
OmniMedVQA: A New Large-Scale Comprehensive
Evaluation Benchmark for Medical LVLM

Yutao Hu1,2*, Tianbin Li2*, Quanfeng Lu2*, Wenqi Shao2†,
Junjun He2, Yu Qiao2, Ping Luo1,2†

1The University of Hong Kong 2Shanghai AI Laboratory

Abstract

Large Vision-Language Models (LVLMs) have demon-
strated remarkable capabilities in various multimodal
tasks. However, their potential in the medical domain re-
mains largely unexplored. A significant challenge arises
from the scarcity of diverse medical images spanning var-
ious modalities and anatomical regions, which is essential
in real-world medical applications. To solve this problem,
in this paper, we introduce OmniMedVQA, a novel compre-
hensive medical Visual Question Answering (VQA) bench-
mark. This benchmark is collected from 73 different med-
ical datasets, including 12 different modalities and cov-
ering more than 20 distinct anatomical regions. Impor-
tantly, all images in this benchmark are sourced from au-
thentic medical scenarios, ensuring alignment with the re-
quirements of the medical field and suitability for evaluat-
ing LVLMs. Through our extensive experiments, we have
found that existing LVLMs struggle to address these med-
ical VQA problems effectively. Moreover, what surprises
us is that medical-specialized LVLMs even exhibit inferior
performance to those general-domain models, calling for a
more versatile and robust LVLM in the biomedical field. The
evaluation results not only reveal the current limitations of
LVLM in understanding real medical images but also high-
light our dataset’s significance. Our code with dataset are
available at https://github.com/OpenGVLab/
Multi-Modality-Arena.

1. Introduction
Recently, Large Vision-Language Models (LVLMs) have
exhibited remarkable advancements across various do-
mains, including embodied AI [85], autonomous driving
[121], and remote sensing [67]. Encouraged by their
achievements, a growing number of LVLMs tailored for
medical applications have emerged, claiming impressive

*Equal contribution.
†Corresponding author.

Table 1. The comparison of the number of modalities, images and
question-answering items in different medical VQA datasets. † in-
dicates we calculate the numbers by ourselves, without the official
statistic could be directly adopted.

Dataset # Modalities # Images # QA Items
VQA-RAD [69] 3 315 3515
SLAKE [75] 3 642 14,028
Path-VQA [122] 2† 4998 32,799
VQA-Med [24] 5† 4500 5500
OmniMedVQA 12 118,010 127,995

performance across a wide spectrum of medical challenges
[71, 84, 117, 127]. However, despite the growing attention
these models have obtained, there has been a noticeable lack
of comprehensive evaluations, particularly when it comes to
real medical images, which strongly hinders a thorough un-
derstanding of their applicability and performance in medi-
cal contexts [116].

We attribute this challenge to the absence of a compre-
hensive and diverse evaluation benchmark, one that encom-
passes images captured from various modalities and cov-
ers a broad spectrum of human anatomies. In more detail,
the ability to answer questions based on a given image is
fundamental, yet critically important in evaluating the per-
formance of LVLMs. To facilitate this purpose, a compre-
hensive Visual Question Answering (VQA) dataset is in-
dispensable. However, as indicated in Table 1, the major-
ity of existing VQA datasets suffer from size limitations.
Moreover, many of them provide only a limited number of
modalities and focus exclusively on specific aspects of hu-
man anatomy. Consequently, these datasets do not meet the
requirements for a comprehensive evaluation of LVLMs in
the medical domain.

To address this challenge, this paper introduces Omn-
iMedVQA, a large-scale and comprehensive Visual Ques-
tion Answering benchmark designed for the medical do-
main. Considering the scarcity of medical image-text data,
we collect numerous medical classification datasets and
then transfer these data to VQA format according to their
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Table 2. Comparison of Different LVLMs. VE, ToP and TuP indicate the visual encoder, number of total parameters and tuning
parameters, respectively. † indicates that the model is frozen. CC∗ consists of COCO [34], CC3M [105], and CC12M [32]. CC, VG,
SBU CY, and L400 indicate Conceptual Caption [32, 105], Visual Genome [66], COYO-700M [27] and LAION 400M [101], respectively.
LLaVA-I and G4L represent 158K multimodal instruction-following data in LLaVA [77] and data generated by GPT-4 for building an
instruction-following LLMs [92]. QA∗ denotes 13 question-answering datasets in InstructBLIP [41].

