dataset. All these results vali-
date the effectiveness of our proposed method for VFI task.
Qualitative Comparison. The qualitative results are shown
in Figure 4. As expected, Motion-free method AdaCoF [19]
is prone to produce blurry results (see red and blue boxes)
since it lacks explicit constraint for complex motion mod-
eling. Compared to motion-free methods, motion-based
methods have the advantage of producing sharp results.
However, these methods overlook the latent acceleration in-
formation between input frames, which can result in the
generated motion being in the wrong position (see the
curved motion of the skateboard). On the contrary, our pro-
posed IQ-VFI explores the latent acceleration prior between
input frames, which contribute to modeling higher-order
motion trajectory and generating more accurate results.

4.4. Ablation Study

This section details the ablation studies to investigate the in-
dividual effects of each component. To save computational
resources and achieve efficient validation, we design a small
model by reducing the channel number, and train it with im-
age patches of size 224×224 on the Vimeo90K dataset [39]
to 2.5×105 iterations.
Individual Components. An ablation study is conducted
to investigate the impact of various schemes for VFI by
progressively incorporating the motion estimator (ME),
RefineNet, IANet, and a knowledge distillation strategy.

Method Pre trained Finetune LF4 Vimeo90K [39]
Baseline ✘ ✘ ✘ 35.33
Model1T ✔ ✘ ✘ 34.07
Model1S ✔ ✘ ✘ 35.24
Model2T ✘ ✔ ✘ 38.38
Model2S ✘ ✔ ✘ 35.45

Model3T (Ours) ✘ ✘ ✔ 36.00
Model3S (Ours) ✘ ✘ ✔ 35.52

Table 4. Effects of intermediate motion distillation (PSNR).

Quantitative results are tabulated in Table 2. (a) IQ-VFIS1

implements a linear scheme by modeling the motion with
off-the-shelf ME, and generates suboptimal results. This
proves that linear-based methods are less effective for VFI
when the linear motion assumption does not hold. (b) IQ-
VFIS2 denotes the task-oriented scheme, which directly uti-
lizes RefineNet to learn intermediate motions, and outper-
forms IQ-VFIS1 by 2.39dB. (c) IQ-VFIS3 harmonizes the
merits of off-the-shelf ME and RefineNet to achieve two-
stage scheme and further obtains 0.37dB gains. (d) Com-
pared to IQ-VFIS3, IQ-VFIS4 further introduces IANet to
explore the latent acceleration prior to achieve quadratic
motion estimation, but does not bring gains. We specu-
late that directly approaching to acceleration from two input
frames is non-trivial without any supervision priors. (e) we
first train teacher network IQ-VFIT with ground-truth infor-
mation to learn acceleration and motion knowledge, which
is used to guide student IQ-VFIS5 to narrow the knowledge
gap. Compared to IQ-VFIS4, this knowledge distillation
strategy achieve a 0.19dB boosts.
Loss Function. We have conducted additional experiments
to validate the efficacy of our proposed distillation loss
across various variations. Quantitative results are shown in
Table 3. (a) LF1 only utilize reconstruction loss to con-
strain the intermediate frame generation. (b) Based on LF1,
LF2 and LF3 continue to incrementally add implicit accel-
eration distillation loss LIA and implicit motion distillation
loss LIM . This leads to 0.11dB and 0.10dB improvements,
respectively. It is obvious that our distillation loss can ef-
fectively guide student model to learn acceleration prior
and intermediate flow from the teacher. (d) LF4 adopts all
loss functions for IQ-VFI and achieves better performances.
These comparisons validate the effectiveness of the pro-
posed LIA and LIM for the final interpolation performance.
Intermediate Motion Distillation. To verify the impor-
tance of our intermediate motion distillation, we thus con-
duct an ablation study on different motion distillation strate-
gies. As shown in Table 4, we take IQ-VFIS4 from Table 2
as baseline, which only utilizes reconstruction loss for su-
pervision. Compared to the baseline, we introduce ground-
truth intermediate frame It to obtain pseudo labels via an
off-the-shelf motion estimator for supervision. However, It
suffers from a significant performance decline by 0.09dB
on Vimeo90K dataset. This is because the off-the-shelf op-
tical flow is often not an optimal representation for VFI.
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Overlaid

P (w/o KD)

P (w KD)

Figure 5. Visualization of latent acceleration prior.

