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Abstract

Solving complex visual tasks such as “Who invented the
musical instrument on the right?” involves a composition of
skills: understanding space, recognizing instruments, and
also retrieving prior knowledge. Recent work shows promise
by decomposing such tasks using a large language model
(LLM) into an executable program that invokes specialized vi-
sion models. However, generated programs are error-prone:
they omit necessary steps, include spurious ones, and are
unable to recover when the specialized models give incor-
rect outputs. Moreover, they require loading multiple models,
incurring high latency and computation costs. We propose
Visual Program Distillation (VPD), an instruction tuning
framework that produces a vision-language model (VLM) ca-
pable of solving complex visual tasks with a single forward
pass. VPD distills the reasoning ability of LLMs by using
them to sample multiple candidate programs, which are then
executed and verified to identify a correct one. It translates
each correct program into a language description of the
reasoning steps, which are then distilled into a VLM. Exten-
sive experiments show that VPD improves the VLM’s ability
to count, understand spatial relations, and reason compo-
sitionally. Our VPD-trained PaLI-X outperforms all prior
VLMs, achieving state-of-the-art performance across com-
plex vision tasks, including MMBench, OK-VQA, A-OKVQA,
TallyQA, POPE, and Hateful Memes. An evaluation with
human annotators also confirms that VPD improves model
response factuality and consistency. Finally, experiments on
content moderation demonstrate that VPD is also helpful for
adaptation to real-world applications with limited data.

1. Introduction
Vision-language models (VLMs) have become the pre-
trained backbone for many computer vision tasks [2, 4, 7, 9–
11, 34, 39, 41, 60, 63, 74, 79]. Yet, all these models still fall
short of solving numerous visual reasoning tasks expected
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Figure 1. We introduce Visual Program Distillation (VPD), a train-
ing framework which leverages LLM-generated programs that
make calls to specialist models and tools to distill cross-modal
reasoning abilities and specialist skills into multimodal models.

of competent vision models. Even state-of-the-art (SOTA)
proprietary vision-language models such as GPT-4V [49] do
not perform well on tasks that involve counting and spatial
reasoning [71]. They find it difficult to count (TallyQA [1]),
to compositionally reason (GQA [26]), and to reason with ex-
ternal knowledge (OK-VQA [44], A-OKVQA [53]). Many
of these tasks require VLMs to conduct compositional rea-
soning, which still remains an unsolved challenge. For in-
stance, answering the question “Who invented the musical
instrument on the right?” involves a composition of skills:
identifying objects, applying spatial reasoning to locate the
one on the right, recognizing the musical instrument, and
accessing prior knowledge to retrieve the inventor.

In contrast, large language models (LLMs) have demon-
strated remarkable performance at generating code that
solves complex and compositional tasks [3, 8, 43, 49, 69].
Several recent papers [16, 20, 25, 57] capitalize on this by
prompting LLMs to generate programs where each step cor-
responds to a reasoning step. The programs invoke spe-
cialized “tools” (or specialized vision models) to explicitly
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Figure 2. Overview of Visual Program Distillation (VPD). VPD uses an LLM and specialized vision tools to generate faithful chain-of-
thought (CoT) training data for vision-language models (VLMs). Given a multimodal input, our 4-step data synthesis pipeline generates a
CoT that answers the query. In the example above, our synthesized CoT contains a series of reasoning steps: find all buses, check if each bus
is yellow, and aggregate the count into a final answer. The CoT also contains the grounding information given by object detection.

execute each reasoning step. For the question above, the
program would call an “object detector” tool to identify and
isolate all the objects, a “fine-grained object classification”
tool to recognize the musical instrument, and a “knowledge-
based question answering” tool to retrieve its inventor.

Although innovative, generating explicit programs is com-
putationally expensive in practice, prone to errors, and still
underperforms end-to-end models. Programs require load-
ing and executing multiple tools, leading to high latency
and computational cost. Moreover, generated programs may
omit necessary steps or include spurious ones. Even when
the program is correct, vision model invocations can produce
incorrect outputs, from which the overall program cannot
recover. Unfortunately, empirical results show that visual
programs still fall short of end-to-end fine-tuned models [16].

Another line of work is visual instruction tuning [39],
which tries to distill the instruction-following ability of
LLMs into VLMs. They prompt LLMs with image captions
and bounding box annotations in order to generate queries
and answers that are used to fine-tune VLMs [7, 23, 39, 65].
However, this approach has important limitations: image
captions can miss fine-grained visual information, and LLM
are prone to producing inconsistent outputs for custom vi-
sion representations like bounding boxes [18]. As a result,
existing instruction-tuned VLMs still struggle with tasks that
requires complex visual reasoning [7, 14, 38, 40].

