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Abstract

SVG (Scalable Vector Graphics) is a widely used graph-
ics format that possesses excellent scalability and editabil-
ity. Image vectorization, which aims to convert raster im-
ages to SVGs, is an important yet challenging problem in
computer vision and graphics. Existing image vectorization
methods either suffer from low reconstruction accuracy for
complex images or require long computation time. To ad-
dress this issue, we propose SuperSVG, a superpixel-based
vectorization model that achieves fast and high-precision
image vectorization. Specifically, we decompose the input
image into superpixels to help the model focus on areas with
similar colors and textures. Then, we propose a two-stage
self-training framework, where a coarse-stage model is em-
ployed to reconstruct the main structure and a refinement-
stage model is used for enriching the details. Moreover,
we propose a novel dynamic path warping loss to help
the refinement-stage model to inherit knowledge from the
coarse-stage model. Extensive qualitative and quantitative
experiments demonstrate the superior performance of our
method in terms of reconstruction accuracy and inference
time compared to state-of-the-art approaches. The code is
available in https://github.com/sjtuplayer/
SuperSVG.

1. Introduction

Scalable Vector Graphics, commonly known as SVG, is a
widely used vector image format that has a wide range of
applications and advantages within the domains of web de-
sign, graphic design, mobile applications, data visualiza-
tion, and various other contexts. Compared with raster im-
ages that represent content by pixels, SVG describes im-
ages by parameterized vectors and benefits from its scala-
bility and editability where it can be resized to any resolu-
tion without losing quality and can be easily manipulated
by its layer-wise topological information.

Given the superior capabilities of Scalable Vector Graph-
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Figure 1. Overview of our SuperSVG: our model first decomposes
the image to be vectorized into superpixels, each containing pix-
els sharing similar colors and contents. The coarse-stage model
predicts the path parameters to reconstruct the main structure, and
then the coarse paths guided refinement model enriches the details
by learning the knowledge from the coarse-stage model. Com-
pared to the previous methods, our SuperSVG achieves both a high
vectorization accuracy and fast computation speed.

ics (SVG) in image representation and editing, there is
much research on the topic of image vectorization, which
aims to convert rasterized images into SVG. The existing
methods can be categorized into three classes: 1) Tradi-
tional algorithm-based methods [15, 18, 24, 28, 33, 37],
where conventional algorithms are employed to fit images,
but they usually suffer from a lower vectorization quality. 2)
Deep-learning-based methods [9, 10, 12, 19, 21, 22], which
parameterize raster images using deep neural networks for
reconstruction. They are efficient and can handle the vec-
torization of simple graphics or characters (e.g., icons and
emojis), but struggle to vectorize complex images. 3)
Optimization-based methods [17, 20, 26, 38], which opti-
mize SVG parameters to fit the target image, yielding rela-
tively superior reconstruction quality. However, these meth-
ods entail a substantial amount of time and computational
resources, making them impractical for timely processing of
large-scale data. In summary, previous image vectorization
methods either suffer from low reconstruction quality for
complex images, or demand extensive computation time,
imposing significant constraints on their practical utility.

To achieve good vectorization quality with high ef-
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ficiency, we propose SuperSVG, a deep-learning-based
method that translates images into scalable vector graphics
(SVG) in a coarse-to-fine manner. Since neural networks
have difficulties in directly vectorizing complex images, we
decompose the input image into different parts in the form
of superpixels wherein the pixels share similar colors and
textures and then vectorize each part. Then, we propose
a Two-Stage Self-Teaching Training framework to vector-
ize the superpixels, where the coarse-stage model is trained
to reconstruct the main structure of the image and the re-
finement-stage model is trained to enrich the image details.
We make use of the predicted paths from the coarse-stage
model to guide the refinement-stage model in image vector-
ization. Furthermore, we propose a novel Dynamic Path
Warping loss which helps the refinement-stage to inherit
the knowledge of the coarse-stage model. With the help
of the superpixel-based image decomposition and the two-
stage self-teaching framework, our SuperSVG can keep the
image structure well and reconstruct more details at high
speed. Extensive quantitative and qualitative experiments
validate the effectiveness of our model.

