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Abstract

We present S*Former, a novel approach to training
Vision Transformers for Semi-Supervised Semantic Seg-
mentation (S*). At its core, S*Former employs a Vi-
sion Transformer within a classic teacher-student frame-
work, and then leverages three novel technical ingredients:
PatchShuffle as a parameter-free perturbation technique,
Patch-Adaptive Self-Attention (PASA) as a fine-grained fea-
ture modulation method, and the innovative Negative Class
Ranking (NCR) regularization loss. Based on these regu-
larization modules aligned with Transformer-specific char-
acteristics across the image input, feature, and output di-
mensions, S*Former exploits the Transformer’s ability to
capture and differentiate consistent global contextual infor-
mation in unlabeled images. Overall, S*Former not only
defines a new state of the art in §* but also maintains a
streamlined and scalable architecture. Being readily com-
patible with existing frameworks, S*Former achieves strong
improvements (up to 4.9%) on benchmarks like Pascal VOC
2012, COCO, and Cityscapes, with varying numbers of la-
beled data. The code is at https://github.com/
JoyHuYY1412/S4Former.

1. Introduction

Semi-supervised semantic segmentation (S*) aims to re-
lieve the heavy dependence on extensive pixel-level an-
notations by leveraging unlabeled images. Prevailing S*
works [19, 45, 53, 61] employ the teacher-student mecha-
nism [27, 42]: pseudo-labels from a weakly augmented un-
labeled image guide the training of the strongly augmented
counterpart. Despite significant progress, recent works that
rely on ConvNet-based segmenters [53, 55, 56] seem to
reach a performance plateau, as shown in Fig. 1. Vision
Transformers, having demonstrated their efficacy in super-
vised and other semi-supervised tasks [4, 5, 50], offer a
promising yet under-explored path for advancing S*.

We introduce S*Former, a novel approach that integrates
Vision Transformers into the teacher-student paradigm for
the S* task for the first time (to the best of our knowl-
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Figure 1. Advancements of semi-supervised semantic segmen-
tation (S*) work over time. Our proposed S*Former achieves
significant improvements over previous methods with a limited
number of labeled images. Results are reported on the Pascal
VOC [14] dataset with 1,464 images labeled and 9,118 images
from SBD [18] unlabeled.

edge). Beyond simply substituting backbones from Con-
vNets to Vision Transformers, we emphasize the need for
tailored training mechanisms to fully exploit Vision Trans-
formers in S*. Our empirical findings reveal the critical im-
portance of regularization strategies for Vision Transform-
ers. As illustrated in Figure 2, with suitable regularization
techniques, training with a limited set of unlabeled data can
outperform naive training with a larger unlabeled dataset.
To better exploit Vision Transformers, our primary motiva-
tion is to harness its capabilities in comprehending global
and long-range contexts. This capability ensures a more
consistent understanding of semantic content across various
perturbed instances of unlabeled images. Stemming from
this insight, we propose a suite of regularization techniques
tailored for Vision Transformers, including PatchShuffle,
Patch-Adaptive Self-Attention (PASA), and Negative Class
Ranking (NCR) loss, addressing image, feature, and output
regularization, respectively.

Our proposed components in the S*Former framework
capitalize on the Vision Transformer’s architectural at-
tributes, such as its innate patch-based architecture and
self-attention mechanism. Consequently, we can regularize
S*Former with consistent global and long-range contextual
cues inherent in images. In particular, PatchShuffle chal-

4007



Weak FD wmCutMix ®Ours
80.1

= 785
X
<8
=) 76.5
2 76 757 758
g 743 T46

74 73.7

73.0 73.1
126 72.9
72

656 2623 10490
Number of Unlabeled Images (92 Labeled)

Figure 2. With diverse training strategies based on the Trans-
former backbone, the performance gain exhibits considerable vari-
ation when obtaining more unlabeled images. Weak: weak im-
age augmentations that are the same as those used for the teacher
model. FD: feature dropout. CutMix: cut and mix regions over
images [54].

lenges the Transformer to reconstruct semantic understand-
ing from a shuffled spatial structure, thereby reinforcing its
reliance on global contextual awareness, while the PASA
module adjusts the self-attention process to prioritize com-
plex and ambiguous areas that are typically challenging for
segmentation. The NCR loss, while not exclusive to Trans-
formers, extends consistency constraints beyond the stan-
dard “positive” pseudo-label and encompasses “negative”
classes to enhance regularization.

