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Abstract

Generalizable face anti-spoofing (FAS) approaches have
drawn growing attention due to their robustness for diverse
presentation attacks in unseen scenarios. Most previous
methods always utilize domain generalization (DG) frame-
works via directly aligning diverse source samples into a
common feature space. However, these methods neglect
the hierarchical relations in FAS samples which may hinder
the generalization ability by direct alignment. To address
these issues, we propose a novel Hierarchical Prototype-
guided Distribution Refinement (HPDR) framework to learn
embedding in hyperbolic space, which facilitates the hier-
archical relation construction. We also collaborate with
prototype learning for hierarchical distribution refinement
in hyperbolic space. In detail, we propose the Hierar-
chical Prototype Learning to simultaneously guide domain
alignment and improve the discriminative ability via con-
straining the multi-level relations between prototypes and
instances in hyperbolic space. Moreover, we design a
Prototype-oriented Classifier, which further considers re-
lations between the sample and prototypes to improve the
robustness of the final decision. Extensive experiments and
visualizations demonstrate the effectiveness of our method
against previous competitors.

1. Introduction
The significance of face anti-spoofing (FAS) lies in its role
of protecting face recognition systems from presentation at-
tacks, like printed photos or replayed videos. In the initial
stages of FAS research, the detection of spoof patterns re-
lies on hand-crafted features such as SIFT [42], LBP [3, 10],
and HOG [30, 56]. With the development of deep learning,
researchers turn to deep neural networks [1, 14, 25, 32, 41,
63, 64, 66] for FAS tasks. Though these methods have at-
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Figure 1. Previous methods map the samples into a compact fea-
ture space for generalization. While, we introduce multiple learn-
able prototypes in hyperbolic space to separately describe the dis-
tributions of real and spoof samples, which refines the feature
alignment with hierarchical structure and promotes discrimination.

tained remarkable performance in the intra-dataset setting,
the performance drops significantly when encountering un-
seen scenarios or attacks.

To improve the generalization, several methods intro-
duce domain generalization techniques into FAS tasks,
e.g., domain adversarial learning [26, 36, 52], meta-
learning [33, 47, 64], feature disentangle [35, 60] and con-
trastive learning [53]. It is worth noting that all of these
DG-based FAS methods strive to learn a domain-invariant
representation within the Euclidean space, as depicted in the
Figure 1 (a). However, they often overlook the inherent hi-
erarchical structure present in the FAS data. Such hierarchi-
cal structure of FAS data can be interpreted from different
perspectives, such as the attack form and domain informa-
tion. Roughly establishing a hierarchical structure for attack
forms is by categorizing them into 2D and 3D attacks and
both of these categories can be further divided into more
fine-grained subcategories. As for domain information, the
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data might be categorized with light, background, and color,
etc. These different inherent hierarchical structures in FAS
are essential for humans to understand the data and facilitate
generalization to unseen data. The absence of such hierar-
chical information might hinder the generalization ability of
the above methods and also result in poor interpretability.

To tackle these limitations, we introduce hyperbolic
space, instead of traditional Euclidean space, which takes
advantage of modeling a hierarchical structure since it
could objectively represent the distance relations of the
tree nodes [2] and is skilled in modeling hierarchical struc-
ture without information loss. To facilitate the hierarchical
structure learning in hyperbolic space, inspired by the pro-
totype learning [19, 58], which introduces the prototypes
into feature space to represent the overall feature distribu-
tion better, we carefully rethink the nature of feature align-
ment of hierarchical structure in the FAS task. In this work,
we adopt prototype learning in hyperbolic space to model
a hierarchical feature space for the generalizable FAS task.
As shown in Figure 1 (b), we propose a novel Hierarchi-
cal Prototype-guided Distribution Refinement (HPDR) in
hyperbolic feature space, which introduces multiple proto-
types to comprehensively represent the feature distribution
and further captures the hierarchical structure. Concretely,
we first introduce learnable leaf prototypes in hyperbolic
to bridge the relations of prototypes and instances. Also,
copies of none-leaf prototypes are initialized to form the
hierarchical relations among leaf prototypes in hyperbolic
space. Then, to ensure the representativeness of the pro-
totypes, we propose Hyperbolic Prototype Learning (HPL)
including Prototype-based Feature Alignment and Hierar-
chical Structure Modeling. Prototype-based Feature Align-
ment focuses on obtaining effective features from samples
and aligning the features via prototypes. Hierarchical Struc-
ture Modeling takes advantage of hyperbolic space to model
the hierarchical structure by exploring prototype relations.
HPL models the relations between the samples and proto-
types in three levels including Prototype-Instance, Instance-
Instance, and Prototype-Prototype levels. Finally, to fully
utilize the prototype information, we design Prototype-
oriented Classifier for inference.