Model
Model Configuration Image-Text Data Visual Instruction Data

VE LLM ToP TuP Source Size Source Size

BLIP2 [73] ViT-g/14† FlanT5-XL† 4B 107M CC∗-VG-SBU-L400 129M - -
LLaVA [77] ViT-L/14† Vicuna 7B 7B CC3M 595K LLaVA-I 158K
LLaMA Adapter v2 [48] ViT-L/14† LLaMA† 7B 63.1M L400 200M LLaVA-I+G4L 210K
MiniGPT-4 [128] BLIP2-VE† Vicuna† 7B 3.1M CC-SBU-L400 5M CC+ChatGPT 3.5K
mPLUG-Owl [123] ViT-L/14 LLaMA† 7B 1.1B CC∗-CY-L400 204M LLaVA-I 158K
Otter [70] ViT-L/14† LLaMA† 9B 1.3B - - LLaVA-I 158K
InstructBLIP [41] ViT-g/14† Vicuna† 7B 107M - - QA∗ 16M
VPGTrans [125] ViT-g/14† Vicuna† 7B 107M COCO-VG-SBU 13.8M CC+ChatGPT 3.5K
Med-Flamingo [84] ViT-L/14† LLaMA † 8.3B 1.3B MTB, PMC-OA 2.1M - -
RadFM [117] ViT-3D LLaMA 14B 14B MedMD 16M RadMD 3M
MedVInT TE [127] ResNet-50 LLaMA† 7B 156.4M PMC-OA 1.64M PMC-VQA 152k
LLaVA-Med [71] ViT-L/14† Vicuna 7B 7B PMC-15M 600K PMC-15M + GPT4 60K

classification attribute based on the powerful context rea-
soning capacity of GPT. Generally speaking, OmniMed-
VQA boasts two primary highlights. First, it encompasses
images from 12 different modalities, including MRI, CT, X-
Ray, histopathology, fundus photography, et al., resulting in
a highly diverse dataset. Importantly, all these images orig-
inate from real medical scenarios, aligning OmniMedVQA
closely with real-world applications. Second, OmniMed-
VQA covers over 20 distinct human anatomical regions. As
illustrated in Fig 1, OmniMedVQA spans from the brain
to the extremities, which facilitates a more comprehensive
evaluation of different LVLMs and calls for a more versa-
tile medical LVLM. Moreover, for the convenience of eval-
uation, we assign the incorrect options to each question-
answering (QA) pair, transferring our OmniMedVQA to a
multi-choice Question-Answer dataset. Overall, our Omn-
iMedVQA dataset contains 118,010 different images with
127,995 different test items, leading to a large-scale evalua-
tion benchmark.

In our evaluation, we assess a total of twelve represen-
tative models, including eight general-domain LVLMs, e.g.,
BILP2 [73], MiniGPT-4 [128], InstructBLIP [41], mPLUG-
Owl [123], Otter [70], LLaVA [77], LLama adapter v2
[48], and VPGTrans [125], as well as four specialized med-
ical LVLMs, including Med-Flamingo [84], RadFM [117],
MedVInT [127], and LLaVA-Med [71]. Notably, since
OmniMedVQA is extremely challenging, especially for the
general-domain LVLM, we find it is difficult for the model
to directly generate the answer even if we give them the can-
didate options. To better evaluate their inherent knowledge
in the biomedical domain, we adopt two different metrics,
Question-answering score and Prefix-based Score [73, 120]

to calculate the VQA accuracy, leading to a more compre-
hensive evaluation. Through our extensive experiments, we
surprisingly find, that medical-specialized LVLMs exhibit
superior performance compared to general-domain LVLMs.
Specifically, although medical LVLMs obtain better perfor-
mance on some specific modalities such as CT, MRI and X-
Ray, they struggle to consistently outperform general mod-
els across all modalities, particularly those with similar dis-
tributions to general images. Furthermore, we emphasize
the pressing need for a robust model that can effectively
align image-text pairs in the medical field. Such a model is
crucial for medical-domain LVLMs, as it can generate ac-
curate and comprehensive descriptions for medical images
and support the sufficient training of LVLMs.

We want to emphasize that, although the classification
attribute is compact, it does provide a basic evaluation
benchmark for the medical area and mitigate the collecting
cost. More importantly, according to the evaluation results,
although not complex, the existing LVLMs, especially those
medical-specialized LVLMs, do not exhibit satisfactory per-
formance on our OmniMedVQA dataset, which not only
shows the shortcoming of these models but also demon-
strates the challenge of the proposed dataset.

The main contributions of this paper are summarized as
follows:

• We propose OmniMedVQA, a large-scale and compre-
hensive Visual Question Answering benchmark tailored
to the medical domain. OmniMedVQA contains 12 dif-
ferent modalities and covers more than 20 unique hu-
man anatomical regions, establishing a comprehensive
benchmark for evaluating the fundamental capabilities of
LVLMs in addressing medical challenges.
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• We conduct a thorough evaluation for 12 different
LVLMs, including 8 general-domain LVLMs and 4 spe-
cialized LVLMs designed for medical applications. As
far as we know, it is currently the most comprehensive
evaluation of LVLMs towards the medical domain.

• Our evaluation uncovers several innovative insights and
provides valuable guidance for improving LVLMs toward
medical applications in the future.