The main contributions of our work are four-fold:

• We propose SuperSVG, a novel superpixel-based vector-
ization model that translates the rasterized images into
scalable vector graphics (SVG) based on superpixels and
vectorizes the superpixels in a coarse-to-fine manner.

• We design a Two-Stage Self-Teaching Training frame-
work, where we employ a coarse-stage model to recon-
struct the main structures and a refinement-stage model
to enrich the image details based on the coarse-stage out-
put.

• We propose a Coarse Paths Guided Training strategy to
guide the refinement-stage model to inherit the knowl-
edge from the coarse-stage model, which greatly im-
proves the performance of the refinement-stage model
and avoids converging to suboptimal local minimum.

• We propose Dynamic Path Warping (DPW) loss, which
measures the distance between the predicted paths from
the refinement-stage model and the pseudo ground truth
approximated with coarse paths. By minimizing the DPW
loss, the refinement-stage model can distill the knowledge
from the coarse-stage model.

2. Related Work

2.1. Image Vectorization

Image vectorization aims to transform a rasterized image
into scalable vector graphics (SVG) composed of parame-
terized vectors. Different from raster images that may be-
come blurry when zooming in, SVG can be rendered at any
resolution without losing quality and is convenient to edit,
widely used in web design, graphic design, etc. The existing
vectorization methods can be classified into 3 categories:

Traditional Algorithm-based Image Vectorization
Methods can be classified into mesh-based and curve-based
ones. The mesh-based methods [15, 18, 28, 37] segment
an input image into non-overlapping patches, and infer the
color and the boundary location for each region. The curve-
based methods [1, 5, 24, 32, 36] employ Bézier curves with
different colors defined on either side to create the vec-
tor image. Potrace [24] is a representative method of this
type that projects the smooth outlines into Bézier paths, and
merge the adjacent paths together. However, the vectoriza-
tion quality of these methods still needs improvements.

Deep-learning-based Image Vectorization Methods
use neural networks to project a raster image into SVG.
Im2Vec [21] employs a variational auto-encoder (VAE) [14]
to embed the input image and then maps it into path param-
eters by a Long Short-Term Memory (LSTM) module [23].
Raster2Vec [19] is focused on vectorization of rasterized
floor plans using a ResNet [11]. Gao et al. [9] rely on a
pre-trained VGG network [25] and a hierarchical Recurrent
Neural Network (RNN) to output parametric curves of dif-
ferent sizes. But these methods only focus on simple images
and cannot vectorize complex images well. In comparison,
our SuperSVG is the first deep-learning-based method that
can vectorize images with complex details, thanks to our su-
perpixel decomposition and coarse-path guided refinement
that substantially reduce the learning difficulties.

Optimization-based Image Vectorization Methods.
DiffVG [17] proposes a differentiable renderer that renders
the SVG parameters into images. Based on this, DiffVG
minimizes the distance between the rasterized and vector
images by optimizing the SVG parameters using gradient
descent. LIVE [20] and SAMVG [38] further introduce a
layer-wise optimization framework, which achieves better
vectorization quality over the previous methods. However,
due to the low optimization efficiency, they suffer from a
long optimization time. In contrast, our SuperSVG achieves
both a good vectorization quality and high efficiency.

2.2. Superpixel Decomposition

Superpixel decomposition is usually used for data pre-
processing in vision tasks. Existing superpixel decom-
position methods can be categorized into methods based
on traditional algorithm or deep learning. For the tra-
ditional algorithm based methods, diverse strategies have
been employed, e.g., energy-driven sampling [30], geomet-
ric flows [16] and clustering [3]. Some recent works [13, 29,
34] employ neural networks to enhance the performance in
superpixel decomposition, which shows great potential in
this task.