The main contributions are summarized as follows:
• We first consider the hierarchical relations in FAS sam-

ple features and propose Hierarchical Prototype-guided
Distribution Refinement (HPDR) to model to hierarchical
structure in hyperbolic space without information loss.

• We propose a new perspective of DG FAS that introduces
multiple prototypes in hyperbolic space to comprehen-
sively represent the hierarchical distribution and refine the
domain alignment.

• Extensive experiments and visualizations are presented to
demonstrate the effectiveness of our method against state-
of-the-art competitors.

2. Related Work
Face Anti-Spoofing. With the development of deep learn-
ing, first, a series of deep learning-based approaches [14,
32, 57, 61] have emerged. These methods usually extract
features by stacked CNNs and make the prediction by bi-
nary classifier. Despite these methods performing well in
intra-dataset scenarios, their performance degraded under
unseen scenarios. To tackle these, domain-generalization
based approaches [6, 51, 53, 65, 67] learn domain invari-
ant features based on domain adversarial or meta-learning.
However, most of the DG-based methods aim to learn
domain-invariant representation by directly aligning diverse
source domains in a unified feature space. However, consid-
ering the large domain gap, such alignment may be difficult
and neglect part of discriminative information. To tackle
these issues, we propose a new perspective for DG-based
FAS that introduces multiple prototypes and refines the hi-
erarchical structure in hyperbolic feature space via Hierar-
chical Prototype-guided Distribution Refinement (HPDR).
Hyperbolic Feature Embedding. Hyperbolic feature em-
bedding has been successfully deployed in natural language
processing fields [21, 38, 39] due to the advantages in mod-
eling the hierarchical structure of natural language. In
many computer vision tasks, image embeddings also con-
tain hierarchical relations, previous works start to trans-
form the essential components of deep neural networks in
hyperbolic space to bridge the Euclidean space and hyper-
bolic space [16, 48]. Instance-to-gyroplane learning meth-
ods [15, 20, 27] try to find a hyperplane in hyperbolic space,
i.e. gyroplane via optimizing the logistic score of sam-
ples and hyperplane. Instance-to-prototype learning meth-
ods [17, 27, 49] set multiple prototypes in hyperbolic space
and optimize the distance between the instances to proto-
types. Instance-to-instance learning methods [8, 13, 28] op-
timize the relations between samples via metric learning or
contrastive learning. In this work, we propose a new Hier-
archical Prototype-guided Distribution Refinement (HPDR)
to take advantage of hyperbolic space in hierarchical struc-
ture models for generalization.
Prototype Learning. Prototype learning is a classical
method which introduces prototypes into feature space to
represent the general feature distribution. Early research
mainly use machine learning to generate prototypes from
feature space directly, such as K-nearest-neighbor (KNN)
and learning vector quantization (LVQ) [29]. Later on, with
the development of the deep-learning, some approaches
[44, 45, 55] optimize the prototypes via loss function to con-
strain the feature distribution. Some methods [55, 58] mine
representative prototypes by contrastive learning. Inspired
by these methods, we introduce prototype learning into do-
main generation FAS task and specially design the Hier-
archical Prototype-guided Distribution Refinement (HPDR)
to further promote generalizable feature learning.
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Figure 2. The overall structure of our Hierarchical Prototype-guided Distribution Refinement (HPDR) framework. After we initialize the
leaf and none-leaf prototypes. Then Hyperbolic Prototype Learning (HPL) is proposed to simultaneously guide the domain alignment and
improve the discriminative ability via multi-level supervision. Moreover, to utilize the relations between the samples and prototypes, we
devise Prototype-oriented Classifier for robust decision.