2. Related Work

2.1. Large Vision-Language Models

Based on the recent emergence of Large Language Mod-
els (LLMs) such as LLaMA [111] and GPT [90], LVLMs
utilize the knowledge from LLMs and align visual fea-
tures to the textual space for various text output. Flamingo
[18] is one of the early attempts that insert cross-attention
layers into LLMs to introduce visual features into textual
space. Meanwhile, to better align multi-modal features,
BLIP2 [73] unifies the pre-trained visual encoder with LLM
through an ingeniously designed Q-former. After that, In-
structBLIP [41] extends BLIP-2 with instruction-following
data and obtains better performance. Motivated by this
success, most LVLMs are built through the instruction-
tuning pipeline. For example, LLaVA [77] constructs 158K
instruction-following data to conduct the training process
and achieves great performance. Building upon the suc-
cess of LLaVA, several subsequent LVLMs [48, 70, 123]
leverage the high-quality 158k multimodal data to facilitate
the training process. Furthermore, MiniGPT-4 [128] aligns
a frozen visual encoder with a frozen LLM via only one
projection layer. To better fine-tune the model, MiniGPT-
4 utilizes 3500 detailed image-description pairs, illustrating
that even a relatively small amount of high-quality data can
significantly enhance the training of LVLMs. Additionally,
VPGTrans [125] transfers the text encoder of BLIP2 model
to Vicuna, which reduces the training costs and maintains
the convincing performance.

Recently, encouraged by the success of these general-
domain LVLMs, researchers have embarked on the devel-
opment of LVLMs for the medical field. Med-Flamingo
[84] is the pioneering effort in this field, which extends
the Flamingo into the medical domain by pre-training on
multi-modal knowledge sources across medical disciplines.
Meanwhile, LLaVA-Med [71] filter image-text pairs from
PMC-15M [126], and train a biomedical-specialized LVLM
with a small amount data based on the LLaVA-pretrained
parameter. Zhang et al. generate a large-scale medical VQA
dataset, PMC-VQA [127], through the self-instruction on
PMC-OA [74]. Leveraging PMC-VQA, Zhang et al. train
a biomedical-specialized VQA model, termed MedVInT,
which achieves state-of-the-art performance on many Med-
ical VQA datasets. Furthermore, they continue to propose

RadFM [117], the first multi-modal foundation model for
seamlessly integrating natural languages with both 2D and
3D radiologic images, which better fits the medical prac-
tical. Overall, we compare the information of aforemen-
tioned LVLMs in Table 2.

Despite the increasing attention, it still lacks a compre-
hensive evaluation of LVLMs within the medical domain.
To address this deficiency, we perform a thorough evalua-
tion for these LVLMs in this paper.

2.2. Medical VQA Dataset

With the rapid development of LVLMs, the field of Medi-
cal VQA has received considerable interest in recent years.
VQA-RAD [69], SLAKE [75], Path-VQA [122], and VQA-
Med [24] are four widely used Medical VQA datasets.
However, they all have less than 5K images. Meanwhile,
VQA-RAD and SLAKE only contain images captured by
CT, MRI or X-Ray, reducing their diversity and restricting
their further application. Moreover, all these datasets only
cover limited parts of the human anatomy, hindering a com-
prehensive evaluation across various human anatomical re-
gions. For example, VQA-RAD only contains images of
the head, chest, and abdomen, while Slake only covers the
head, chest, abdomen, pelvis, and neck, lacking images of
other important parts of the human body. Recently, moti-
vated by the success of self-instruction in textual data gen-
erating, PMC-VQA, a large-scale Medical VQA dataset, is
proposed based on numerous image-caption pairs. How-
ever, its images and text are extracted from online papers,
which can result in image compression and a significant gap
from real-world medical applications.

In this paper, we collect a new large-scale OmniMed-
VQA dataset, which contains medical images captured
through 12 different modalities and covers almost every
anatomical region of the human body. OmniMedVQA is
the current largest MedVQA dataset with real medical im-
ages. We hope it can help the community better evaluate the
fundamental ability of LVLMs in the biomedical field.

3. Dataset Collection

In this part, we introduce the collection process of our Omn-
iMedVQA dataset. To make full use of real medical images,
we collect an enormous medical classification dataset and
construct the question-answer pairs based on their inherent
attributes using the ChatGPT API. Generally speaking, the
construction process has the following four steps.

• Original dataset preparing. Due to the well-known dif-
ficulties in downloading medical datasets, it is notably
time-consuming to obtain plentiful and suitable datasets.
To construct a comprehensive VQA benchmark, we col-
lected 73 different medical classification datasets encom-
passing 12 different imaging modalities, which span more
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Eye
Q: What type of abnormality is 
present in this image?
A: Glaucoma Positive.

Chest
Q: What disease is 
depicted in this image?
A: Pneumonia.

Abdomen
Q: What type of abnormality 
is present in this image?
A: Bowel mass.

Pelvic cavity
Q: What modality is used to 
take this image?
A:  Colposcopy.