In this work, we present Visual Program Distillation
(VPD), a novel distillation method that induces complex
cross-modal reasoning capabilities into vision-language mod-
els (Fig. 2). As the name suggests, VPD combines two key
insights to deliver a training paradigm that surpasses the sum
of its parts: It relies on (1) advancements in visual programs
that use tools [20] and (2) the recent breakthroughs in dis-

tillation through chain-of-thought reasoning [21]. Given a
labeled training dataset of complex visual tasks, VPD gener-
ates a correct program, and then distills its reasoning steps
into vision-language models. To avoid using programs that
give the wrong answer, VPD prompts an LLM to generate
multiple candidate programs, and executes every one of them.
When labeled data is available, it then filters for programs
that produce the correct answer upon execution. Therefore,
our programs comprise multiple vision tools, are executable,
and yield the correct answer when executed. Next, VPD
rewrites the correct programs as natural language chain-of-
thought instructions and uses step-by-step distillation [21]
to inject the reasoning abilities into VLMs.

Our best instruction-tuned model, PaLI-X-VPD
(55B), sets a new SOTA result on 8 classical VQA tasks
and 2 zero-shot multimodal benchmarks. Our models even
outperform the recent SOTA established by PaLI-X [10].
Importantly, we conduct a quality evaluation with human
raters which shows that PaLI-X-VPD generates more con-
sistent and faithful rationales compared to its counterpart
trained using instruction-tuning data. In addition, we experi-
ment with PaLI-3(5B), and show that VPD also improves
the performance of smaller-scale models. Finally, experi-
ments on Hateful Memes [29] show that VPD is also helpful
for adapting to new tasks, even when no labels are available.

2. Related work
VPD is a general method for improving any vision-language
model, and includes automatic program generation and train-
ing with chain-of-thought data as steps of the proposed
framework. We discuss each of these research areas.

Vision-language models (VLMs). Most recent generative
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VLMs share a common structure: a pre-trained visual en-
coder, a pre-trained LLM, and a connector between the two
modalities [2, 4, 9, 34, 39, 41, 60, 63, 74, 79]. The mod-
els are trained on large-scale image-text pairs from various
tasks to adapt to both modalities. They are also tuned on
LLM-generated visual instructions to enable models to fol-
low versatile instructions from users [39]. Some models also
include bounding boxes in the pre-training data to improve
the VLM on visually grounded tasks [6, 7, 10, 41, 50, 61, 78].
The bounding boxes are usually retrieved from COCO [37]
and Visual Genome [32]. Different from prior work, our
method does not rely on provided dense annotations. We use
LLM-generated code and specialized vision tools to generate
our own visual instruction-tuning data.

Visual programming and agents. With the advancement of
large language models (LLMs) [3, 5, 13, 49, 59], recent work
has started using LLMs as an interface to solving complex
reasoning tasks with tools [12, 42, 51, 54, 76], and also as an
agent for vision tasks [23, 25, 70, 72]. From this line of work,
the most relevant to us are VisProg [20] and ViperGPT [16],
which leverage LLMs to generate executable programs with
a sequence of invocations to specialized vision tools. They
achieve SOTA zero-shot performance on various vision tasks,
while being versatile and interpretable.

Training and inference with chain-of-thought. Chain-of-
Thought (CoT) [66] has become a popular approach to im-
proving LLM performance. Recent work such as Program-
of-Thoughts (PoT) [8] and Faithful CoT [43] further improve
this framework by splitting inference into two steps: first
generate a program with LLM, then execute the program.
This approach achieves better accuracy and reduces halluci-
nations in the reasoning steps. Moreover, CoT is also used
to train language models. Distill step-by-step [21], PaD [80],
and SCOTT [62] train smaller language models with CoT
generated by LLMs, showing that this can improve model
performance and reasoning consistency. Mammoth [68]
trains an LLM with a hybrid of CoT and PoT rationales and
achieves a SOTA model for math problems.

3. Visual Program Distillation (VPD)
We introduce VPD, a general model-agnostic framework that
distills the reasoning power of LLM-generated programs
together with the low-level image understanding abilities of
vision tools into a single vision-language model (Fig. 2). At
its core, VPD consists of two major steps:
1. Program generation and verification: Given a textual

query q and a visual input i, VPD first generates a pro-
gram that solves the query by making use of vision mod-
ules and tools, then converts the program execution trace
into a chain-of-thought c (§3.1).

2. Distilling step-by-step: The visual input i, textual query
q, and chain-of-thought c produced by the previous step
are distilled into a vision-language model (VLM) (§3.2).