Armed with the proposed mechanisms, S*Former not
only pioneers the training of Vision Transformers for semi-
supervised semantic segmentation but does so by overcom-
ing the specific challenges of spatial and class confusion
that have limited the effectiveness of the existing ConvNet-
based methods from a new perspective. Notably, the overall
proposed method is straightforward, yet effective, with no
additional training parameters or memory bank introduced.
We anticipate that our streamlined S*Former approach will
not only establish a new performance benchmark but also
serve as a timely reference point for future research into
semi-supervised semantic segmentation using Transformer
architectures, potentially inspiring innovative methodolo-
gies in this evolving field.

Our contributions are summarized as follows:

* We pioneer the study of training Vision Transformers
for S4, establishing a new effective benchmark in this
domain.

* Without introducing extra trainable parameters, our
proposed S*Former enhances the teacher-student
framework with innovative perturbation and regular-
ization techniques, addressing the consistency regular-
ization unique to the Transformer architecture.

* Our extensive evaluations confirm that S*Former sets
a new state-of-the-art on Pascal VOC 2012, COCO,
and Cityscapes, laying solid groundwork for future re-
search with Transformers in S*.

2. Related Works

Semi-Supervised Learning (SSL). Semi-supervised learn-
ing aims to utilize unlabeled data to improve the model
learned on labeled data. Pseudo-labeling methods [26,

, 49] extend the training dataset by predicting pseudo-
labels for unlabeled data. Notably, Mean Teacher [42] op-
timizes the generation of robust pseudo-labels by employ-
ing an exponential moving average (EMA) of the student
model. Consistency regularization approaches [3, 25, 40]
enforce the model to yield consistent predictions for differ-
ent perturbed versions of the same unlabeled image. Pre-
vailing SSL methods [2, 41] combine the two existing tech-
niques and predict improved pseudo-labels. Specifically,
FixMatch [41], proposes to inject strong perturbations to
unlabeled images and supervise the training process with
predictions from weakly perturbed ones. This paper focuses
on how different types of perturbations can be systemati-
cally exploited in semi-supervised vision tasks, going be-
yond the established weak-to-strong paradigm.

Semi-Supervised Semantic Segmentation (S*). Based
on the teacher-student architecture [27, 52, 53, 61], some
works aim to improve the quality of pseudo-labels by sta-
bilizing the teacher model with multi-head [15, 21, 31] or
cross-head supervision [9, 24, 46], or adopting contrastive
learning [1, 44, 59], uncertainty-based thresholding [23,

], and class-imbalance learning [16, 19]. Other works
focus on injecting strong perturbations into the student to
avoid confirmation bias [28]. In practice, strong data aug-
mentation [17, 47, 52, 56]/feature perturbations [3 1, 35, 53]
are applied to the input images/features of the student. Re-
cent state-of-the-art S* methods [19, 31, 37, 45] combine
the two strengths by imposing stronger augmentation and
generating better pseudo-labels. Our work extends these ad-
vances by incorporating Vision Transformers and introduc-
ing a novel image augmentation strategy, attention adjust-
ment mechanism, and regularization loss function, thereby
establishing a new direction for S* methods.

Vision Transformers. Vision Transformers have recently
been embraced in various computer vision domains, includ-
ing image classification [8, 13], object detection [7, 60], se-
mantic segmentation [10, 48, 57], and other high-level vi-
sion tasks [29, 36, 51], thanks to their ability to model long-
range dependencies among elements [22, 32, 33]. In this
work, we use ImageNet [39] pre-trained Vision Transform-
ers for semantic segmentation, i.e., DeiT [57] and MiT [48]
as our backbone models. Recently, some works [20, 58] in
semi-supervised semantic segmentation have attempted to
introduce the Vision Transformer as a parallel branch to the
ConvNet model. Our paper is the first, to the best of our
knowledge, to explore the training of Vision Transformers
instead of ConvNets for semi-supervised semantic segmen-
tation.