Upper limb
Q: Which joint does the bone in 
the picture come from?
A: Ulna.

Brain
Q: What is it in this image?
A: Brain MRI Image that 
are non-tumorous.

Oral cavity
Q: What abnormality is present 
in this image?
A: Gingivitis.

Breast
Q: What content appears 
in this image?
A: Breast tissue.

Gastrointestinal tract
Q: Which region of the body is 
depicted in this image?
A: Gastrointestinal (GI) tract.

Lower limb
Q: What abnormality can be 
observed in this image?
A:  ACL pathology.

Cell
Q: What types of cells in this 
image?
A:  Monocytes.

Foot
Q: What can be observed 
in this image?
A: Soft tissue fluid.

Others
Q: What specific abnormality is 
visible in this image?
A: Osteoporosis.

Modality Recognition
Q: What imaging modality 
was used to capture this image?
A: X-ray.

Anatomy Identification

Q: Which specific region of the 
chest is affected in this CT scan 
image?
A: Lungs.

Other Biological Attributes

Q: What is the HER2 status of the 
cell in this image?
A: Negative.

Disease Diagnosis

Q: What type of abnormality is 
present in this image?
A: Glaucoma positive.

Lesion Grading
Q: What is the severity level of 
diabetic retinopathy in this 
image?
A: Mild Diabetic Retinopathy.

Figure 1. Left: Overview of our OmniMedVQA dataset. OmniMedVQA covers the majority of radiologic modalities and anatomical
regions of the human body, such as the brain, eyes, oral cavity, chest, breast, abdomen, upper limb, lower limb, feet, etc. Right: Illustrations
of samples from five different question types.

than 20 different human anatomical regions. The details
of all the involved datasets are presented in the supple-
mentary material.

• Design QA templates. Based on the collected datasets,
we need to transfer the original classification attributes
into QA format. To achieve this goal, we first construct
the QA template for each dataset. On the one hand, the
category information is naturally suitable for construct-
ing a QA-pair. Therefore, we design question templates
according to their original categories. For example, in
the MAlig Lymph dataset[89], it contains 3 different dis-
eases. Therefore, we could design a QA template as “Q:
What is the specific diagnosis for the cancer cells in this
image?; A: Chronic Lymphocytic Leukemia.”. On the
other hand, through further understanding of the dataset,
we construct QA pairs according to their other attributes,
such as modality and anatomy information. For exam-
ple, in SARS-COV-2 Ct-Scan dataset[107], we could also

ask “What is the modality of the image?” or “What
is the abnormal organ in the picture?”, which evaluate
the ability of modality recognition and anatomy local-
ization. In summary, all QA pairs fall into five distinct
question types: Modality Recognition, Anatomy Iden-
tification, Disease Diagnosis, Lesion grading and Other
Biological Attributes. We illustrate the sample of each
question type in Fig 1. As depicted in the right part of
Fig 1, each question type could evaluate one specific ca-
pability within the biomedical field. Specifically, Lesion
Grading aims to assess the severity of lesions in the im-
ages, while Other Biological Attributes include the anal-
ysis of various attributes related to medical images, such
as cell shape, cancer status, imaging direction et al. The
detailed statistic information of each type is listed in Ta-
ble 3. Furthermore, we meticulously control the number
of different items from each template to ensure balance
and prevent significant bias. Specifically, we construct
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Table 3. The number of images and items for different question
types in OmniMedVQA.

Question Type # Images # Items
Modality Recognition 19,381 19,427
Anatomy Identification 19,992 20,330
Disease Diagnosis 73,099 73,455
Lesion Grading 2621 2621
Other Biological Attributes 12,156 12,162
Total 118,010 127,995

QA templates from 73 medical classification datasets and
calculate the number of potential images that could be
used under each template. Then, we select the images us-
ing the Inverse Proportional Sampling strategy. Namely,
templates with a larger number of associated images are
assigned a smaller sample ratio. In this way, our dataset
keeps a balanced distribution across categories and avoids
the bias on some reduplicate QAs, ensuring OmniMed-
VQA as a diverse and comprehensive dataset.

• Refine QA pairs. In order to increase the diversity of our
dataset and better evaluate the capability of each LVLM,
we employ the ChatGPT-3.5 API to perform two key op-
erations. First, we reformulate the question in each item
to change the expression style and syntactic structure,
while preserving the original semantic meaning, which
allows us to evaluate the adaptability of LVLMs to var-
ious linguistic representations. Second, we leverage the
GPT-3.5 API to generate a set of incorrect options for
each item, which are utilized to construct multiple-choice
question-answer pairs. Specifically, each item in our
dataset is paired with incorrect answers as the candidate
options. The number of options varies from 2 to 4, which
depends on the content of the specific question. By do-
ing so, it is more convenient to judge the correctness of
the response from LVLM. The generation process of each
item are depicted in Fig. 2.