3. Method
Image vectorization aims to translate a rasterized image I
into a Scalable Vector Graphic (SVG). An SVG is com-
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Figure 2. Main framework of our SuperSVG: we decompose the target image into superpixels and vectorize each superpixel separately.
We employ an attention-based coarse-stage model to predict SVG paths that reconstruct the main structure of the superpixel. Then, a
refinement-stage model guided by the coarse paths is designed to predict more SVG paths to refine details based on the coarse image.
Finally, by combining all the predicted SVGs for each superpixel, we obtain an output SVG with good structure and fine details.

posed of many vector primitives, which can be SVG paths,
ellipses, circles, or rectangles, etc. Following previous
works [17, 20, 21], we employ the SVG paths as the shape
primitive, where each SVG path defines a region con-
structed by multiple cubic Bézier curves connected end-to-
end with certain color. With the parameters of these SVG
paths, the rasterized image can be rendered in any resolu-
tion. To obtain the path parameters, some previous meth-
ods [17, 20] optimize the path parameters directly to mini-
mize the distance between the input image and the rendered
image, which achieves good reconstruction quality but re-
quires long optimization time. To speed up the vectorization
process, some deep-learning-based methods [21] employ a
deep-learning model to predict the SVG path parameters,
but struggle to vectorize complex images.

To achieve good vectorization quality with high effi-
ciency, we propose SuperSVG, a deep-learning-based im-
age vectorization method that translates images into SVG
path parameters automatically. To improve the model abil-
ity to vectorize complex images, we segment the input im-
age into different parts, within which the pixels share sim-
ilar colors and textures, and then vectorize each part sepa-
rately, where superpixels are used for image segmentation
as they tend to maintain compactness, uniformity and regu-
larity, particularly suitable for our task. For each superpixel
x ∈ X where X is the set of all superpixels, our model
converts it into a sequence of path parameters, where each
path is composed of several cubic Bézier curves and has a
fill color, with a total of Np parameters. With the predicted
path parameters for each superpixel, we employ the differ-

entiable renderer R(·) from DiffVG [17] to get the rendered
image Î in pixel space, which is expected to be close to the
input image I .

We propose a two-stage self-teaching framework, com-
posed of a coarse-stage model Ec to reconstruct the main
structure and a refinement model Er to enrich the de-
tails, where the predicted paths from coarse-stage model
are used to guide the refinement model in vectorization.
Ec takes the superpixel x as input and outputs n paths
S = {s1, s2, · · · sn} to reconstruct main structure; while
Er takes both the rendered image R(S) and target super-
pixel x as inputs, and outputs m paths S′ = {s′1, s′2 · · · s′m}
to refine details. Combining all the predicted S and S′ for
each superpixel produces the final SVG result.

3.1. Superpixel-based Coarse Reconstruction

Superpixel decomposition. Considering the optimization-
based methods suffer from a long optimization time, our
SuperSVG builds upon neural networks to efficiently pre-
dict SVG paths. However, as neural networks have difficul-
ties in directly vectorizing complex images [8] we therefore
simplify the task to vectorizing a certain part of the image
containing homogeneous colors and textures. Since super-
pixel algorithms provide a good tool to decompose images
based on local pixel color and also ensure alignment of the
regions with the image boundaries, we segment the input
image into superpixels, and our model reconstructs each su-
perpixel with scalable vectors. Superpixels also tend to be
more regular, making them easier for vectorization. Specif-
ically, we utilize SLIC [3] to decompose the input image
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Figure 3. Illustration of our boundary loss LBound, which com-
putes the area of the SVG paths that are outside the superpixel
mask, and guides the paths to be inside the superpixel.

into superpixels. We set the compactness parameter as 30
for SLIC to make superpixels more regular.

Coarse-stage model. For a superpixel x with mask
mask (indicating those pixels within x with 1 and 0 oth-
erwise), we first design the coarse-stage model Ec to vec-
torize the main structure by predicting the SVG path se-
quence Ec(x) = S = {s1, s2, · · · sn}. Inspired by At-
tnPainter [27], Ec is composed of a Vision Transformer
(ViT) encoder [7] and a cross-attention module followed by
a self-attention module, which is shown in Fig. 2.