4008



Weak/Strong Augmentations

Teacher Model T

Outputs

low E=——= high

stop gradient
"""" »  Decoder

Conf. Map €T Pseudo Label

Patch-Adaptive

-~

2

Self-Attention EMA

Weak
Augment ™ — -~ - Transformer
Encoder
/P
Unlabeled
Image
- Patch EMA
Shuffle
Weak Transformer
AT Encoder

& ’
Labeled Image

l_,

Student Model S

©®

feature restore

el DECOAET _> ‘

Ground Truth

Figure 3. Overview of S*Former. The S*Former incorporates both student and teacher models, each equipped with a Transformer
encoder and an image decoder. The weights of the teacher model are the exponential moving average of the updating student. For labeled
images, we train them with the student model by standard supervised loss. For unlabeled images: 1) they undergo both weak and strong
augmentations, with the strong version utilizing the Patch-Shuffle technique (Section 3.2); 2) the teacher model processes the weakly
augmented version to derive pseudo-labels for the strongly augmented images; 3) the student model is trained using these pseudo-labels,
incorporating Patch-Adaptive Self-Attention (Section 3.3) for feature perturbation; 4) The outputs are aligned with the pseudo-labels using
a consistency loss enriched by Negative Class Ranking Loss (Section 3.4).

3. S*Former
3.1. Overall Architecture

In the realm of semi-supervised semantic segmentation, the
training dataset D, consisting of | D| images of size H x W,
is divided into two disjoint subsets: a labeled dataset D
with |D¥| images, and an unlabeled set DU with the re-
maining images. Each labeled image z € D” is paired with
the dense one-hot label y € RE*W*K '\where K denotes
the number of classes. Typically, |D¥| < |D| highlights
the challenge of scarcity in labeled data.

As shown in Figure 3, our S*Former aligns with the well-
established teacher-student [41, 42] framework. Within
this framework, S*Former integrates a student model S
and teacher model 7. Both models S and T adopt a
Transformer-based encoder and a decoder to generate seg-
mentation outputs. 05, the parameters of S, are learned with
all images in the dataset. 7, the parameters of 7T, are up-
dated via Exponential Moving Average (EMA) based on 6°:

0 =p-0,+(1—p)-67, (1)
Here, t is the iteration index, and p is a momentum decay
factor indicating the update rate. . = 0 implies direct copy-
ing of parameters from the student model.

During training, we optimize a composite loss function
L = L' + L£* with both labeled and unlabeled images. For
labeled images, £! is the standard pixel-wise cross-entropy
(CE) loss:

L' = CE(y, S(z;6%)). )

For unlabeled images, we use different augmented versions
2° and 27 as the student and teacher input. £* aligns the
teacher and student predictions as:

£r =1(CT > B)-

3
Consistency(T(a:T,HT),S(HCS’@S))- @

In practice, teacher input image z” receives simple

transformations, such as cropping and resizing, while stu-
dent input image 2° uses stronger augmentations such
as CutMix [54]. The teacher model computes the pre-
dictions T'(x*,67) and a confidence map CT: CT =
max (T'(z”,07)). CT shows the maximum prediction
value across classes for each pixel. To ensure that
only reliable pseudo-labels guide the student’s learning,
Consistency lossis applied between student and teacher
predictions only for those pixels whose C'7 exceeds a pre-
defined threshold /3.

Our S*Former introduces PatchShuffle for 2° to chal-
lenge the student model with shuffled patch sequences (see
Section 3.2). Additionally, Patch-Adaptive Self-Attention
(PASA) injects feature perturbation to student model S
within the self-attention mechanism (see Section 3.3). Fur-
thermore, we modify Consistency with Negative Class
Ranking (NCR) loss to establish a broader regularization
spectrum across all classes (see Section 3.4).

3.2. PatchShuffle

We propose the PatchShuffle augmentation to generate the
strong augmented version ° for an unlabeled image. Vi-
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Figure 4. Illustration of our PatchShuffle process. An image
is divided into an L x L patch grid (e.g., L = 6). Neighboring
patches are grouped into M x M blocks (e.g., M = 2) and shuf-
fled before Transformer encoding. The patch embeddings are then
shuffled back to their original layout before the decoder, ensuring
positional correspondence and edge coherence for the consistency
loss computation against the pseudo-label.

sion Transformers take image patches as the input. Begin-
ning with an L x L grid of image patches, PatchShuffle
disrupts the standard spatial arrangement by randomly re-
arranging these patches. This is performed at a block level:
neighboring patches are grouped to get M x M blocks, each
of which is shuffled as a whole, preserving local content
while significantly modifying the global structure.