3.1. Program generation and verification

Our training data synthesis pipeline is illustrated in the blue
boxes of Fig. 2, and consists of four stages. Given a sample
(i, q, y) consisting of a visual input i and a textual query q
about its content and, when available, its ground truth answer
y, we perform the following sequence of steps:
1. Program generation with LLM: Given q, we generate

a list of k candidate programs ⇡(q) = {z1, z2, ..., zk},
where ⇡ represents a program generation function.

2. Program execution with vision modules: We execute each
program zi with an execution engine � to obtain its final
result �(i, zi) = ŷi. However, during program execution,
we maintain the execution trace ti recording all the in-
termediate function calls and outputs. At the end of this
step, we produce a list of programs, results, and execution
traces {(z1, ŷ1, t1), ..., (zk, ŷk, tk)}.

3. Program filtering: Among the k candidate programs from
the previous step, we keep a single tuple (z, ŷ, t) with
correct answer.

4. Converting program execution traces into chain-of-
thought rationales: We rewrite t into a CoT c using an
LLM.

We now discuss in detail each of the steps above.

Program generation. We adopt a similar approach with
recent work [16, 20] in our program generation step, and use
PaLM-2 [3] as LLM to generate candidate programs for a
given query q. We prompt PaLM-2 with the same kind of
text prompt as used by ViperGPT, which contains a detailed
description of the available vision modules, followed by the
query q (prompt in Appendix §G). The LLM is expected
to directly output a Python function definition that will be
executed in the following steps. However, in our experi-
ments, we find that the success rate of top-k programs is
much higher than the top-1 program. Therefore, in contrast
to prior work, which only samples one program z, when the
ground truth answer y is available, we set a temperature T
for LLM decoding and sample a list of top-k candidate pro-
grams {z1, z2, ..., zk} from the LLM. Then, we filter out one
correct program z in later steps. As shown in our ablation in
§4.2, this becomes crucial to our performance gain. We use
T = 0.5 and k = 5 for all our experiments. For unlabeled
data, k = 1 and the filtering step can be skipped.

Program execution with vision modules. We use the same
execution engine � as ViperGPT [16]. An LLM-generated
program zi is a Python function that takes the visual input i
as input. While the LLM outputs the program as a sequence
of text, the execution engine � is able to interpret this as a
Python program and execute it, to obtain its return result
ŷi. Additionally, � also records the execution trace ti of the
program zi, which keeps a record of all the vision module
calls, their inputs, and outputs. We use the following tools for
the program: PaLI-X [10] for simple visual queries, PaLI-X
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detection (distilled from OWLv2 [47]) for object detection;
Google Cloud Depth API [17] for depth estimation, and
PaLM-2 [3] for external knowledge.

Program filtering. As we discussed in §1, visual programs
are error-prone for a variety of reasons. The program might
be wrong, and the execution process can introduce additional
errors. To overcome these issues, we employ a program filter-
ing step. We start by sampling top-k programs and attempt
to execute each one. During this process, any program that
fails execution is instantly discarded. We further filter the re-
maining programs, the strategy depending on the availability
of labeled data. For tasks where human labels are available,
we select a single program per input sample whose answer
is correct—that is, when the program output ŷi matches the
human label y. In this case our visual program pipeline acts
like a CoT rationale annotator. One potential problem is that
some task answers are ambiguous. For example, for a ques-
tion like “Where are the horses?”, the answers “mountain”
and “mountains” are both correct. We adopt the method in
[28] and use an LLM to determine if the program output
is correct (details in §G). If there is more than one correct
program per question, we select the top scoring one, ac-
cording to the scores provided by the program-generating
LLM �. If no programs pass the test, the rated sample is not
wasted—we simply use the correct answer y as supervision
in our fine-tuning stage, without an associated CoT. When
no human-rated answer is available, we directly use the top
scoring executable program1.

Converting program execution traces into chain-of-
thought rationales. After the filtering step, for each visual
input i and query q, we will have selected at most one pro-
gram z together with its execution result ŷ and trace t. Since
most existing VLMs have been pre-trained with text in nat-
ural language and not code, we use an LLM to rewrite the
execution trace t into a natural language CoT c for our VLM
distillation. Some examples are shown in §B. Concretely,
similar to prior work [23, 24], we hand-craft 20 examples
of how an input (q, z, t) can be converted into a CoT, and
use these as few-shots for prompting PaLM-2 [3], which
performs in-context learning and generates CoTs for new
examples. We include a concrete example in §G.