3. Method
In this Section, we introduce Hierarchical Prototype-guided
Distribution Refinement (HPDR) as shown in Figure 2.
First, we will briefly introduce Hyperbolic learning and
Poincaré embedding. Then, we give the definition of pro-
totypes in hyperbolic feature space. We then propose Hy-
perbolic Prototype Learning (HPL) to learn a representative
distribution in hierarchical space with optimization in three
levels. Also, we propose a Prototype-oriented Classifier to
fully utilize the advantage of prototypes.

3.1. Preliminary: Hyperbolic Learning

Hyperbolic space is defined as the Riemannian manifold
with a negative curvature. In practice, the Poincaré ball
model [43] is well-suited for gradient-based optimization
and is a well-studied space in computer vision tasks.

Poincaré ball model (Dn, gD) is defined by the manifold
Dn = {x ∈ Rn : ||x|| < 1} with the Riemannian metric
gD = λ2

cg
E , where λc = 2

1−c||x||2 is the conformal factor,
c is the hyperparameter to control the curvature and radius
of the ball. Due to the differential of properties in hyper-
bolic space and Euclidean space, vectors should be calcu-
lated by introducing gyrovector spaces [50]. For instance,
the addition operation, named Möbius addition, for vectors
u,v ∈ Dn is:

u⊕c v :=

(
1 + 2c⟨u,v⟩+ c∥v∥2

)
u+

(
1− c∥u∥2

)
v

1 + 2c⟨u,v⟩+ c2∥u∥2∥v∥2
.

(1)

The distance of the sample u,v can be defined as:

dH(u,v) =
2√
c

arctanh(
√
c|| − u⊕c v||). (2)

when c = 0, dH(u,v) = 2||x − y|| which is the addition
operation in Euclidean space.

To utilize the operations in hyperbolic space, we need
to transform the features in Euclidean space Rn and hyper-
bolic space Dn in a bijective way. The mapping function
from Rn to Dn is called exponential map and defined as:

expcx(v) = x⊕c

(
tanh

(√
c
λc
x∥v∥
2

)
v√
c∥v∥

)
, (3)

and the reverse is named as logarithmic map [27]. In prac-
tice [13, 27], we set x = 0 for less cumbersome and empir-
ically have little impact on the obtained results.

3.2. Prototype Initialization

To facilitate the hierarchical structure construction in hy-
perbolic space, we utilize prototype learning. To bridge the
relation between samples and prototypes, we first introduce
multiple prototypes in hyperbolic space Dn as leaf nodes in
hierarchical structure respectively as:

Pleaf = {pij | i ∈ {0, 1}, j ∈ {0, 1, · · · ,K − 1}}, (4)

where pij ∈ Dn, i is the class index, and j is the proto-
type index in each class. The total number of the prototypes
|Pleaf| is 2K. For optimization difficulties when directly
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initializing the prototypes in hyperbolic space, we initialize
all prototypes in Euclidean space and transform into hyper-
bolic space via Equation 3 as p = expc0(pEuc), pEuc ∈ Rn is
the prototype in Euclidean space. Also, to explore the hier-
archical relations among the prototypes, we initialize more
prototypes in hyperbolic space Dn as the none-leaf nodes:

Pnone-leaf = {pk | k ∈ {0, 1, · · · ,K ′}}. (5)

where |Pnone-leaf| is K ′. Here, we assume the leaf proto-
types contain the label information for they mainly reflect
the distribution of the samples and the samples assigned
to the same prototype should have high consistency in fea-
tures. However, none-leaf prototypes are utilized to model
the whole hierarchical structure without any prior knowl-
edge (e.g. domain labels).

3.3. Hyperbolic Prototype Learning

To better utilize the prototypes in hyperbolic space to form
a representative distribution, we propose Hyperbolic Proto-
type Learning (HPL) to learn the relationship between the
samples and prototypes. Generally, there are two goals for
HPL: 1) Aligning the features precisely via introducing pro-
totypes; 2) Modeling the hierarchical structure of the fea-
tures in hyperbolic space. To tackle these issues, we pro-
pose Prototype-instance and Instance-instance learning for
prototype-based feature alignment and design Prototype-
prototype learning for hierarchical structure modeling.