This can be observed through the evaluation metrics such as
PSNR when comparing it to the teacher model. Hence, the
pseudo labels generated by this approach may contain unde-
sired information that can negatively impact the distillation
process for the student model. Compared to Model1, we
utilize intermediate frame reconstruction loss to fine-tune
the off-the-shelf motion estimator, which ensures that the
generated pseudo labels are oriented towards VFI task. Un-
fortunately, this distillation strategy (Model2) still struggles
to achieve significant improvements on Vimeo90K dataset.
We speculate that the teacher model overuses ground-truth
knowledge rather than characterizing the motion patterns
due to lack of regularization (see PSNR/SSIM from teacher
model), making it challenging for student to distill flow
knowledge when the ground-truth knowledge is missing.
On the contrary, our method (Model3) encourage teacher
model to focus on the task-oriented flow patterns with im-
plicit motion distillation loss, achieving 0.19 dB gains.

4.5. Visualization Analysis

The Visualization of latent Acceleration prior. To fur-
ther validate the effectiveness of our proposed latent accel-
eration prior, we visualize predicted latent acceleration pri-
ors P through knowledge distillation (w KD ) and without
knowledge distillation (w/o KD). As shown in Figure 5, we
find that when KD is not used, the predicted latent accel-
eration prior remains essentially the same regardless of the
motion scenario. This indicates that solving for accurate ac-
celeration via two input frames is challenging. On the con-
trary, With LIA, student model adaptively learn latent ac-
celeration prior of various scenarios through teacher model.
Moreover, Compared to simple motions, more weights are
activated for complex motions (see wing). This is consistent
with the results in Table 1 that complex scenarios (see 4K
dataset), benefit a lot from latent acceleration prior.
The Visualization of Intermediate Motion. To further
validate the effectiveness of our proposed knowledge distil-
lation strategy, we visualize the intermediate optical flows
from different teacher models and student models, respec-
tively. One the one hand, though the off-the-shelf mo-
tion estimator LiteFlowNet [14] has achieved excellent
performance for optical flow estimation task on synthetic
datasets [3, 7], they cannot model the real challenges ob-
served in natural scenes, like Vimeo90K dataset. As shown

Overlaid Model1T Model2T OursT

Ground Truth Model1S Model2S OursS

Figure 6. Visualization of intermediate optical flow from different
teacher models and student models.

in Figure 6, the teacher model Model1T clearly provides
wrong knowledge in pseudo label (see the boundaries of
people and motorcycle), which is sub-optimal for Model1S
optimization (see the boundaries of motorcycle). On the
other hand, though we fine-tune the off-the-shelf Lite-
FlowNet to obtain pesudo labels oriented towards VFI, we
find that Model2T overuses ground-truth information rather
than characterizing the motion patterns (see optical flow
representation), making it challenging for Model2S to dis-
till more useful flows knowledge (see the boundaries of mo-
torcycle). On the contrary, through these visualizations, our
teacher model OursT focuses more on the motion model
and better guides the student model OursS to learn specific-
motion knowledge via our implicit motion distillation loss.

5. Conclusion
This paper proposes a novel framework for implicit
quadratic video frame interpolation (IQ-VFI), which ex-
plores latent acceleration information and intermediate mo-
tion information to tackle complex motion scenarios via
knowledge distillation. Specifically, we devise an im-
plicit acceleration estimation network (IANet) to fully mine
spatio-temporal information for latent acceleration prior,
which then are used modulate the predicted linear motion
from VFI backbone into quadratic motions in coarse-to-fine
manner. Furthermore, we propose a knowledge distillation
strategy in which implicit acceleration distillation loss and
implicit motion distillation loss are proposed to guide la-
tent acceleration prior and intermediate motion learning to-
wards VFI. Extensive experiments show that our method
outperforms SOTA methods on various benchmark datasets.
Though our model explores latent acceleration prior for VFI
and yields desired results, it remains an open question how
to implicitly and effectively explore video motion proper-
ties for VFI.
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