3.2. Distilling step-by-step
In this step, we fine-tune a backbone VLM with the training
data generated in §3.1, distilling the knowledge and reason-
ing steps of our generated programs into a single end-to-end
model. We do so in a multitask fashion, where the VLM is
simultaneously fine-tuned on data synthesized for multiple
types tasks (e.g., free-form VQA, multiple choice).

Let f represent our VLM model. While the same VLM ar-
chitecture could solve all these tasks, it needs to be prompted

1Studying ways to approximate program correctness strategies for unla-
beled data is an interesting direction for future work.

differently to adapt to the task. Following prior work [39],
we manually design instructions for each task. For exam-
ple, for free-form VQA queries, the instruction is “Answer
with a single word or phrase”, while for multiple-choice
queries we use “Answer with the option letter from the given
choices directly”. During fine-tuning, we combine the train-
ing samples generated for all tasks into a single dataset, so
to account for the different types of tasks, we augment each
sample with its corresponding task-specific prompt p.

Using these instructions along with the data gener-
ated in §3.1, we put together the training dataset D =
{(ij , qj , ŷj , cj , pj)}Nj=1, where N is the total number of sam-
ples, ij is the visual input, qj is the textual query, ŷi is the
visual program output2, and cj is the CoT rationale.

We train f to minimize a loss for predicting both the label
and the rationale. As shown in the red box of Fig. 2, similar
to [21], we treat predicting the output label ŷj and the ratio-
nale cj as two separate optimization goals. However, since
VLMs are open-ended text generation models, they need
additional prompting to indicate whether we want a short
answer or a long answer that includes a rationale. There-
fore, we append the suffix sc =“Explain the rationale to
answer the question” at the end of the prompt for generating
a CoT, and use the task instruction pj for short answers. Our
optimization objective is:

L = Llabel + Lrationale (1)

=
NX

j=1

`(f(ij , qj , pj), ŷj) + `(f(ij , qj , sc), cj) (2)

Here ` is the cross entropy-loss normalized by sequence
length to ensure that the labels (typically short) and ratio-
nales (typically long) have similar weights. Lrationale both
teaches the VLM to generate faithful reasoning steps similar
to program execution traces, and carries more information
beyond the label ŷ that also helps the VLM in better predict-
ing the label. During test time, the rationale generation is
not required. We can adjust the task instruction to directly
get the short output label using p, and using sc to get the
human-interpretable reasoning steps if needed.

4. Experiments
In this section, we demonstrate VPD’s effectiveness by using
it to train a generalist VLM. We attempt this for two VLMs
with different scales, PaLI-3 (5B) [11] and PaLI-X
(55B) [10]. Detailed experimental setups are given in §4.1.
Qualitatively, models fine-tuned with VPD exhibit the ability
to reason step-by-step like a program, as illustrated in Fig. 3,
and supported by human evaluation results (§4.3). Quantita-
tive results show that our PaLI-3-VPD and PaLI-X-VPD

2When labeled data is available, this is equivalent to the ground truth
label y due to our filtering strategy.
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Is the girl to the right or to the left of the
woman that is wearing a shirt?

How many green vases are there?

The woman at 170 0 927 256 is wearing a
shirt. The girl is at 202 216 813 468. Thus,
the girl is to the right of the woman.

PaLI-X-VPD

PaLI-X-VPD

The vases at 348 139 771 371, 207
409 410 549, and 286 613 659 792 are
green. Thus, there are 3 green vases.

Figure 3. Outputs of PaLI-X trained with VPD. Training with
execution traces of filtered programs improves the model’s ability
to count, understand spatial relations, and reason compositionally.
The images are from Visual Genome [32].

achieve new SOTA on a broad range of tasks, on both gener-
alist and per-task fine-tuning settings (§4.2). We also conduct
a detailed analysis of the source of performance gain (§4.2).
Finally, we conduct human evaluation on the quality of the
rationales generated by our models, and compare it with
rationales generated by an instruction-tuned model trained
without VPD (§4.3).

4.1. Experimental setup

Backbone models. We use two state-of-the-art VLMs,
PaLI-3 (5B) [11] and PaLI-X (55B) [10] as our base
models. Both take images and text as input, and generate
text as output. For simplicity, we further refer to them as
“PaLI model” when we discuss steps performed with each of
them individually.

Data for Generalist Models. We fine-tune the pre-trained
PaLI model on two types of datasets to make it a generalist
VLM—that is, a model that performs relatively well on any
task without further training on that specific task:

(1) Multimodal Instruction-Tuning (MMIT) tasks, created
in the spirit of Self-Instruct [64]. An LLM is prompted with
image captions, and generates task inputs and the desired
outputs about the corresponding image. Details of MMIT
tasks are covered in [65]. Note that these tasks cover a wide
variety of common use cases, but do not include the specific
in-domain tasks used in this work.