3.3.1 Prototype-based Feature Alignment

To align the features via prototypes in feature space, we first
explore the relationship between the prototype and instance
features. After initializing the prototypes into feature space,
we first generate the positive pairs of the samples and pro-
totypes by assigning features to prototypes. We assign in-
stance features to corresponding prototypes iteratively via
the rule of proximity. Concretely, given the feature z and
label y, we compute the similarity between feature z to pro-
totypes in Pleaf with the same label, and assign feature z to
the closest prototype in hyperbolic distance:

p(z) = pyk = argmin
pyj∈Pleaf

dH(z, pyj), (6)

where p(z) is the prototype that feature z is assigned to.
We expect the features to be more similar to their assigned
prototype and distant to unassigned prototypes. We propose
Prototype-Instance level Contrastive Learning, which pulls
the features and their assigned prototype closer and pushes
away features and unassigned prototypes:

LPI = −
N∑

n=1

log
e−dH(zn,pck)∑
i,j e

−dH(zn,pij)
, (7)

where, pck is the prototype that zn is assigned to. More-
over, to ensure the prototypes effectively represent feature
distribution and avoid the trivial solution (e.g. unbalance
assignment or assigning only one prototype), we evenly as-
sign the samples in the mini-batch to all prototypes. With
the batch size b, every prototype can be assigned by b

K sam-
ples. Once the assigned samples to prototype p attend the
b
K , Pleaf = Pleaf − {p}. Finally, all prototypes should be
assigned samples with an even proportion.

On the other hand, although we leave some features not
shared across all samples via prototypes, we aim for the
left features to be task-related features. For this, we pro-
pose Instance-instance learning from the feature level and
distribution level. First, we utilize inputs without and with
augmentations x,xaug as pairs. To make sure the model can
learn consistent task-related features, we constrain the xaug
performs in the same way as x.

In feature level, we constrain the distance between the
feature z and zaug by minimizing distance:

LII−feat = dH(detach(z), zaug), (8)

where detach(·) stops the gradient of variables. Also, the
overall distribution of the z and zaug should be the same.
We restrict the distance of zaug to all Pleaf should be same as
z as:

LII−dist = ||dH(detach(z),Pleaf)−dH(zaug,Pleaf)||2. (9)

where || · ||2 is the L2 distance. The total loss for Instance-
instance learning is:

LII = LII−feat + LII−dist. (10)

3.3.2 Hierarchical Structure Modeling

In this part, we model the hierarchical structure by explor-
ing the Prototype-prototype relations. We utilize none-leaf
prototypes to construct the hierarchical structure of the leaf
prototypes which present sample distribution. To objec-
tively evaluate the quality of hierarchical trees, we utilize
Dasgupta cost [9] which is a widely-used metric in hierar-
chical clustering:

C =
∑
i,j

wij |leaves(pi ∨ pj)|, (11)

where C is the Dasgupta cost, wij is the ground-truth weight
of the similarity between two nodes pi and pj , pi ∨ pj
present the lowest common ancestor (LCA) and leaves(·)
presents the number of leave node to sub-tree with the cor-
responding root. To build a tree with minimized Dasgupta
cost, higher similarity nodes should have a smaller num-
ber of descendants of their LCA. However, it still faces
two issues: 1) Dasgupta cost is unable to be optimized via

1035



gradient for its discrete formulation; 2) The ground-truth
weight between nodes is unknown in this situation. Inspired
by [28], we build up triplets to optimize the relations be-
tween nodes via optimizing the distance.

First, we form the triplet relation {pi, pj , pk}, where
(pi, pj) are considered as the positive pairs and (pi, pk) are
negative. We use K-neighbor to determine the positive as:

(pi, pj) is positive ⇔ pi ∈ Nk(pj) & pj ∈ Nk(pi), (12)

where Nk(·) is the k nearest neighbors. We use dH(·, ·) to
measure the distance of two features. The negative pairs
are features that do not match the rules of Equation 12. The
probability of none-leaf prototypes ρ ∈ Pnone-leaf is the LCA
of pairs (pi, pj) is:

πij(ρ) = e−max(dH(pi,ρ),dH(pj ,ρ)), (13)

The final LCA is sampled from the distribution πij(ρ)
as:

ρij = argmax
ρ

(πij(ρ) + gij), (14)

where gij is the Gumbel noise to avoid local optima. Also,
we obtain ρijk as the LCA of the ρij and pk, which indicates
that ρijk show have a higher hierarchy than ρij . The loss to
optimize the relationship of the triplet is:

LPP−LCA = [dH(pi, ρij)− dH(pi, ρijk) + δ]

+ [dH(pj , ρij)− dH(pj , ρijk) + δ]

+ [dH(pk, ρijk)− dH(pk, ρij) + δ],

(15)

where δ is the margin. Also, consider the p ∈ Pleaf should
present high confidence in hyperbolic space and obtain high
variance among other leaf prototypes. So we constrain the
distances of all leaf prototypes to the origin point and the
distances between leaf prototypes as far as possible,

LP−Origin = − log
1

1 +
∑

pi∈Pleaf
e−dH(pi,O)

, (16)

LPP−leaf = − log
1

1 +
∑

pi,pj∈Pleaf
e−dH(pi,pj)

, (17)

where O is the origin of the hyperbolic space. The total loss
for Prototype-prototype learning is:

LPP = LPP−LCA + LP−Origin + LPP−leaf . (18)

3.4. Prototype-oriented Classifier

To better constrain and utilize the prototype-guided distri-
bution, we devise a Prototype-oriented Classifier. Previous
vanilla binary classifier roughly predicts the label through
the feature and ignores the prototype information, which
may hinder the performance. Since the distance between

the input feature and prototypes presents the locale of the
instance feature in distribution more precisely, we predict
the final task label by these similarities. We design a pre-
diction head to adaptively aggregate similarity information
and map it to the final task label. The prediction loss is
formulated as:

Lpred =
∑

(xn,yn)

−yn log(σ(W · dH(zn,Pleaf))), (19)

where W ∈ RK is a learnable weight for feature distances
to all leaf prototypes, σ(·) is the Sigmoid function.

3.5. Training Procedure

Our training procedure mainly contains three steps:
Step 1: Prototype Initialization. We initialize the Pleaf and
Pnone-leaf in hyperbolic space in random.
Step 2: Prototype Assignment. All features are assigned
to the closest leaf prototype via the rule of proximity itera-
tively as Equation 6.
Step 3: Prototype Optimization. After assigning the fea-
tures to corresponding prototypes, we optimize the relations
between features and prototypes via previous loss functions:

Lall = Lpred + LPI + LII + LPP (20)

Once the feature extractor and prototypes are updated, the
features will be re-assigned to prototypes as Step 2.

4. Experiments
4.1. Experimental Setup

Databases. Following previous DG-based FAS works [26,
33, 34], we evaluate the proposed method and other com-
petitors using four public FAS databases: OULU-NPU [5]
(denoted by O), CASIA-FASD [62] (denoted by C), MSU-
MFSD [54] (denoted by M) and Idiap Replay-Attack [7]
(denoted by I). These datasets were collected under differ-
ent devices, attack types, lighting conditions, backgrounds,
etc., leading to a significant domain shift. We conduct the
experiments strictly following the same protocol of the pre-
vious DG methods [33, 34, 51, 53]. Also, to evaluate the
generalizable ability in cross-attack scenarios, we conduct
the evaluation on HQ-WMCA dataset [23] with eight differ-
ent kinds of attacks. We conduct the experiment following
the protocol as [24].
Implementation Details. We first detect facial region from
the input and resize it to 256×256 with RGB channels. The
batchsize of each category in each domain is 5 and the to-
tal batchsize is 30. The number of leaf prototypes K is 20,
and the number of none-leaf prototypes K ′ are set to 256.
The feature dimension d in hyperbolic space is 256. The
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Method O&M&I to C O&C&M to I O&C&I to M I&C&M to O
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

Traditional
Methods

MS LBP [37] 54.28 44.98 50.30 51.64 29.76 78.50 50.29 49.31
Binary CNN [57] 34.88 71.94 34.47 65.88 29.25 82.87 29.61 77.54

IDA [54] 55.17 39.05 28.35 78.25 66.67 27.86 54.20 44.59
Color Texture [4] 30.58 76.89 40.40 62.78 28.09 78.47 63.59 32.71

LBPTOP [11] 42.60 61.05 49.45 49.54 36.90 70.80 53.15 44.09

Domain
Generalization

MMD-AAE [31] 44.59 58.29 31.58 75.18 27.08 83.19 40.98 63.08
MADDG [46] 24.50 84.51 22.19 84.99 17.69 88.06 27.98 80.02
SSDG-M [26] 23.11 85.45 18.21 94.61 16.67 90.47 25.17 81.83
DR-Net [52] 19.68 87.43 20.87 86.72 17.02 90.10 25.02 81.47