• Human double check. To ensure data quality, we con-
ducted further inspections to guarantee the validity of our
OmniMedVQA dataset.

Overall, OmniMedVQA contains 118,010 images with
127,995 QA-items, covering 12 different modalities and re-
ferring to more than 20 human anatomical regions. The
detailed modality and anatomy information of our dataset
are listed in Table 4. We want to emphasize that while the
classification attributes may appear intuitive and not overly
complex, they play a crucial role in evaluating the funda-
mental capabilities of LVLMs in the medical domain, which
are critical to support broader applications in this field.
Meanwhile, the evaluation results reveal that the medical-
specialized LVLM cannot handle these questions well, in-
dicating a deficiency in its foundational medical knowledge
and highlighting the need for more versatile LVLMs.

Table 4. The modalities and anatomies involved in our OmniMed-
VQA dataset.

Modality Colposcopy, CT (Computed Tomography),
Digital Photography, Fundus Photography,
Infrared Reflectance Imaging, MR (Mag-
netic Resonance Imaging), OCT (Opti-
cal Coherence Tomography), Dermoscopy,
Endoscopy, Microscopy Images, X-Ray,
Ultrasound

Anatomy Lung, Mammary Gland, Hand, Up-
per Limb, Eye, Uterus, Intestine, Skin,
Shoulder, Kidney, Gallbladder, Pancreas,
Spleen, Liver, Pelvic, Ovary, Blood Vessel,
Spine, Urinary System, Adipose Tissue,
Muscle Tissue, Oral Cavity, Knee, Foot,
Lower Limb

4. Evaluation Method

As mentioned in Sec. 3, for the purpose of evaluation
convenience, we provide each QA pair with incorrect an-
swers as candidate options, resulting in a multi-choice
Question-Answer task. However, some LVLMs, especially
the medical-specialized LVLMs, exhibit poor instruction-
following performance during the evaluation, failing to gen-
erate responses according to the given options. We think
that this situation does not necessarily imply that these mod-
els lack medical knowledge, which may simply indicate
that they are not proficient in processing input in the form
of multiple-choice questions. Therefore, to ensure a more
fair comparison, we adopt two different metrics in our eval-
uation, Question-answering Score and Prefix-based Score
[73, 120]. Their evaluation processes are depicted in Fig. 3,
and we report their performances respectively in Sec. 5.

4.1. Question-answering Score

Given an input image with the question expressions and
candidate options, we first combine them to construct
the prompt for LVLM. For example, we can utilize the
prompt template: “This is a medical question with sev-
eral Options, and there is only one correct answer among
these options. Please select the correct answer for the
question. Remember, you can only select one option.
The Question is:<Question>. ### The candidate Options
are:<Options>”, based on this template, we insert the cur-
rent question and candidate options. Then, we deliver the
image with the prompt to the LVLM to generate the re-
sponse. Afterwards, following previous works [120], we
calculate the similarity of the response with the candidate
options and select the option with the largest similarity as
the final prediction. Finally, we compare the prediction with
the ground-truth answer and judge the correctness.
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Current QA-Item
[Question]: "What imaging modality was used to capture this image?",
[gt_answer]: "MRI"

Instruction Template
Input Prompt = [
{"role": "system", "content": content1},
{"role": "user", "content": content2}].
content1 = “You are an expert in the field of medicine. I will give you an original medical-related
question and its answer, your task is to rephrase an equivalent question with identical answer.
Meanwhile, I want to transfer this QA-pair into a multi-choice question. Please generate three incorrect
options to construct the candidate options.”
content2 = QA_Information
QA_Information = “The Question is: ” + [question] + “\n” + “The Correct Answer is: ” + [gt_answer]

Figure 2. The illustration of the process by which we transfer the
QA item from the QA template into the multi-choice question-
answer pair.

4.2. Prefix-based Score

We also utilize the prefix-based score to evaluate the in-
herent biomedical knowledge and avoid hallucination in
the response. Specifically, in the context of multi-choice
Question-Answer tasks, given an input image with the tex-
tual sentence, we first extract the visual features and text
embeddings, respectively. Then, the visual features are
prefixed into the text embeddings, which are subsequently
delivered into the LLM to calculate the likelihood score
[120]. This score is considered the prefix-based score for
this image-text pair, which reflects the probability of the
model generating the corresponding textual content. There-
fore, for each candidate option within the specific item, we
combine it with the question and then calculate the prefix-
based score. The option yielding the highest prefix-based
score means it is the most likely answer for this question,
which is considered as the final answer of the corresponding
LVLM. Then, we compare the final answer with the ground-
truth answer to judge the correctness, based on which we
compute the VQA accuracy.