(2) Academic task-oriented VQA tasks. Since image cap-
tions contain only a coarse description of visual information
in the image, and may miss details that are important for
solving the task. Additionaly, LLM are likely to halluci-
nate during this data curation process. To further boost the
accuracy of our VLMs, we also fine-tune the PaLI models
with academic task-oriented VQA tasks. The data mixture
covers subsets of a wide variety of VQA tasks, including
general VQA (VQAv2 [19]), optical character recognition
(OCRVQA [48]), compositional questions and reasoning
(GQA [26]), counting (TallyQA [1]), and VQA that involves

external knowledge (OK-VQA [45] and A-OKVQA [52]).
The tasks contain a textual query and a short expected label.
We use the pipeline in §3.1 to synthesize CoT reasoning
steps for these labels, and tune the PaLI model with these
the loss in Equation 1. Notice that sometimes the pipeline
fails to find a program that generates the correct answer. In
that case, we set Lrationale to 0 and only keep Llabel. §4.2
shows how many programs are kept after the filtering stage.

Data for specialist models. While fine-tuning the generalist
model with VPD, we only use a subset of each task’s training
data. To evaluate our model’s ability on each individual task,
we continue fine-tuning PaLI-3-VPD and PaLI-X-VPD
on each individual task on the training splits.

Training setup. Both PaLI-3 and PaLI-X follow an encoder-
decoder architecture, where images are encoded into visual
tokens via a visual encoder and then passed into a UL2
model. Due to resource constraint, we use LoRA [22] to
fine-tune both PaLI models. Specifically, we add LoRA
weights on each linear layer in the attention blocks and the
MLP blocks for both the encoder and decoder in the UL2
transformer. More training details are in §C.

Evaluation setup. We evaluate our models on a wide range
of tasks, including various VQA tasks and recent zero-shot
VLM benchmarks. Noted that A-OKVQA contains two
kinds of questions, multiple-choice (MC) and direct answer
(DA). We report results on both. TallyQA [1] contains com-
plex counting questions that involve object relationships, at-
tribute identification, and reasoning to get the correct answer.
It contains two evaluation partitions, simple and complex.
TextVQA [55] focuses reading texts. We include it to evalu-
ate our models on zero-shot tasks. In addition to VQA tasks,
we also test our models on two popular VLM benchmarks.
POPE [36] focuses on VLM hallucination, containing binary
questions of whether or not an object exists in the image.
MMBench [40] is a robust and comprehensive VLM bench-
mark testing a range of fine-grained abilities (e.g., object
localization, attribute recognition, spatial relationship). De-
tails of the evaluation sets and metrics are in §C.

Baselines. We refer to the two PaLI models fine-tuned with
VPD as PaLI-3-VPD and PaLI-X-VPD, and compare
them with various baselines. To evaluate the effectiveness
of VPD, we experiment with removing the synthesized CoT
from our data mixture, and train the PaLI models with the
exact same hyper-parameters and steps. We call these models
as PaLI-3 Instruct and PaLI-X Instruct. For a
fair comparison, these models are also trained with the same
supervised loss for predicting the ground truth answers, on
the same images and textual queries as our VPD variant.
Moreover, we also compare with the most recent SOTA
vision-language models. These VLMs are initialized with
pre-trained visual encoders and LLMs, and then trained with
image-text pairs, LLM-generated data, and academic tasks.
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Generalist Models VQAv2 GQA OK-VQA A-OKVQA TallyQA TextVQA POPE MMB
MC DA Simp. Comp.

Prior generalist VLMs
Flamingo (80B) [2] 82.0 - 57.8* - - - - 57.1 - -
MiniGPT-4 (Vicuna-13B) [79] - 43.5 - 67.2 - - - - - 42.3
InstructBLIP (Vicuna-13B) [14] - 49.5* - - - 75.2* 57.5* 50.7* 78.9 44.0
Shikra (Vicuna-13B) [7] 77.4 - 47.2 - - - - - 84.7 58.8
Qwen-VL (9.7B) [4] 78.8 59.3 58.6 - - 82.6* 65.8* 63.8 - 38.2
Qwen-VL-Chat (9.7B) [4] 78.2 57.5 56.6 - - 81.1* 64.0* 61.5 - 60.6
mPLUG-Owl2 (8.2B) [74] 79.4 56.1 57.7 - - - - 54.3* 86.2 64.5
LLaVA-1.5 (Vicuna-13B) [38] 80.0 63.3 - - - 76.9* 65.4* 61.3* 85.9 67.7
Our instruction-tuned baselines
PaLI-3-Instruct (5B) 79.9 59.7 56.7 78.3 57.6 81.9 70.4 63.3* 87.7 68.6
PaLI-X-Instruct (55B) 83.6 63.3 64.3 84.1 61.5 85.5 75.4 65.0* 88.9 75.0
Our visual program distillation models
PaLI-3-VPD (5B) 80.4 61.3 57.5 78.5 56.5 83.1 70.9 63.7* 88.6 69.0
PaLI-X-VPD (55B) 83.9 64.9 64.6 84.5 62.7 86.2 76.6 65.4* 88.8 76.2