RFM [47] 20.27 88.16 17.30 90.48 13.89 93.98 16.45 91.16
D2AM [6] 20.98 85.58 15.43 91.22 12.70 95.66 15.27 90.87
ANRL [33] 17.85 89.26 16.03 91.04 10.83 96.75 15.67 91.90
DRDG [34] 19.05 88.79 15.56 91.79 12.43 95.81 15.63 91.75

SSAN-M [53] 16.47 90.81 14.00 94.58 10.42 94.76 19.51 88.17
AMEL [64] 11.88 94.39 18.60 88.79 10.23 96.62 11.31 93.96
EBDG [12] 18.34 90.01 18.69 92.28 9.56 97.17 15.66 92.02

Prototype
Learning

CPL [55] 16.66 90.72 15.25 90.17 10.43 95.48 19.16 88.81
PCL [58] 17.78 91.04 17.65 90.28 15.04 92.70 17.50 91.72

Hyperbolic
Embedding

HIE [27] 18.89 91.36 23.75 72.81 17.50 93.48 18.61 88.68
HBL [18] 13.33 93.68 20.00 80.00 17.08 92.67 15.37 91.96

Ours HPDR 11.30 94.42 11.26 92.49 4.58 96.02 9.93 95.26

Table 1. Comparison with face anti-spoofing methods on four testing tasks for domain generalization.

Method M&I to C M&I to O
HTER(%) AUC(%) HTER(%) AUC(%)

MS LBP [37] 51.16 52.09 43.63 58.07
IDA [54] 45.16 58.80 54.52 42.17
CT [4] 55.17 46.89 53.31 45.16

LBPTOP [11] 45.27 54.88 47.26 50.21
MADDG [46] 41.02 64.33 39.35 65.10
SSDG-M [26] 31.89 71.29 36.01 66.88

RFM [47] 36.34 67.52 29.12 72.61
D2AM [6] 32.65 72.04 27.70 75.36
ANRL [33] 31.06 72.12 30.73 74.10
DRDG [34] 31.28 71.50 33.35 69.14

SSAN-M [53] 30.00 76.20 29.44 76.62
EBDG [12] 27.97 75.84 25.94 78.28
AMEL [64] 24.52 82.12 19.68 87.01
CPL [55] 32.15 72.54 32.50 71.25
PCL [58] 33.58 75.41 31.05 72.03
HIE [27] 29.63 79.49 24.96 79.05
HBL [18] 25.56 80.73 25.44 80.70

Ours 22.22 85.54 21.07 87.53

Table 2. Comparison on limited source domains.

curvature parameter c is 0.01. We select 3 nearest neigh-
bors in default for positive prototype pairs formulating. The
margin δ in LPP−LCA is set to 0.1. We use the same em-
bedding part of DepthNet [36]. Also, to show the effec-
tiveness of our methods in different backbones, we also ap-
ply ResNet-18 [22] and IADG [66] as embedding parts in
Supplementary Material. Adam optimizer is applied with
lr = 0.001, β1 = 0.9, β2 = 0.999 to train the frame-
work. We use the public Pytorch [40] framework with 24G
NVIDIA 4090 GPUs on Linux to implement the proposed
method. Half Total Error Rate (HTER), Area Under Curve
(AUC) and Average Classification Error Rate (ACER) are
used as evaluation metrics.