As shown in Figure 4, here weuse L = 6 and M = 2, the
Transformer encoder first processes the shuffled patches.
Subsequently, the feature embeddings are shuffled back to
their original sequence before the decoder. The shuffling
back of features restores positional correspondence and
edge coherence during the feature up-sampling within the
decoder, which is necessary for calculating the consistency
loss against pseudo-labels calculated on unshuffled image
xT. Notably, for Transformers with explicit position encod-
ings, the encodings are not shuffled to maintain the model’s
sensitivity to patch placement.

PatchShuffle’s effect is further boosted when com-
bined with additional augmentation strategies such as Cut-
Mix [54]. This combination introduces a greater diversity
of transformations, thereby enhancing the model’s capacity
for generalization with more challenging visual scenarios.
Please find more discussion in Section 4 and Appendix.
Discussion with “Jigsaw” transformation. The “Jigsaw”
transformation [34] also shuffles image splits but the objec-
tive is different. While self-supervised learning models with
“Jigsaw” transformation aim to predict the original image’s
layout, our model with PatchShuffle aims to maintain con-
sistent outputs despite input perturbations, in line with the
semi-supervised learning framework. Besides, we discuss
shuffling patches at the block level based on Vision Trans-
formers, distinguishing from “Jigsaw”.

Discussion with position encoding shuffling. For Trans-

formers with explicit position encodings, PatchShuffle can
be interpreted as a permutation of position encodings. For
the SegFormer [48] architecture which omits explicit posi-
tion encodings, PatchShuffle still improves. In Section 4.3,
we discuss various adjustments made to the position encod-
ings for unlabeled images and show that our implementa-
tion of PatchShuffle is particularly effective.

3.3. Patch-Adaptive Self-Attention (PASA)

The self-attention mechanism helps Transformers model
global dependencies by attending to all patches of an input
image. However, this global view can sometimes lead to the
dilution of important local features, especially when han-
dling images with varying confidence levels across patches.
PASA dynamically adjusts self-attention weights by incor-
porating patch-wise confidence, focusing on areas of the
image where the model is less certain.

With an L x L grid of image patches, a standard self-
attention layer operates on a sequence of N = L? input
embeddings e = [ey, €2, ... en]|T, e; € R as follows:

€ = softmax ((eWQ)(eWK)T) (eWV). ()]

self-attention weight matrix

Here, W@, WX and WY € R%*? are parameter matri-
ces for queries, keys, and values, respectively. For brevity,
scaling, residual connections, and multi-head computations
are omitted here; please refer to [43] for details.

As shown in Figure 5, our PASA modulates this attention
mechanism by adjusting the attention matrix via:

¢ = softmax (M + (eW?)(eWX)T) (eW").  (5)

The attention mask matrix M € RY*N at location (i, j) is
influenced by the confidence measure CT of patch ¢ and j:

CT =patchavg (I(CT > B)), (6)

where I(CT > 3) € {0,1}#*W same as in Equation 3,
creates a binary mask of size H x W, with ‘1’ indicating
the pixel confidence exceeds the threshold 8 (8 commonly
set to 0.95 following prior works [41, 53]).

In our experiments, we set M, ; based on C7 empirically
as:

Mo — 0 if CZT > Median(CT), )
Y \a-(1=CF)  otherwise.

Here, o > 0 is a hyper-parameter, and Median() means
getting the median value. For patches with high C” (above
the median threshold), their attention weights remain un-
changed (i.e., add 0). In contrast, patch ¢ with lower confi-
dence CT has its attention weights adjusted: M, increase
its self-attention and mutual attention toward other low-
confidence patches. See Section 4 and Appendix for other
implementations of M,;.

4010



Nxd' l
Inpu_te Output e
Nxd Nxd'
NXN
Attention Mask M
1 NXN
I i
o[ 1: Value from O to 1
1% L
j :Apatch " : A pixel
J Eq.(6)
Patch T—ﬁ Patch Avg % il ?hreshglde;i
Conf. D—]@ Eq.) .07 Hm:?f >°“ 0
cT o.o(y_l e ;ﬁ ( B)
H

Figure 5. Illustration of our Patch-Adaptive Self-Attention
(PASA). PASA generates an attention mask M, added to the orig-
inal self-attention weights, and emphasizes attention among un-
confident regions within the image. M, as depicted in blue part,
is generated based on the confidence map C'r predicted by the
teacher model with Equation 6 and Equation 7.