Table 1. Comparison with SOTA generalist VLMs. PaLI-X-VPD outperforms all prior models. VPD improves performance on 8/9 tasks
for both PaLI-3 and PaLI-X, and is particularly effective on counting questions (TallyQA), compostional questions (GQA), and the
comprehensive benchmark (MMBench). Underline indicates when PaLI-3-VPD outperforms the Instruct version. * marks tasks
unseen during training. POPE and MMBench are zero-shot benchmarks for all models.

4.2. Quantitative results
Generalist model. Table 1 compares VPD with the base-
lines discussed in §4.1. We infer all answers by open-ended
generation with the prompt “Answer with a single word or
phrase.”, using greedy decoding without any constraint on
the model’s output space. For multiple-choice questions, we
run inference with the prompt “Answer with the option letter
from the given choices directly.” and generate the option let-
ter. As Table 1 shows, PaLI-X-VPD sets the new state-of-
the-art on all benchmarks. Compared with prior generalist
VLMs, it achieves significant improvement on MMBench
(+8.5), TallyQA complex (+9.8), and A-OKVQA(+9.5
compared with specialist SOTA[14]). PaLI-3-VPD, de-
spite its small architecture size (5B), outperforms all prior
models on VQAv2, TallyQA, POPE, and MMBench, in-
cluding much larger models that use Vicuna-13B as back-
bones [7, 14, 38]. However, its performance on knowledge-
based VQA tasks does not outperform the prior SOTA. Our
hypothesis for this is that its language model (3B UL2) is
too small to contain all the necessary knowledge needed for
correctly solving these tasks.

When compared to their Instruct variants, both
PaLI-3-VPD and PaLI-X-VPD outperform on 11/12
tasks. Specifically, for PaLI-X, VPD obtains a +1.6 im-
provement on GQA (which is heavily focused on compo-
sitional questions, spatial relationship, and localization),
+1.2 on TallyQA for complex questions, and +1.2 on MM-
Bench. These results suggest that VPD is a more effec-
tive method for creating instruction-tuning data which
enables VLMs to improve their visual reasoning ability.

Per-Task Fine-Tuning (Specialist). The results for the spe-
cialist models are shown in Table 2. PaLI-X-VPD sets a
new SOTA on all benchmarks. Note how the specialist
models tend to have higher scores than the generalist one.
We propose several hypotheses for this performance gain:

(1) As shown in Table 2, the score gap tends to be larger on
free-form VQA tasks. This may be due the fact that human
annotations on these datasets have ambiguities. For example,
for the question “Who is looking up?”, GQA [26] labels
are “man” or “woman” while OK-VQA [45] have more
detailed labels, for example, “worker” or “cook”. Per-task
fine-tuning alleviates this annotation ambiguity and lets the
model focus on the annotation style of that task. For multiple-
choice and counting tasks, the answer has less ambiguity, and
the score gaps are much smaller. (2) The performance gap
between PaLI-3 (5B) specialist and generalist is larger
than that of PaLI-X. We hypothesize that this shows models
with larger scale has more multi-task capacity; (3) Per-task
fine-tuning adds more in-domain training data, which gener-
ally improves performance.

Analysis: Sampling multiple programs is key to good
data generation. Fig. 5 shows the success rate of finding at
least one program that passes the filtering stage, when the
LLM generates the top-1 or top-5 programs, respectively.
There is a dramatic increase in success rate from 1 program
to 5: +45% on GQA and A-OKVQA, +33% on OK-VQA,
and +10% on TallyQA. This design choice greatly improves
our data synthesis efficiency, and, as a consequence, adding
more CoT data that requires complex reasoning in our train-
ing set. We also conduct an analysis in §E to compare the
performance of VPD models with that of the visual programs
they are distilled from.

4.3. Human evaluation on rationales
In this section, we focus on the quality of model outputs. We
performed this analysis using human annotators, who are
asked to evaluate both the correctness of the final answer
and the quality of the rationale behind it.