It is worthwhile to mention that, although the prefix-
based score is not directly equivalent to the response from
the LVLM, it measures the likelihood of each option being
regarded as the correct answer, which reflects the level of
inherent knowledge of the model. In fact, during our eval-
uation, our primary objective is to find the shortcomings of
existing LVLMs in the biomedical field and propose insight-
ful suggestions for future research. However, considering
the challenges of OmniMedVQA, it is really hard for these
LVLMs to directly generate the correct answer for all the
questions. Therefore, the prefix-based score aligns with our
evaluation criteria and is a fair metric for the evaluation.

5. Experiment
5.1. Experimental Details

In this section, we perform zero-shot evaluation to assess 12
representative LVLMs. All the experimental environments
and hyper-parameters are set according to their released

Prompt = “This is a medical Question with several Options, and there is only one
correct answer among these options. Please select the correct answer for the
question. Remember, you can only select one option. The Question is:” +
[Question] + "### The candidate Options are:" + [Options]

[Question]: "What imaging modality was used to
capture this image? ",

[Options]: "A:CT, B:MRI, C:X-Ray, D:PET"

[GT_Answer]: "A:CT"[Response]: "A:CT"

A:0.9
B:0.7

[Score]: [GT_Answer]: "A:CT"

Prompt = [Question] + " each option in [Options] "

C:0.2
D:0.3 Correct

Correct Question-answering score

Prefix-based score

Figure 3. Evaluation process when adopting Question-answering
score and Prefix-based score respectively.

code. Specifically, since MedVInT [127] has two variants
versions that exhibit different capabilities in open-ended
and multiple-choice tasks tasks, we employ MedVInT-
TD and MedVInT-TE for the evaluation via Question-
answering Score and Prefix-based Score, respectively.

5.2. Overall Performance

The evaluation results are listed in Table 5 which is divided
into two sections based on rows. The first eight rows present
the accuracy of different general-purpose LVLMs, while the
last four rows reflect the performance of medical-domain
LVLMs. Specifically, we report the Question-answering
Score and Prefix-based Score separately in Table 5. Gener-
ally speaking, our OmniMedVQA is extremely challenging,
with most LVLMs only slightly surpassing the performance
of random guess. Moreover, we have several observations
based on the results in Table 5.

1. To our surprise, the general-domain LVLM, BLIP2 [73],
achieves the best performance for all tasks on average,
surpassing all tested LVLM models in the medical do-
main by a large margin. This suggests that emerging
property does not occur when using the current medical
data to adapt general-purpose LVLMs for medical tasks.

2. A strong model in aligning image-text pairs in the
medical domain is urgently needed for medical-domain
LVLMs. BLIP performs well in both general-purpose
QA dataset [104, 120] and our OmniMedQA because
it is trained by massive high-quality image-text pairs in
various visual domains. Hence, the key to developing
general medical-purpose LVLMs lies in training models
with massive high-quality image captioning data from
various medical domains.

3. MedVInT and Med-Flamingo achieve the highest over-
all accuracy among all evaluated medical LVLMs and
also outperforms many general-purpose LVLMs except
for BLIP2 and InstructBLIP. This success may be at-
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Table 5. The accuracy of representative LVLMs on our OmniMedVQA in terms of five different question types. Notably, we report the
Question-answering Score and Prefix-based Score before and after “/”, respectively. Meanwhile, in each column, the best performance is
marked in red, while the second best performance is marked in blue.

Model
Modality

Recognition
Anatomy

Identification
Disease

Diagnosis
Lesion

Grading
Other Biological

Attributes Overall

Random Guess 25.00 25.84 28.41 25.40 37.49 28.28
MiniGPT-4 [128] 28.23 / 28.71 28.41 / 30.26 30.51 / 20.24 32.85 / 38.53 37.30 / 43.28 30.53 / 25.68
BLIP-2 [73] 57.51 / 37.85 49.19 / 64.75 46.24 / 23.19 30.52 / 25.03 73.52 / 37.70 50.69 / 33.43
InstructBLIP [41] 70.62 / 24.83 42.75 / 51.78 33.62 / 22.41 54.60 / 54.71 48.16 / 28.85 42.49 / 28.71
mPLUG-Owl [123] 27.93 / 16.46 24.44 / 30.45 30.31 / 29.32 38.50 / 76.96 37.84 / 43.70 29.90 / 29.89
Otter [70] 25.62 / 10.53 25.14 / 23.47 27.12 / 22.11 34.22 / 39.53 32.12 / 24.74 27.20 / 21.17
LLaVA [77] 27.21 / 14.43 25.99 / 15.08 27.35 / 19.60 38.53 / 26.82 32.68 / 38.24 27.85 / 20.02
LLaMA Adapter v2 [48] 44.51 / 33.48 33.73 / 40.67 29.17 / 24.93 39.07 / 38.65 36.80 / 34.07 33.15 / 29.88
VPGTrans [125] 29.32 / 31.77 30.76 / 36.27 26.91 / 18.88 29.61 / 38.53 32.65 / 41.47 28.49 / 26.15
Med-Flamingo [84] 28.67 / 21.21 25.32 / 25.16 41.47 / 26.10 31.25 / 49.60 35.27 / 34.97 36.17 / 26.54
RadFM [117] 21.31 / 38.57 19.96 / 29.48 28.46 / 25.66 24.72 / 35.86 37.58 / 31.73 26.82 / 29.00
MedVInT [127] 59.79 / 30.92 41.36 / 23.90 36.79 / 25.02 15.49 / 5.23 46.79 / 30.12 41.50 / 25.81
LLaVA-Med [71] 31.38 / 12.02 28.34 / 22.06 28.01 / 27.25 32.35 / 30.98 29.23 / 25.88 28.78 / 24.06