Specifically, the ViT encoder first encodes the input su-
perpixel x into image feature Tf . To control the num-
ber of output paths (n) and the parameter number in each
path (Np), we employ a cross-attention module to calcu-
late the correlation between the image feature Tf and n
Np-dimensional learnable path queries Tl, and output an
intermediate feature T ′

f with the shape of path parameters
(n×Np), which is formulated as:

T ′
f = Softmax(

(WQTl)(WKTf )
T

√
d

)(WV Tf ), (1)

where WQ, WK and WV are learnable query, key and value
matrices.

Then, a self-attention module is employed to process the
image feature T ′

f and project it into the parameter space
with n paths, where each path contains Np parameters.

Training objectives. 1) Normalized Reconstruction
Loss: We employ the differentiable renderer R(·) in Dif-
fVG [17] to render a raster image x̂ = R(S) from the pre-
dicted path parameters S. Then, we train the coarse-stage
model Ec by minimizing the normalized L2 distance be-
tween the rendering x̂ = R(S) and the target image:

L2 = ∥x̂−x∥2 ·
∑

p mask(p)

wh
, (2)

where w and h are the width and height of the superpixel
image x and the superpixel mask mask, and mask(p) indi-
cates the mask value (1 or 0) for pixel p.

2) Boundary Loss: To avoid the SVG path from crossing
the superpixel boundary, we propose boundary loss to guide
the paths to be inside the superpixel. We set the color of all

Target 0 Iter 30 Iter 100 Itercanvas

��

Our
 ����

Figure 4. Problem of training the refinement model with L2 loss
alone: optimizing a newly-added path on the canvas by L2 grad-
ually pulls it to disappear (as a suboptimal local minimum). With
our proposed coarse paths guided training and DPW loss, the
added path is successfully optimized to resemble the target.

predicted SVG paths to 1 (white) to get a new path sequence
Sbinary. Then, we compute the boundary loss by:

LBound = E
p∼mask

(R(Sbinary) · (1−mask)), (3)

Since (1 − mask) is 1 outside the superpixel mask and 0
inside the mask, the loss term calculates the area of the paths
that are outside the superpixel. When some SVG paths cross
the superpixel boundary, the path area outside is penalized;
while when all SVG paths are inside the superpixel, LBound

reaches 0 (Fig. 3).
3) Path Efficiency Loss: To enable our model to recon-

struct the maximum amount of information with the fewest
paths, we propose the path efficiency loss LPE . Specifi-
cally, for each path i, an additional opacity parameter βi is
predicted. We treat the path as visible if βi ≥ 0.5, and the
loss LPE penalizes the case with more visible paths, i.e.,
to encourage reconstructing the image with as few paths as
possible, calculated as:

LPE =
∑n

i=1 Sign(βi − 0.5), (4)

where Sign(·) is the sign function. Since Sign(βi) is not
differentiable, we approximate ∂Sign(βi)

∂βi
by Sig(βi)(1 −

Sig(βi)), where Sig(·) is the sigmoid function.
The final training objective is formulated as:

E∗
c = argmin

Ec

L2 + λBoundLBound + λPELPE . (5)

3.2. Coarse Paths Guided Refinement Stage

In the coarse reconstruction stage, our coarse-stage model
Ec can output an SVG that captures and reconstructs the
main structure of the input superpixel x. The rendered im-
age from the SVG (denoted as c1) resembles x in general,
but lacks some image details, especially when the super-
pixel is complex. To enrich image details, we employ a re-
finement model Er to predict more SVG paths to add more
details based on the current canvas c1.

Model framework. Different from the coarse-stage
model Ec that only takes the target superpixel x as input, the
refinement model Er takes both the current canvas c1 (ren-
dered from the coarse stage output) and the target superpixel
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x as inputs, and predict new paths S′ = {s′1, s′2 · · · s′m} to
be overlaid onto the canvas to refine details. Specifically,
3 convolution layers followed by ReLU activations are em-
ployed to fuse the two input images into a feature map. Af-
ter getting the fused feature map, Er shares the same struc-
ture as the coarse-stage model Ec, which encodes the fused
feature map by a ViT Encoder and maps the encoded fea-
tures into path parameters by a cross-attention and a self-
attention layer. To accelerate the training process, we inherit
the weights of the ViT encoder in Ec as an initialization.