3.4. Negative Class Ranking (NCR) Loss

Conventionally, the consistency loss is the cross-entropy
(CE) loss to encourage the student model’s predicted log-
its p° to match its pseudo-label 7. For a reliable pixel, its
pseudo-label 3 is the class that receives the highest logit
from the teacher’s output p € R¥ (K is the total number
of classes) and the CE loss is written as:

s
;xp(py) . > ®)
Y i1 exp(py)

The CE loss operates on a contrastive principle, boosting the
logit of the positive class (the pseudo-label) while collec-
tively dampening the logits of all other classes (negative).
However, this can be sub-optimal as it does not account for
the relative distribution of the negative class probabilities.

To improve this, we introduce the Negative Class Rank-
ing (NCR) loss which also accounts for the distribution of
negative class probabilities. We first apply a softmax func-
tion over the logits of all negative classes to obtain normal-
ized distributions for the teacher and student predictions.
The NCR loss is calculated as the L2 distance (unless spec-
ified) between these normalized negative class probabilities
as:

Lcg = —log (

Lycr = Z (Pr — ﬁf)2 , where
k#g,keK

9
exp(pi *°) )
TorS)

Zk;ﬁﬂ,keK exp(py,
By incorporating the NCR loss, we compel the student
model to not only predict the correct class but also to main-
tain the relative distribution of probabilities for the negative
classes. This strategy enhances the model’s generalization

~TorS
Py, =

capabilities by considering a more complete representation
of the data distribution.

4. Experiments

To evaluate the effectiveness of our S*Former, we conduct
extensive experiments on benchmark datasets and settings.
The following subsections describe the details of the exper-
iments, results, and analyses.

4.1. Settings

Datasets. We use three benchmark datasets: Pascal VOC
2012 [14], COCO [30], and Cityscapes [12]. Pascal VOC
2012 includes 1,464 training images and 1,449 validation
images across 21 object classes. Following standard aug-
mentation procedures [19, 45], we enrich the training set
with an additional 9,118 images from the SBD [18]. The
COCO dataset is more challenging, including 118k training
and 5k validation images spanning 81 classes. Cityscapes
focuses on urban scenes, comprising 2,975 training and 500
validation images of 19 classes.

Experimental Protocol. In the semi-supervised setting, we
randomly sample a small fraction of the training images as
labeled data, while the remaining images are used as unla-
beled data. For Pascal VOC 2012, we adopt two distinct
scenarios as defined in prior work [45, 52, 53]: the classic
regime, which utilizes the original high-quality training set
for sampling labeled data, and the blend regime, which ex-
tends the labeled set with additional samples from the aug-
mented dataset. The labeled/unlabeled split is conducted
using a consistent random seed as employed in [9, 53] to
maintain fair comparison. Evaluations are conducted using
the mean intersection-over-union (mloU) metric on the val-
idation sets, with center-cropping for Pascal VOC 2012 /
COCO and a sliding window technique for Cityscapes, all
at single-scale inference.

Implementation Details. We use MMSegmentation [11]
for all implementations. All Transformer encoders are
ImageNet-1k [39] pre-trained. Batch sizes are set to 16
across datasets, with an even split between labeled and un-
labeled images (i.e, 8 labeled and 8 unlabeled). Hyperpa-
rameters such as learning rate, optimizer, and weight decay
follow the framework’s defaults. Comprehensive hyperpa-
rameter settings are detailed in the Appendix.

4.2. Comparison with State-of-The-Art Methods

S*Former-Base: A Strong Baseline. Introducing Trans-
formers as image encoders, we set a strong baseline with
our S*Former-Base. This model harnesses Transformers’
power in feature extraction, enriched with robust augmen-
tation strategies like color-jittering and CutMix. As demon-
strated in Tables 1, 2, and 3, our baseline improves signif-
icantly over the supervised-only (“Sup-Only”) results, and
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Dataset Split Pascal VOC classic Pascal VOC blend

Backbone Methods 1/16 (92) 1/8 (183) 1/4(366) 1/2(732) Full (1464) | 1/16 (662) 1/8 (1323) 1/4 (2646)