Table 6. The overall accuracy of representative LVLMs on our OmniMedVQA in terms of different modalities. Here, we report the
accuracy of all items within each modality when utilizing the Question-answering score. Specifically, Co denotes Colposcopy, CT denotes
Computed Tomography, DP denotes Digital Photography, FP denotes Fundus Photography, IRI denotes Infrared Reflectance Imaging, MR
denotes Magnetic Resonance Imaging, OCT denotes Optical Coherence Tomography, Der denotes Dermoscopy, End denotes Endoscopy,
Mic denotes Microscopy Images, US denotes Ultrasound. Meanwhile, in each column, the best and second-best performance are marked
in red and blue, respectively.

Model Co CT DP FP IRI MR OCT Der End Mic X-Ray US
MiniGPT-4 [128] 23.67 22.81 18.05 42.37 38.51 27.60 31.40 40.09 30.26 28.05 39.75 25.50
BLIP-2 [73] 48.52 56.74 23.01 57.66 66.18 41.77 68.08 41.07 48.85 50.17 70.55 37.27
InstructBLIP [41] 32.25 28.72 35.75 37.72 59.27 33.79 42.59 61.86 36.65 48.20 61.21 41.25
mPLUG-Owl [123] 36.69 24.54 19.81 41.81 38.44 29.82 43.76 35.98 24.45 25.99 28.29 21.40
Otter [70] 33.73 18.53 18.20 37.70 30.70 26.37 29.64 42.66 33.94 22.94 31.73 23.49
LLaVA [77] 12.72 17.73 22.25 32.16 31.23 26.99 33.73 49.67 38.20 27.95 31.35 18.66
LLaMA Adapter v2 [48] 38.46 21.41 28.93 36.85 35.70 27.23 33.00 51.43 46.62 34.78 46.70 34.05
VPGTrans [125] 32.54 21.26 20.10 34.50 32.60 25.36 25.14 44.66 30.53 23.61 46.53 25.45
Med-Flamingo [84] 18.40 38.47 21.48 27.61 39.69 40.01 26.51 32.33 30.97 46.60 28.30 24.64
RadFM [117] 15.43 27.44 13.25 28.99 36.13 24.16 32.80 39.03 28.40 24.81 29.21 16.57
MedVInT [127] 39.17 40.74 43.89 39.69 46.22 42.84 23.26 29.13 30.11 40.71 56.62 41.26
LLaVA-Med [71] 28.99 18.69 18.34 35.14 30.68 27.49 34.61 44.90 41.88 26.33 31.26 29.88

tributed to the extensive medical knowledge they are in-
jected in the training. Med-Flamingo learns from more
than 4k textbooks while MedVInT is trained based on
381K image-caption pairs. This indicates that, to ob-
tain a better performance, more knowledge in the medi-
cal domain should be injected into the LVLMs.

4. Through a comparative analysis of LLaVA and LLaVA-
Med, we conclude that medical instruction tuning can
improve the performance of general-purpose LVLM in
the biomedical field. However, when comparing differ-
ent medical LVLMs, we can find that LLaVA-Med deliv-
ers the worst performance. As listed in Table 2, LLaVA-
Med initiates its model from the pre-trained LLaVA [71]

and incorporates only a small amount of data in the
training, through which they expect to save the train-
ing cost. However, the evaluation results suggest the
LLaVA pre-trained model is not suitable and the ad-
vanced performance should be instructed by sufficient
data, which calls for a robust pre-trained model tailored
to the biomedical field and high-quality data. In fact,
the success of MiniGPT-4 in the general domain demon-
strates that high-quality data, even if it is in small quanti-
ties, could strongly support the training of LVLM. How-
ever, the instruction data for LLaVA-Med is generated
through the GPT-4 API and only relies on textual in-
formation. We believe this substantially compromises
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Table 7. The overall accuracy of representative LVLMs on our OmniMedVQA in terms of different modalities. Here, we report the
accuracy of all items within each modality when utilizing Prefix-based score. Specifically, Co denotes Colposcopy, CT denotes Computed
Tomography, DP denotes Digital Photography, FP denotes Fundus Photography, IRI denotes Infrared Reflectance Imaging, MR denotes
Magnetic Resonance Imaging, OCT denotes Optical Coherence Tomography, Der denotes Dermoscopy, End denotes Endoscopy, Mic
denotes Microscopy Images, US denotes Ultrasound. Meanwhile, in each column, the best and second-best performance are marked in red
and blue, respectively.