Local optimal solution with L2 loss. The goal of the
refinement model is to reconstruct more details of the input
superpixel based on the current canvas. A simple L2 loss
defined as follows is used as the reconstruction loss:

L2 = ∥x−R([Ec(x), Er(x, c1)])∥2 ·
∑

p mask(p)

wh
, (6)

where the predicted path sequences by coarse-stage model
Ec and refinement model Er are concatenated together to
get the final SVG result, and the rendered image of which is
expected to resemble the input superpixel x.

However, the refinement model Er trained with Eq.(6)
alone tends to predict paths that are extremely small in area,
or even invisible. In Fig. 4, we use an example to illustrate
this phenomenon more clearly: we newly add a path onto
the canvas and optimize the path parameters with L2 loss;
it can be seen that the new path gradually shrinks and fi-
nally disappears in the canvas. A possible reason is that the
coarse stage result c1 is already close to x, and a local op-
timal solution for Er is to overlap nothing onto c1, which
is better than adding a sub-optimal path and can prevent the
L2 distance from increasing.

Coarse paths guided training framework. To avoid
the refinement model from falling into poor local optimum,
we propose a coarse paths guided framework, which in-
herits the knowledge from the coarse-stage model to help
train the refinement model with an additional constraint on
the SVG path parameters. As illustrated in Fig. 2, for an
input superpixel x, we first use the coarse-stage model to
predict a coarse level path sequence S = {s1, s2 · · · sn}.
Then, we randomly choose a value k ∈ (1, n − m) and
split the predicted path sequence into two subsequences:
S1 = {s1, s2, · · · , sk} and S2 = {sk+1, sk+2, · · · , sn}.
The subsequence S1 is then rendered into c1 = R(S1) and
used as the input canvas for the refinement model Er, while
the remaining subsequence S2 can be regarded as a pseudo
ground truth for the output path sequence of Er. Specif-
ically, when training Er, in addition to the previous con-
straints that operate in the pixel space, we add a new con-
straint on the path parameter space, which minimizes the
distance between path sequences S′ and S2.

In detail, during training, the refinement model Er takes
both the canvas c1 = R(S1) and the target image x as in-
puts, and outputs the path sequence S′ = {s′1, s′2, · · · , s′m}.

Algorithm 1 Forward pass to efficiently compute dpwγ(S,S
′).

Input: S, S′, smoothing γ ≥ 0, distance function d
1: p0,j = 0; pi,0 = qi,0 = q0,j = ∞, i ∈ [[n]], j ∈ [[m]]
2: for j = 1, ...,m do
3: for i = 1, ..., n do
4: pi,j = di,j +minγ(qi,j−1, pi,j−1)
5: qi,j = minγ(qi−1,j , pi−1,j)
6: end for
7: end for

Output: (minγ(pn,m, qn,m), P,Q)

Figure 5. Difference between DTW and our DPW. a) Both the
DTW and DPW loss calculate the sum of distances of elements
colored yellow. The difference is that one generated path can only
match one target path in DPW to avoid averaging several target
paths. b) The comparison between the training processes.

We minimize both the distance in pixel space and path pa-
rameter space, with the total loss formulated as:

E∗
r = argmin

Er

L2 + λDPWLDPW + λBoundLBound,

(7)
where LDPW (detailed in Sec. 3.3) is the distance between
the path sequences S2 and S′ in the path parameter space.

3.3. Dynamic Path Warping

To calculate the distance between the target path sequence
S = {s1, s2, · · · sn} and the predicted path sequence S′ =
{s′1, s′2 · · · s′m}, Dynamic Time Warping (DTW) [4] is a
commonly used metric, which finds an optimal matching
match between the two ordered sequences (the yellow
points in Fig. 5(a)) to minimize the accumulated distance
n∑
i

∥si − s′match(i)∥
2 where match(i + 1) ≥ match(i).