Sup-Only 50.7 59.1 65.0 70.6 74.1 67.5 71.1 74.2

U?PL [45] 68.0 69.2 73.7 76.2 79.5 74.4 77.6 78.7

DeepLabV3+ PS-MT [31] 65.8 69.6 76.6 78.4 - 75.5 78.2 78.7

(ResNet101) iMAS [55] 70.0 75.3 79.1 80.2 82.0 77.2 78.4 79.3

AugSeg [56] 71.1 75.5 78.8 80.3 81.4 77.0 77.3 78.8

UniMatch [53] 75.2 77.2 78.8 79.9 81.2 78.1 78.4 79.2

CVT Sup-Only 47.0 59.7 68.4 73.7 74.6 72.4 74.3 77.9

(Dual Backbones) SemiCVT [20] 68.6 71.3 75.0 78.5 80.3 78.2 80.0 80.2

SETR Sup-Only 67.7 72.8 77.4 80.7 82.5 76.6 77.8 79.9

(DeiT-Base) S*Former-Base 75.8 77.4 80.0 81.7 83.9 79.0 80.1 80.7

+ Ours 80.1 81.3 824 83.2 85.0 79.9 80.5 81.3

Table 1. Comparison of mloU (%) with state-of-the-art methods on the Pascal VOC 2012 dataset. Results are presented for two dataset

splits following previous works [53,

1: classic, with labeled samples drawn from the original dataset, and blend, with labeled samples

drawn from the augmented dataset inclusive of SBD. The fractions (e.g., 1/16) and numbers (e.g., 92) denote the proportion and number
of labeled images. Best performances for DeepLabV3+ and our architecture are highlighted with underline and bold, respectively. “Dual

Backbones” used in CVT [

] include both the DeepLabV3+ (ResNet101) and SwinUNet [6].

Dataset Split 1/512  1/256  1/128
Backbone Methods (232) (463) (925)
Sup-Only 229 280 336

DeepLabV3+ PseudoSeg [61] | 29.8 37.1 390.1
(ResNet101) PC?Seg [59] 299 375 40.1
UniMatch [53] | 319 389 444

SETR Sup-Only 31.5 383 43.1
(DeiT-Base) S4*Former-Base | 34.5 41.6 463
+ Ours 352 431 469

Table 2. Comparison with state-of-the-art methods on the COCO
dataset. Best performances for DeepLabV3+ and our architecture
are highlighted with underline and bold, respectively.

matches or even outperforms state-of-the-art methods, high-
lighting the Transformer’s capability to utilize contextual
information from unlabeled images effectively.

Results for Pascal VOC 2012. Table 1 showcases that our
methods consistently boost model performance. The no-
table improvements over S*Former-Base when augmented
with our proposed components (“+ Ours”), underscore our
effective utilization of unlabeled data to enhance semi-
supervised learning. For the most challenging scenario
with only 92 labeled images, our model achieves 80.1%,
surpassing the previous best model by 4.9%. Compared
to SemiCVT [20] which combines ConvNet and Vision
Transformer architecture, our improvements are impressive.
In contrast to SemiCVT, our Vision Transformer is pre-
trained on ImageNet-1k and trained with our specific train-
ing mechanisms. Furthermore, we have applied our compo-
nents to state-of-the-art methods, i.e., UniMatch [53] and
Augseg [56], transplanting them to a Transformer back-

Dataset Split 1716  1/8  1/4 172
Backbone Methods (186) (372) (744) (1488)

Sup-Only 66.3 72.8 750 78.0

DeepLabV3+ U?PL [45] 749 765 785 79.1

(ResNet101) PS-MT [31] - 769 716 79.1

AugSeg [56] | 752 77.8 79.6 80.4

UniMatch [53] | 76.6 779 79.2 79.5

CVT Sup-Only 672 73.1 751 78.6

(Dual Back.) SemiCVT [20] | 72.2 754 772 79.6

SegFormer Sup-Only 733 77.0 79.1 804

(MIT-B4) S%Former-Base | 76.7 79.2 80.1 80.6

+ Ours 785 799 80.6 809

Table 3. Comparison with state-of-the-art methods on Cityscapes
dataset. Best performances for DeepLabV3+ and our archi-
tecture are highlighted with underline and bold, respectively.
“Dual Back.” used in CVT [20] include both the DeepLabV3+
(ResNet101) and SwinUNet [6].

bone. As illustrated in Figure 6, our approach consistently
surpasses the prior best models, yielding an average in-
crease of 1.7% on UniMatch and 1.2% on AugSeg. These
gains further underscore the robustness and adaptability of
our methods across different architectures and settings.