4.2. Comparison Results

Strictly following the previous works [24, 26, 33, 34], we
evaluate the methods on Leave-One-Out (LOO) validation,
Limited Source Domains, and Cross-attack Settings to indi-
cate the generalizability to the unseen domain and attacks.
Leave-One-Out (LOO). We conduct Leave-One-Out set-
tings of FAS task by picking up three databases as the
source domains for training and leaving out the rest dataset
as the target domain. As shown in Table 1, We have the fol-
lowing observations from the results: 1) DG-based methods
have better performance than traditional methods, which il-
lustrates that domain generalization techniques can promote
generalization. 2) Compared with other DG-based meth-
ods, our method shows a promising performance. Because
previous methods directly align the features which may ne-
glect the hierarchical relations. Our method introduces pro-
totypes into hyperbolic space to form a refined distribution.
3) Our method outperforms prototype learning methods be-
cause prototype learning focuses on relationships between
the prototypes and instances. However, we are more con-
cerned about relations and form a hierarchical view to ob-
tain a refined distribution for generalization. 4) Our method
outperforms other hyperbolic embedding methods for in-
troducing prototypes to explore the hierarchical structure in
hyperbolic space, which provides a credible feature model-
ing that improves generalizability.
Limited Source Domains. We evaluate our method with
extremely limited two source domains. Following the pre-
vious works [33, 34], MSU and Idiap are the source domain
and the remaining ones (OULU and CASIA) are used for
testing. As shown in Table 2, our method obtains the best
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Method FlexibleMask Glasses Makeup Mannequin PaperMask RigidMask Tattoo Replay Mean±Std
Auxiliary(Depth) [36] 40.7 48.9 25.1 0.8 0.3 26.0 35.4 0.8 22.3±18.2
CDCN [59] 33.1 46.1 38.1 1.4 8.2 10.0 40.7 1.1 23.3±17.7
DCN [24] 10.4 48.6 30.7 0.0 0.0 34.3 35.4 0.0 19.9±18.3
Ours 9.7 25.6 15.7 6.8 2.1 12.7 25.4 19.0 14.6±8.5

Table 3. Comparison result on the cross-attack settings with ACER(%).

LPI LII LPP
O&M&I to C

HTER(%) AUC(%)
17.78 90.29

✓ 15.56 92.07
✓ 15.64 90.76

✓ 15.74 91.25
✓ ✓ 14.07 92.04
✓ ✓ 12.78 93.47

✓ ✓ 13.67 92.89
✓ ✓ ✓ 11.30 94.43

Table 4. Abaltion study on the loss functions. The checked items
(✓) indicate the corresponding loss is used for optimization.

performance on these more challenging cases. Compared
to AEML on M&I to C task, our method gains 2.30% and
3.42% with HTER and AUC. Compared with hyperbolic
embedding learning methods and prototype-based methods,
our method still shows a better performance. Our model is
also effective in limited domains.
Cross-attack Setting. We evaluate our method on cross-
attack setting with HQ-WMCA dataset [23] in Table 3 with
ACER. HQ-WMCA contains eight kinds of attacks includ-
ing FlexibleMask, Glasses, Makeup, Mannequin, Paper-
Mask, RigidMask, Tattoo, and Replay. We leave one attack
out in the training stage and test with the move-out attack
samples to evaluate the cross-attack performance. Com-
pared to previous methods, our method outperforms in over-
all performance. Our HPDR framework aligns the features
in a hierarchical structure in hyperbolic space to provide
more discriminating features and shows the effectiveness
even tested with unseen attacks.

4.3. Ablation Study

Different Loss Functions. We explore how Hyperbolic
Prototype Learning contributes to feature modeling. We
conduct the experiments on O&M&I to C and remove some
losses as shown in Table 4. All experiments are equipped
with Lpred for classification. We have the following ob-
servations: 1) Without any loss, the result is the worst,
which indicates that directly utilizing the hyperbolic space
can not improve the performance. 2) With only one loss
function, LPI improves the performance most, the reason
is that Prototype-instance learning bridges the relation be-
tween the prototypes and instance and causes less informa-
tion loss in feature alignment. 3) With LPI and LPP , the
performance improves a lot. LPP tasks the advantage of
hyperbolic space and forms a more reasonable feature space

|Pleaf|
O&M&I to C

HTER(%) AUC(%)
4 15.56 93.03
6 13.52 93.13
10 12.17 92.41
20 (Ours) 11.30 94.43
40 12.29 93.45
60 13.14 91.61

Table 5. Ablation study on the number of leaf prototypes.