Note that the monotonicity of the matching function cannot
be ignored since the path sequences are well-ordered where
latter paths are overlaid on former paths.
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In our coarse paths guided framework, we expect the
generated path sequence to be a subsequence of the target
path sequence. However, in DTW, one generated path s′j
can correspond to several target paths si1, ..., sil. There-
fore, when trained with DTW, one generated path tends to
become the average of several target paths. As shown in
Fig. 5(b), when optimizing 3 paths to match the target emoji
(with 4 paths), one path becomes the average of the two eye-
brow paths, which is not our desired case.

To address this issue, we propose Dynamic Path Warping
(DPW), where each generated path should match one and
only one target path, and some target paths can be skipped
(to learn a subsequence), as shown in Fig. 5(a), each hor-
izontal line only passes through one matching point (yel-
low). To compute the DPW, we define pi,j as the minimum
accumulated distance when si matches s′j , and qi,j as the
minimum accumulated distance when s′j has been matched
to one path before si (not including si). We employ dy-
namic programming to compute the final DPW loss pn,m as
shown in Alg. 1. For each pi,j , the distance di,j between si
and s′j is added to the smaller one of qi,j−1 and pi,j−1. And
for each qi,j , its value takes the smaller one between qi−1,j

and pi−1,j (more explanations are provided in the supple-
mentary material). Moreover, to make Alg. 1 differentiable,
we follow SoftDTW [4] to substitute the min(·) operation:

minγ(a0, a1, ..., an) =

{
mini≤n ai γ = 0,

−γ log
∑n

i=1 e
−ai/γ γ > 0.

4. Experiments
4.1. Experiment Setting

Implementation Details. We use SVG paths composed
by cubic Bézier curves as the vector primitive, where each
SVG path is closed, composed of 4 cubic Bézier curves con-
nected end-to-end and has a fill color. Each SVG path has
28 parameters (24 for shape, 3 for color, and 1 for visibility).
The coarse-stage model is trained to predict 128 paths for
each superpixel first. Then, the refinement model is trained
to predict 8 paths at one time. We train both the coarse-
stage model and refinement model on ImageNet dataset [6].
We set batch size as 64 and learning rate as 2.5 × 10−4.
We train the coarse-stage model for 200K iterations with
5K warm up iterations, and train the refinement model for
200K iterations with λDPW decreasing from 1× 10−3 to 0
in 10K iterations uniformly. In the following experiments,
we implement our model with two versions: 1) SuperSVG-
B, that decomposes the image into superpixels and vector-
izes them by the coarse-stage model and refinement model,
and 2) SuperSVG-F, which finetunes the SVG parameters
from SuperSVG-B with L2 loss, which takes around 10 sec-
onds for optimization. All experiments are carried out on an
NVIDIA GeForce RTX 4090 24GB GPU.

Evaluation Details. For quantitative evaluation and
comparison, we test our model on 1,000 images randomly
selected from ImageNet test set, and convert each image
into SVGs with 500, 2,000 and 4,000 paths respectively.
With the predicted SVG paths, we evaluate the reconstruc-
tion accuracy of the output SVG with the following 4 met-
rics: 1) MSE Distance and 2) PSNR to measure the pixel
distance between the input image and the rendering from
SVG; 3) LPIPS [35] to evaluate the perceptual distance, and
4) SSIM [31] to measure the structural distance. We further
compare with Im2Vec [21] on EMOJIS dataset [2].

4.2. Image to SVG Comparison

State-of-the-art methods. The state-of-the-art methods
can be classified into 3 categories: 1) Algorithm-based
methods: Potrace [24] employs edge tracing to vectorize
binary images. To process color images, we follow Color
Trace1 to first quantize color images into different layers
and then convert each layer to SVG using Potrace. Adobe
Illustrator [1] is a widely-used commercial software which
converts an image into SVG through image tracing. 2)
Deep-learning-based methods: Im2Vec [21] encodes the tar-
get image into latent and predicts the vector paths with
LSTM (#suppl.); and 3) Optimization-based methods: Dif-
fVG [17] optimizes path parameters with random initial-
ization and LIVE [20] employs layer-wise optimization to
ensure a good vectorization structure. We use the official
codes of these methods and default settings for comparison.