Models. We compare PaLI-X-VPD with PaLI-X
Instruct. Among possible baselines, we chose PaLI-X
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GQA OK-VQA A-OKVQA TallyQA
Specialist Models Multi-choice Direct Answer Simple Complex

test-dev val val test val test test test

InstructBLIP (Vicuna-7B) [14] - 62.1 75.7 73.4 64.0 62.1 - -
PaLI-3 (5B) [11] - 60.1 - - - - 83.3 70.5
PaLI (17B) [9] - 64.5 - - - - 81.7 70.9
CogVLM (17B) [63] 65.2 64.7 - - - - - -
PaLI-X (55B) [10] - 66.1 - - - - 86.0 75.6

PaLI-3-VPD (5B) generalist 61.3 57.5 78.5 - 56.5 - 83.1 70.9
PaLI-3-VPD (5B) specialist 64.7 60.3 79.7 76.5 65.5 63.6 83.3 70.8

PaLI-X-VPD (55B) generalist 64.9 64.6 84.5 - 62.7 - 86.2 76.6
PaLI-X-VPD (55B) specialist 67.3 66.8 85.2 80.4 71.1 68.2 86.2 76.4

Table 2. Comparison of per-task fine-tuning results of specialist models. PaLI-X-VPD sets a new SOTA for all the tasks.
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Figure 4. Human evaluation results assessing answer and rational quality for PaLI-X Instruct and PaLI-X VPD: (a) percentage of
answers that are correct and have explanations; (b) rationale factuality and consistency for the answers that contain an explanation; (c)
preference between the two models, when aggregating across all samples (“All”) and across those with correct answers (“When correct”).

Figure 5. Success rate of top-1 program and top-5 programs on the
training set during our data synthesis process.

Instruct because it is trained to generate long-form
answers [65], which allows us to assess if it is the qual-
ity of PaLI-X-VPD’s answers that the annotators prefer,
rather than its length. Since PaLI-X Instruct is also
instruction-tuned, it can be prompted to provide long an-
swers to alleviate this confounder.

Annotation protocol. We run inference with each of the
two models on a combination of 600 samples from GQA
(test-dev), A-OKVQA (val), and TallyQA (Simple and Com-
plex) and record their answers and rationales. We then ask
3 human annotators to evaluate each model answer. We
use prior work from natural language processing (NLP) as
inspiration, and build upon it for selecting the evaluation
criteria [75]. Given an image and a query, for each model-
generated rationale, we ask human annotators to score the
model answers along the following criteria: (1) correct-
ness—is the final answer correct? (2) explainability—does
the model explain its rationale for reaching the final answer?
(3) factuality—is every step in the rationale factually cor-

rect (with respect to the image and external knowledge)? (4)
consistency—does step and final answer logically follow
from the previous ones? Note that a rationale may have
the wrong answer while being consistent. We also conduct
a side-by-side comparison, and ask annotators which of
the two answers—the one provided by PaLI-X-VPD or by
PaLI-X Instruct—they prefer in terms of quality of the
answer and explanation. More details about the annotation
protocol are in §D.

Human evaluation results. The results of the evaluation
are first averaged among the human raters per sample, then
aggregated across samples. Our PaLI-X-VPD model
far outperforms PaLI-X Instruct along all criteria.
Fig. 4 (a) shows the correctness of the final answer provided
by each model (i.e. accuracy), and the proportion of the sam-
ples where the model provides a CoT rationale to explain
its answer. PaLI-X-VPD’s gain in accuracy of +16.7%
is even more impressive than in evaluations in §4.2 based
on benchmark labels—this is because human annotators are
better able to assess correctness for ambiguous questions
with different possible interpretations (e.g., the model’s an-
swer “In the living room.” to the question “Where is the
couch located?” was considered correct by annotators, even
when the benchmark answer was “On the right.”). More-
over, the explainability results confirm that our model is
able to explain its own answer on +24% more samples than
the instruction tuned model. Additionally, Fig. 4 (b) shows
impressive rationale quality: among the samples where
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an explanation is provided, PaLI-X-VPD’s rationales are
factual 87.2% of times, and consistent 97.8% of times, a
gain of +14.6% and +10%, respectively, when compared to
PaLI-X Instruct.

We also asked the annotators which of the two answers
given by the two models they prefer. We aggregated these
results in two ways: (1) across all samples, (2) across the
samples where both models answered the question correctly.
The results in Fig. 4 (c) show that PaLI-X-VPD is preferred
on 25% more samples than PaLI-X Instruct in the “All”
case, and on 12% more samples when both are correct. This
suggests that even when PaLI-X-VPD makes mistakes, it
still provides a better answer. Such examples are shown in
§D. These results confirm that a model fine-tuned with VPD
leads to more faithful and consistent answers.