in the hierarchical structure. 4) With all loss functions, our
method gets the best performance which confirms all losses
play important roles in proposed network.
Number of Leaf Prototypes. We explore the influence of
leaf prototype numbers on O&M&I to C task. We apply the
number of the leaf prototypes from 4 to 60. The result is
shown in Table 5. We conclude that with the increase of
prototypes until 20, we get the best performance. Within a
certain range, more prototypes will form a better represen-
tation of the feature space. After adding more prototypes,
the performance will not increase, which indicates that 20
prototypes per class are enough for formulating a represen-
tative feature space. Also, our batchsize is limited to 30 for
computational resource restriction, the prototype numbers
over 30 may cause unbalance assignments in every training
step and lead to a trivial solution.
Curvature Parameter. We explore how the curvature pa-
rameter c influences the result on O&M&I to C with cur-
vature parameters from 0.001 to 1 and the Euclidean space
(i.e. c = 0), as shown in Table 6. We found that: 1) The
result in Euclidean space degrades because Euclidean space
is not suitable for hierarchical structure modeling. 2) With
increase of c, the performance first increases until 0.01. A
larger curvature provides flexible hyperbolic space for hi-
erarchical structure modeling. When the curvature still in-
creases, the performance decreases. We transform the fea-
ture to hyperbolic space with the exponential map at x = 0
as the approximation. When the curvature increases, the
approximation is not reasonable and causes the bias.
Classification Strategy. To verify the effectiveness of our
Prototype-oriented Classifier, we designed the following
classification strategies: 1) Classify by the average distance
to live prototypes (AvgLive); 2) Classify by the maximum
distance to live prototypes (MaxLive); 3) Classify by the
maximum distance to attack prototypes (MaxFake); 4) Clas-
sify by the hyperbolic Multiclass Logistic Regression (Hy-
perbolic MLR) which is the Linear Regression in hyper-
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Figure 3. (a, c-h) The feature visualization on four Leave-One-Out tasks and cross-attack tasks. For every task, we select 300 samples from
the source dataset and 300 samples from the target dataset. (b) Visualization of the hierarchical structure of the samples in O&M&I to C
tasks. We selected 10 prototypes with 6 samples as an example.

Curvature c
O&M&I to C

HTER(%) AUC(%)
0 (Euclidean) 22.22 83.74
0.001 15.56 92.19
0.01 (Ours) 11.30 94.43
0.1 14.44 92.30
1 18.15 90.83

Table 6. Ablation study on the curvature in hyperbolic space.

bolic space. As shown in Table 7, we have the following ob-
servations: 1) Compared to the deep learning-based meth-
ods, hand-craft methods show a limited result. The reason
is that the hyperplane decided via the distance neglects the
variance of different prototypes. 2) Deep learning-based
methods perform better for forming a more credible hy-
perplane and considering the general distribution. 3) Our
Prototype-oriented Classifier outperforms others in utiliz-
ing the prototype information and mitigating the influence
of variance of different prototypes via learnable weight.

4.4. Visualization and Analysis

We visualize the feature distribution in Figure 3 (a, c-h)
on Leave-One-Out and cross-attack tasks. Our method
presents a hierarchical structure with the assistance of none-
leaf prototypes. Also, our method shows an outstanding
performance on cross-domain generalizability for our pro-
totypes mitigates the information loss in feature alignment.
Also, to indicate the effectiveness of the leaf prototypes,
we visualize the samples assigned to different prototypes in
Figure 3 (b), and will show more examples in cross-attack
settings in Supplementary. All samples from the same pro-
totypes share a high similarity. Also, for the prototypes with
a lower LCA, their samples are more similar compared to
the samples from a higher LCA. Our method successfully
explores the hierarchical structure without prior knowledge.

Classification Strategy O&M&I to C
HTER(%) AUC(%)

Hand-crafted
AvgLive 17.96 91.72
MaxLive 14.62 91.25
MaxFake 19.81 88.74

Deep Learning Hyperbolic MLR 13.52 93.26
Ours 11.30 94.43

Table 7. Ablation study on different classification strategies.

5. Conclusion

In this paper, we propose a novel Hierarchical Prototype-
guided Distribution Refinement (HPDR) framework, intro-
ducing the prototypes into hyperbolic feature space to ob-
tain a refined domain distribution with a hierarchical struc-
ture for generalization. Specifically, we first introduce the
leaf and none-leaf prototypes into hyperbolic features space
separately for hierarchical structure construction. Then, we
propose Hyperbolic Prototype Learning (HPL) to constrain
the multi-level relations between features and prototypes.
Moreover, we devise Prototype-oriented Classifiers to con-
sider the relations between features and prototypes to im-
prove the robustness of the final decision. Extensive ex-
periments and analysis demonstrate the effectiveness of our
method against state-of-the-art competitors.
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