Qualitative Comparison on ImageNet. We compare
with the state-of-the-art vectorization methods in recon-
struction accuracy on ImageNet. Specifically, we conduct
the comparison experiments under path numbers 500, 2,000
and 4,0002. The qualitative results are shown in Fig. 6. It
can be seen that Potrace cannot reconstruct the image well.
LIVE loses a lot of details in relatively smooth areas due
to its emphasis on regions with substantial color variations.
DiffVG and Adobe work better when the path number in-
creases, but they reconstruct fewer details than our Super-
SVG. In comparison, our SuperSVG-B reconstructs most
of the details with a short inference time. And by optimiz-
ing the SVG parameters from SuperSVG-B with only 10
seconds, our SuperSVG-F achieves the best reconstruction
accuracy under different SVG path numbers.

Quantitative Comparison on ImageNet. We further
conduct quantitative comparison on 1,000 images randomly
sampled from ImageNet [6] dataset (50 images for LIVE
due to the extremely long optimization time: each input im-
age takes about 6 GPU hours to optimize under 500 SVG
paths). The quantitative results are presented in Tab. 1. Our
SuperSVG achieves the best image vectorization results.

1https://github.com/HaujetZhao/color-trace
2Since Adobe and Potrace outputs have different number of parameters

in each path, we keep their output parameter number the same as ours.
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Target SuperSVG-B SuperSVG-F LIVE DiffVG Adobe Potrace

Path Num=500

Path Num=2,000

Path Num=4,000

Figure 6. Qualitative comparison with the state-of-the-art methods in image vectorization with different number of SVG paths.

Table 1. Quantitative comparison between the state-of-the-arts and
Ours. Bold and underline for the best and the second best results.

#Paths Method Time (s) ↓ MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑

500

LIVE [20] 20,000 0.0039 24.10 0.4467 0.7983
DiffVG [17] 19.29 0.0069 21.42 0.5319 0.6671
Adobe [1] 0.87 0.0067 21.82 0.5595 0.6939

Potrace [24] 0.98 0.0208 17.85 0.5115 0.6920
SuperSVG-B (Ours) 0.31 0.0044 24.80 0.4452 0.7687
SuperSVG-F (Ours) 10.00 0.0026 27.46 0.3558 0.8383

2,000

LIVE [20] 120,000 0.0025 26.98 0.3994 0.8431
DiffVG [17] 73.65 0.0036 25.88 0.4683 0.7710
Adobe [1] 2.15 0.0033 26.23 0.3961 0.7229

Potrace [24] 3.10 0.0160 19.65 0.4355 0.6997
SuperSVG-B (Ours) 0.71 0.0024 27.25 0.3648 0.8446
SuperSVG-F (Ours) 10.00 0.0017 29.12 0.2931 0.8828

4,000

LIVE [20] 300,000 0.0024 26.80 0.3981 0.8446
DiffVG [17] 140.34 0.0025 27.29 0.3858 0.8492
Adobe [1] 3.12 0.0035 25.93 0.3408 0.7297

Potrace [24] 5.11 0.0113 20.68 0.4380 0.7374
SuperSVG-B (Ours) 1.04 0.0019 28.45 0.3187 0.8757
SuperSVG-F (Ours) 10.00 0.0014 29.96 0.2496 0.9028

4.3. Ablation Study

Ablation Study on the Superpixel-based Framework.
We first validate the effectiveness of the superpixel-based

vectorization framework. We train a model that directly
predicts the SVG paths for an input image, without super-
pixel segmentation. Then, we test the model in two ways:
1) predict the SVG paths for the whole input image and 2)
uniformly divide the input image into 4× 4 blocks and vec-
torize each block separately. We compare our model with
these two models with the same number of paths (1,000).
The results are shown in Fig. 7 and Tab. 2(a). The model
without superpixel segmentation loses many image details.
By introducing the block division, the model enriches the
details, but the regions near block boundaries are discon-
tinuous (shown in red box), producing unnatural results.
In comparison, our superpixel-based SuperSVG-B recon-
structs most details and keeps the image structures well.