5. Experiments on content moderation
Prior experiments focus on training generalist VLMs. Here,
we explore the effectiveness of VPD at quickly adapting
models to real-world applications from a different domain
than the training data [e.g., 56]. We experiment on Hateful
Memes [29], a content moderation dataset where the task
is to classify if a meme contains hateful content. The tar-
get labels are “yes” or “no”, and models are evaluated in
terms of classification accuracy and AUC-ROC. We experi-
ment with two settings: supervised, in which the models are
trained on the provided training set with 8, 500 labels, and
unsupervised, in which no human labels are provided.

Model Acc AUC-ROC
Unsupervised / Zero-Shot Methods
Generated Programs (ours) 69.7 70.1
Supervised Methods
VisualBERT [35] 69.5 75.4
Flamingo (80B) [2] - 86.6
Previous SOTA [46] 78.8 86.7
PaLI-X-VPD (label-only FT) 77.6 88.0
PaLI-X-VPD (specialist w/ CoT) 80.8 89.2
Human [29] 84.7 82.7

Table 3. Results on Hateful Memes [29] seen test set. We improve
SOTA for both zero-shot and supervised settings. Unsupervised
PaLI-X-VPD outperforms strong supervised baselines.

5.1. Unsupervised setting
We experiment with three methods:
1. Generated Program: The program generated by PaLM-

2 [3] for solving this task (shown in §F) consists of fol-
lowing main steps: (1) get image description with PaLI-
X [10]; (2) use an OCR tool to extract embedded texts; (3)
given the image description and OCR texts, ask PaLM-2
to explain if this meme is hateful.

2. PaLI-X-VPD (generalist): In a zero-shot setting, we di-
rectly prompt our PaLI-X-VPD(generalist) with:

“The text is <OCR text>. Is this a hateful meme?” We com-
pute the probability of PaLI-X-VPD generating “yes”

or “no” and measure accuracy and AUC-ROC.
3. PaLI-X-VPD (specialist with zero-shot CoT): We follow

our VPD pipeline and convert the execution traces of the
program into CoTs, and then fine-tune PaLI-X-VPD
to output these CoTs. Since no groundtruth labels are
available, no filtering is done during the process.

VPD significantly improves performance even when no
labels are available. As shown in Table 3, PaLI-X-VPD
(generalist) outperforms all other VLMs (61.4%). In-
terestingly, the generated programs themselves get much
higher accuracy (69.7%) than on the previous datasets, per-
haps because PaLM-2 is better suited at analyzing a meme
than typical VQA datasets. Moreover, our PaLI-X-VPD
(specialist) sets a new zero-shot SOTA on Hateful
Memes, and even outperforms supervised VisualBERT [35].
Manual inspection of model outputs show a great deal of
similarity with the generated code. See examples in §F.

5.2. Supervised setting
We fine-tune PaLI-X-VPD in two ways:
1. Label-only fine-tuning: To establish a strong baseline,

we first experiment with the traditional supervised setting,
where we fine-tune the model to output “yes” or “no”.

2. PaLI-X-VPD (specialist): We use the complete VPD
pipeline to train this model. We select an execution trace
that leads to the correct label, and use it to tune our VLM.

Results. Our PaLI-X-VPD (specialist) sets a new
SOTA for this task, with an accuracy of 80.8% and
AUC-ROC of 89.2%. It outperforms the label-only fine-
tuning baseline and significantly improves the SOTA met-
rics, achieving nearly human-level accuracy, and super-
human AUC-ROC.

6. Conclusion, limitations, and future work
In this paper, we introduced VPD, a framework for distilling
the reasoning abilities of LLMs along with the capabilities
of vision tools into VLMs. VPD synthesizes training data
for VLMs by generating programs that can leverage external
tools. We used this technique to fine-tune some of the best
existing VLMs (PaLI-3 and PaLI-X) and established new
SOTA results on 8 classical VQA and 2 zero-shot multimodal
benchmarks. According to human evaluations, VPD-tuned
models provide more accurate answers and better rationales.
Experiments on the Hateful Memes dataset show how VPD
can also adapt models to new real-world domains, even when
no labeled data is available, also establishing a new SOTA
on this dataset. From our experiments we learnt that both a
strength and a weakness of VPD is the quality of the gen-
erated programs. Better programs lead to bigger gains with
VPD. We discuss multiple ideas on how to improve the pro-
gram generation in Appendix H, including using additional
tools, agents, and fact-checking for multimodal CoTs.
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