Results for COCO. With its extensive variety of 81 classes,
the COCO dataset presents a more challenging setting for
semi-supervised learning. Despite this complexity, as indi-
cated in Table 2, our S*Former-Base with additional com-
ponents (“+ Ours”) demonstrates a notable improvement
over the supervised-only (“Sup-Only”) results, validating
the effectiveness of our approach in harnessing unlabeled
data even in diverse and challenging datasets. Applied to
UniMatch and Augseg methods, our adaptations to a Trans-
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Figure 7. Comparison over UniMatch [53] and Augseg [56] with
our proposed components (“+ Ours”) on the COCO dataset.

former backbone lead to an average mloU increase of 1.1%
and 0.7%, respectively, as shown in Figure 7.

Results for Cityscapes. We employed the efficient Seg-
Former (MiT) [48] architecture due to the high computa-
tional demands of SETR (DeiT) [57] on Cityscapes. Table 3
shows that our S*Former-Base, together with the “+ Ours”
enhancements achieves consistent performance over other
state-of-the-art methods. This underlines the advantages of
our approach in a real-world urban scene understanding.

4.3. Additional Results

Effectiveness of Each Component. Table 4 presents the
separate and combined effects of our proposed components,
PatchShuffle, Patch-Adaptive Self-Attention (PASA), and
Negative Class Ranking (NCR) loss, across different par-
titions of labeled data. One can see that each component in-
dividually enhances the performance over the baseline, with
the cumulative effect of combining all components yielding
even greater gains. This suggests that our components work

Methods | Split = 1/16 1/8 1/4
SupOnly 67.7 72.8 77.4
Base 75.8 774 80.0
+PatchShuffle | 78.4 (+2.6) 802 (+2.8) 82.1 (+2.1)
+PASA 779 (+2.1) 794 (+2.0) 81.3 (+1.3)
+NCR 775 (+1.7) 787 (+1.3) 81.9 (+1.9)
+All 80.1 (+4.3) 813 (+3.9) 824 (+2.4)

Table 4. The individual improvements over mloU of our proposed
components. Results for the Pascal VOC 2012 classic settings.

Split ‘ Base ‘ woPE  avgPE  dupPE PS
1716 | 758 | 76.2 773 770 784

1/8 | 774 77.0 78.6 76.2 80.2

Table 5. Comparison of mloU using different operations of posi-
tion embeddings against our PatchShuffle (PS) approach. Given
explicit position encodings, PS is equivalent to a block-level per-
mutation of these position encodings. Results for the Pascal VOC
2012 classic settings.

in concert to improve the learning process.

Different Position Encoding Adjustments. Table 5 eval-
uates different position encoding adjustments for unlabeled
student images 2%, as discussed in Section 3.2. We assess
the effects of discarding all position encodings (woPE), av-
eraging them within shuffling blocks and applying the aver-
age to all patches within each block (avgPE), and duplicat-
ing them across blocks (dupPE). Our PatchShuffle, equiv-
alent to a block-level permutation of position encodings,
yields superior performance improvements, demonstrating
its effectiveness over the alternate encoding strategies.
Different Attention-Mask Adjustments. The efficacy of
our Patch-Adaptive Self-Attention (PASA) is underscored
in Table 6, compared with different attention mask adjust-
ment approaches and feature dropout (FD) in the previous
method [53]. The Rand strategy uses random scaled num-
bers to adjust the mask, working as the naive attention per-
turbation to the student model. In contrast to PASA, Re-
versel and Reverse2 reversely increase focus on confident
regions. Reversel emphasizes the self-attention of confi-
dent regions within high-confidence areas, and Reverse2
encourages less confident regions to focus more on high-
confidence counterparts (See Appendix for details). By
comparing Rand, Reversel, Reverse2, and FD with ours,
we underline the significance of directing attention to less
confident regions.

Different Regularization Loss. Table 7 compares differ-
ent methods for the regularizing loss over unlabeled images.
Base employs the standard cross entropy (CE) loss, and Soft
applies the cross entropy loss with soft labels as in [50] (See
Appendix for detail). A/l-CR denotes the approach of apply-
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Split ‘ Base ‘ Rand Reversel Reverse2 FD Ours
1/16 ‘ 75.8 ‘ 762 761 762 767 719

1/8 772 | 782 78.4 71.8 71.8 79.4

Table 6. Comparison of mloU across different attention-mask ad-
justment strategies and feature dropout (FD). Results for the Pascal
VOC 2012 classic settings.