Ablation Study on the Coarse-stage Model. We then
evaluate the effectiveness of the boundary loss LBound and
the path efficiency loss LPE in the coarse-stage model. We
train 2 ablated models: 1) the model without LBound; and
2) the model without LPE , and compare them with our
coarse-stage model under 500 SVG paths. In this compar-
ison, we only compare vectorization using the coarse-stage
model, without using the refinement model. The results are
shown in Fig. 8 and Tab. 2(b). The model without LBound

predicts some paths that cross superpixel boundaries, re-
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Target w/o superpixel w/o superpixel
4×4 block

Ours

Figure 7. Ablation study on the superpixel-based image vector-
ization framework. The ablated models either cannot reconstruct
most details or suffer from boundary inconsistency problem.

Ours w/o ��� Target w/o ������

Note: In this comparison, the results are predicted by the coarse-
stage model alone, without using the refinement model.

Figure 8. Ablation study on the coarse-stage model. The ablated
models either predict paths crossing superpixel boundaries or re-
construct less details than ours.

sulting in worse reconstruction. The model without LPE

has a poorer performance, which is validated by the met-
ric results. In comparison, our model outperforms the two
ablated models, validating the effectiveness of the losses
LBound and LPE in the coarse-stage model.

Ablation Study on the Refinement-stage Model. Fi-
nally, we validate the effectiveness of the refinement stage
and the DPW loss. We train 3 ablated models: 1) the model
without the refinement stage3; 2) the model without the
DPW loss LDPW (i.e., without coarse paths guidance, with
pixel-wise loss only); and 3) the model replacing DPW loss
LDPW with L2 loss in path parameter space. The results
are shown in Fig. 9 and Tab. 2(c). The model without refine-
ment-stage cannot reconstruct as many details as ours. The
ablated model without LDPW predicts paths with a very
small area or even invisible, as explained in Sec.3.2, thus
the results look similar to the coarse-stage results. For the
ablated model replacing DPW loss LDPW with L2 in path
parameter space, which enforces one-to-one alignment be-
tween two paths’ control points, since the constraint is too
strict, the loss cannot function well in experiments, and the
results look alike the results without LDPW . In compari-
son, our model outperforms the ablated models, validating
the effectiveness of the refinement and DPW loss.

3Since the model without refinement does not contain refinement paths,
we increase the number of coarse paths to keep the path number consistent.

Ours w/o ���� or
�� replacing ����

Target w/o refine

Figure 9. Ablation study on the refinement-stage model. The ab-
lated models either lose details or converge to the poor local opti-
mum described in Sec. 3.2.

Table 2. Quantitative results of ablation studies.

Method MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑
w/o superpixel 0.0083 21.72 0.5057 0.6900
4× 4 blocks 0.0038 29.50 0.4299 0.7834

Ours 0.0032 26.04 0.4075 0.8111

(a) Ablation on superpixel-based framework.

Method MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑
w/o LBound 0.0534 13.38 0.5041 0.6210

w/o LPE 0.0063 22.98 0.4830 0.7219
Ours (Coarse) 0.0045 24.49 0.4452 0.7673

(b) Ablation on coarse-stage model (results are obtained by
the coarse-stage model alone, without refinement model).

Method MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑
w/o refine 0.0041 25.02 0.4375 0.7770

w/o LDPW 0.0045 24.49 0.4452 0.7673
L2 replacing LDPW 0.0045 24.49 0.4452 0.7673

Ours 0.0032 26.04 0.4075 0.8111

(c) Ablation on refinement-stage model.

5. Conclusion
We propose SuperSVG, a novel superpixel-based vector-
ization model that decomposes a raster image into super-
pixels and then vectorizes each separately, achieving fast
and accurate image vectorization. We propose a two-stage
self-teaching framework, where a coarse-stage model re-
constructs main structure and a refinement model enriches
details, with a novel dynamic path warping loss that guides
the refinement model by inheriting knowledge from coarse
paths. Extensive experiments demonstrate that SuperSVG
achieves the state-of-the-art performance on vectorization.
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