Model Co CT DP FP IRI MR OCT Der End Mic X-Ray US
MiniGPT-4 [128] 26.33 29.46 22.94 23.59 43.61 12.75 30.00 25.18 26.90 27.60 40.11 27.20
BLIP-2 [73] 32.25 38.87 25.95 20.01 43.40 20.45 18.70 19.80 25.95 28.43 49.81 81.79
InstructBLIP [41] 17.46 35.66 10.01 26.74 27.26 15.02 51.74 29.53 28.77 22.80 40.85 58.51
mPLUG-Owl [123] 18.64 37.00 18.31 56.87 44.96 13.22 41.76 18.75 35.32 31.04 32.18 29.14
Otter [70] 2.37 32.55 20.78 16.96 21.90 10.73 45.98 22.52 23.39 21.99 27.80 20.88
LLaVA [77] 33.73 38.27 23.55 13.84 36.37 4.65 51.23 14.17 22.16 17.65 24.10 20.74
LLaMA Adapter v2 [48] 28.40 36.03 21.36 22.11 33.69 17.26 54.22 21.61 32.23 30.60 41.71 47.51
VPGTrans [125] 35.21 30.30 27.71 23.93 42.35 11.04 31.60 22.18 24.77 25.87 39.94 40.89
Med-Flamingo [84] 30.56 22.25 7.40 51.57 30.22 14.43 58.57 39.48 46.61 23.04 38.13 17.42
RadFM [117] 22.55 45.47 13.43 21.48 25.16 24.52 37.40 25.71 34.44 20.52 55.21 24.78
MedVInT [127] 60.24 37.77 39.04 9.45 32.92 30.10 18.54 20.72 24.03 15.35 29.09 25.43
LLaVA-Med [71] 13.61 36.75 10.48 16.15 21.61 24.58 51.51 25.35 27.92 17.40 25.54 16.75

data quality, leading to the diminished accuracy. This
underscores the need for an effective caption-generation
model like BLIP2 [73], which can generate accurate and
detailed textual descriptions for biomedical images.
Overall, through our evaluation, we find that medical-

specialized LVLMs do not present outstanding perfor-
mance. For most question types, two general LVLMs,
BLIP2 and InstructBLIP obtain the best accuracy. To better
elaborate the underlying reasons, we conduct an in-depth
analysis of the evaluation results in Sec. 5.3.

5.3. Analysis in terms of modalities

To further analyze the performance of LVLMs in the
biomedical field, we report the accuracy of all QA items
in terms of different modalities in Table 6 and Table 7,
which present the Question-answering score and Prefix-
based score respectively. Based on the results, we have fol-
lowing two observations.
1. Although medical LVLMs exhibit lower accuracy when

considering the overall dataset, they tend to perform
well in modalities characterized by substantial differ-
ences from general images, such as CT and MRI. How-
ever, in modalities with similar distributions to those in
general domain images, medical-specialized LVLMs fail
to demonstrate notably superior performance.

2. RadFM aims to initiate the development of the radiol-
ogy foundation model, which is trained with more than
19M radiologic image-test pairs. Among their dataset,
CT, MRI and X-Ray constitute a significant proportion.
Therefore, as listed in Table 7, RadFM achieves the best
performance on CT and X-Ray tasks, and obtain com-
petitive performance on MR task. This reveals the po-
tential for performance improvement with high-quality
instruction data. To bring an all-around LVLM in the

biomedical field, the inclusion of additional high-quality
data from various modalities, such as Fundus Photogra-
phy and Infrared Reflectance Imaging, is imperative.

6. Conclusion
Since LVLMs have recently received remarkable atten-
tion in the whole community, this paper aims to evalu-
ate their performance in the biomedical field. To achieve
this goal, we collect OmniMedVQA, a large-scale medi-
cal VQA dataset. OmniMedVQA has 118,010 images with
127,995 question-answer items, which include 12 differ-
ent modalities and cover more than 20 human anatomi-
cal regions. Therefore, OmniMedVQA could support the
throughout evaluation of different LVLMs. During the eval-
uation, we assess 12 different LVLMs, including 8 general-
domain models and 4 specialized LVLMs for the biomedi-
cal field. To our great surprise, despite their claims of ro-
bustness, the medical LVLMs exhibit inferior performance
to those general-domain models, which reveals the short-
comings of these medical models. We point out that to be-
come a more versatile medical expert, medical LVLMs con-
sistently require additional knowledge of specific modali-
ties, such as Infrared Reflectance Imaging and Fundus Pho-
tography, on which the performance of medical LVLMs is
significantly inferior to general-domain models. We hope
our dataset provides a comprehensive evaluation benchmark
for medical LVLMs and our findings offer useful sugges-
tions for future research.
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