Split | Base | Soft  AI-CR NCR(L2)  NCR(KL)
1/16 75.8 74.8 74.9 77.5 78.0
1/8 77.0 78.0 78.1 78.7 78.6
1/4 80.0 80.7 80.4 81.9 81.4

Table 7. Comparison of mloU with different regularization losses.
Results for the Pascal VOC 2012 classic settings.

l Methods Split = 1/16 1/8
Sup-Only 68.2 67.4
S*Former-Base 75.7 78.8
SegFormer + Ours 771 (+1.4) 80.4 (+1.6)
(MiT-B4) UniMatch 76.8 78.9
+ Ours 77.6 (+0.8) 79.5 (+0.6)
AugSeg 77.4 80.2
+ Ours 77.8 (+0.4) 80.6 (+0.4)

Table 8. Effectiveness of integrating our proposed methods with
the SegFormer [48] backbone. “+ Ours” denotes the integration
of our components into existing methods. Results for the Pascal
VOC 2012 classic settings.

ing L2 distance loss across all classes, including both “pos-
itive” and “negative” classes. Our NCR, focusing on “nega-
tive” classes, excels over these alternatives. We also try KL
loss to regularize the distribution among negative classes in
Equation 9, which reaches comparable performance as the
L2 loss we used in default.

Backbone Compatibility. Our methodology’s compatibil-
ity with different Transformer backbones is confirmed with
SegFormer [48] in Table 8. The consistent performance im-
provements with the proposed components validate the ro-
bustness and versatility of our approach.

Ablation on Hyperparameters. Table 9 and Table 10
present the ablation on the number of shuffling blocks M in
Section 3.2 and the coefficient weight o in Equation 7, re-
spectively. Table 9 shows PatchShuffle’s robustness across
varying numbers of shuffling blocks M, consistently im-
proving over the baseline (M=1). Our method achieves im-
provements across various settings, and in practice, we use
M = 4 and o = 5 to obtain the best performance.

4.4. Qualitative Results

We provide qualitative results in Figure 8. With our train-
ing components, S*Former correctly separates cow from
horse in the top row, detects and segments more chairs in
the bottom row. We also show the attention weights on the

Split | M=1 | 2 4 8 16 32
1/16 | 758 | 77.1 784 783 780 715
1/8 | 774 | 80.0 802 79.7 795 796

Table 9. Comparison of mloU with different values of shuffling
blocks M. M = 1 means no shuffling (i.e., S*Former-Base).
Results for the Pascal VOC 2012 classic settings.

Split | a=0 | 2 5 10 20
1/16 75.8 76.4 77.9 77.6 77.0

1/8 71.0 78.7 79.4 80.0 79.4

Table 10. Comparison of mloU with different values of a. & = 0
means no attention adjustment is applied (i.e., S*Former-Base).
Results for the Pascal VOC 2012 classic settings.

S*Former w Ours

S*Former-Base

Ground Truth

Figure 8. Comparative visual results on Pascal VOC 2012 classic
setting with a limited set of 92 labeled images. We show segmen-
tation predictions as well as the corresponding attention-weight
heatmaps for a selected patch (denoted by the yellow box in the
ground truth). The red region corresponds to a high contribution.
More illustrations are shown in the Appendix.

bottle-neck image feature of the interested patch (the yellow
box). We show that our components effectively improve the
network’s ability to attend to the relevant areas across the
whole image and generate more accurate predictions.

5. Conclusion

Despite the remarkable success in a broad range of vision
tasks, Vision Transformers have not yet been explored in
semi-supervised semantic segmentation (S*). In this paper,
we present S*Former, a simple yet strong framework that
combines the power of Vision Transformers with the con-
ventional teacher-student paradigm. Based on S*Former,
we introduce PatchShuffle, Patch-Adaptive Self-Attention
(PASA), and Negative Class Ranking (NCR) loss, tailor
the training regularization from image, feature, and out-
put ends, respectively. Armed with those training strate-
gies, S*Former demonstrates the potential of utilizing Vi-
sion Transformers for S* with state-of-the-art results. We
hope our S*Former will not only serve as a robust foun-
dation for subsequent research in S* but will also inspire
innovative approaches to leverage Vision Transformers in
similar contexts with limited labeled data.
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