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Abstract

Implicit neural representation (INR), in combination
with geometric rendering, has recently been employed in
real-time dense RGB-D SLAM. Despite active research en-
deavors being made, there lacks a unified protocol for fair
evaluation, impeding the evolution of this area. In this
work, we establish, to our knowledge, the first open-source
benchmark framework to evaluate the performance of a
wide spectrum of commonly used INRs and rendering func-
tions for mapping and localization. The goal of our bench-
mark is to 1) gain an intuition of how different INRs and
rendering functions impact mapping and localization and
2) establish a unified evaluation protocol w.r.t. the design
choices that may impact the mapping and localization. With
the framework, we conduct a large suite of experiments, of-
fering various insights in choosing the INRs and geomet-
ric rendering functions: for example, the dense feature grid
outperforms other INRs (e.g. tri-plane and hash grid), even
when geometric and color features are jointly encoded for
memory efficiency. To extend the findings into the prac-
tical scenario, a hybrid encoding strategy is proposed to
bring the best of the accuracy and completion from the grid-
based and decomposition-based INRs. We further propose
explicit hybrid encoding for high-fidelity dense grid map-
ping to comply with the RGB-D SLAM system that puts the
premise on robustness and computation efficiency.

1. Introduction
Simultaneous Localization and Mapping (SLAM) is a piv-
otal task in 3D computer vision, with the goal of estimating
the position and orientation of a sensor, while concurrently
building a map of the surrounding scene. For the real-time
dense visual SLAM system, a large number of methods
have been proposed, predominantly based on the RGB-D
cameras [8, 23, 32, 36, 42, 43, 45].

Neural Radiance Field (NeRF) is an emerging technique
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Figure 1. (a) We establish a novel benchmark to evaluate differ-
ent elements of NeRF, narrowly defined as a combination of INR
function F and geometric rendering function G, under the unified
RGB-D SLAM paradigm. (b) Rendering Loss guides the online
updating of the pose from T̃ to T̂ , and parameter of F . (c) A toy
example illustrates the impact of various combinations of F and
G: F2 surpasses F1 in trajectory estimation and reconstruction fi-
delity but compromising completeness, inspire new designs that
bring the benefits of F1 and F2 to form a hybrid encoding F1+2.

based on the Implicit Neural Representation (INR), in com-
bination with geometric rendering for novel view synthe-
sis [28]. It employs a Multilayer Perceptron (MLP) to
map a 3D point (i.e., spatial location along viewing direc-
tion) to density and color. Various NeRF variants have
emerged since, featuring unique representations such as
hash-grid [29] and tri-plane [4], or focusing on mapping the
3D point to different geometric properties, such as the sur-
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face [7, 33, 41, 47, 51], while developing corresponding ge-
ometric rendering strategies. NeRF effectively models the
intrinsic structure of a specific scene, capturing its geome-
try in a compact yet expressive manner that aligns closely
with observed locations. As a result, it inherently incorpo-
rates the corresponding observation positions. This feature
facilitates the deduction of the camera poses directly from
the trained NeRF [2, 5, 15, 22, 48].

This has inspired active research endeavors, integrat-
ing NeRF with RGB-D SLAM, demonstrated by the in-
creasing number of publications [6, 13, 17, 27, 34, 38,
40, 46, 50, 52, 54]. In general, these methods can be
classified into: 1) NeRF-centric methods, where NeRFs
are used for both scene reconstruction and pose estima-
tion [17, 38, 40, 46, 54], as depicted in Fig. 1(a) and (b),
and 2) SLAM-centric methods, where the location is pro-
vided by other SLAM systems [6, 27, 34, 50, 52]. Al-
though tremendous efforts have been made to reconstruct
high-fidelity scenes and improve pose estimation, several
limitations persist with the active progress of research:

L1: The Absence of a Unified and Comprehensive
Benchmark Framework. This hampers the comparison of
different NeRFs within the RGB-D SLAM system. State-
of-the-art (SOTA) NeRF-SLAM methods [17, 35, 38, 40,
46, 54] usually exhibit a variety of strategies regarding
components other than the INR and rendering, e.g., how
training data is selected (refer to as keyframe selection in
SLAM [54]), This makes it hardly possible to directly com-
pare systems and capture the actual progress stemming from
the NeRFs’ design. Consequently, it is imperative to under-
stand the individual characteristics of NeRF when designing
the SLAM system for varied purposes.

L2: Lack of Assessment of NeRF Component Vari-
ations on SLAM Performance. As depicted in Fig. 1(c),
NeRF, defined by F and G. has many variants that can sig-
nificantly affect the performance of SLAM systems. The
network architecture choice of F , for example, is vital for
learning scene representations accurately and efficiently.
Some architectures, e.g., joint color and geometry encod-
ing of Tri-plane, can quickly converge but may lose im-
portant details. This influences the precision of mapping
and tracking within NeRF-enhanced SLAM systems. More-
over, the rendering methods used to integrate geometry and
color information along rays are also critical, since the
quality of rendered pixels directly influences the pose and
map updating, as Fig. 1(b). While high-accuracy meth-
ods [33, 41, 47, 51] improve the rendering quality, they
generally increase computational demands and may not per-
form well with less accurately estimated poses.

In this paper, we establish, to our knowledge, the first
open-source benchmark framework to evaluate the perfor-
mance of a wide spectrum of commonly used F and G for
examining their effectiveness of mapping and localization.

The major contributions are summarized as follows:
C1: Comprehensive Evaluation of NeRFs within a

Unified RGB-D SLAM Framework. We propose a novel
RGB-D SLAM benchmark framework, featuring a unified
evaluation protocol to assess different NeRF components
effectively. We unfold our benchmark from a NeRF-centric
paradigm. It covers five major variables that categorizing
into two categories in Fig. 2, i.e., the unified SLAM frame-
work (including uniformed implemented sampling, train-
ing, and keyframe selection) and the NeRFs as a combi-
nation of G and F . Our main objective is to investigate
how the NeRFs influence the SLAM performance under
uniformly controlled configurations (Sec. 3.2) in two estab-
lished scenarios: lab and practical scenarios (Sec. 3.4).

C2: Pivotal Insights and Derived New Designs. We re-
veal the significant differences in the performance of INRs
in RGB-D SLAM problems attributable to their structural
paradigms. Specifically, hybrid representations that sim-
plify the 4D feature space, such as hash grid and tri-plane,
often require separate encoding of geometry and appear-
ance to achieve optimal performance, whereas representa-
tions of complete forms, such as dense grid and pure MLP,
do not necessitate this. We also discovered that, in datasets
with complete trajectory loops, e.g. Replica dataset [37],
grid-based INRs (hash grid and dense grid) show better
performance, while decomposition-based INRs (tri-plane
and factorization) exhibit superior efficacy under random,
loop-free trajectories, e.g. the sequences in [1]. This phe-
nomenon inspired us to propose a novel blending of grid-
based and decomposition-based methods.

C3: Bags of Engineering Tricks for the Extension to
Mapping. Our research demonstrates that a strategic blend
of dense grid representation, initially introduced in [54], and
appropriate geometric rendering functions can not only sur-
pass more recently proposed sparse alternatives [40], but
also surpass its application in earlier SLAM systems [54].
This finding suggests that our new SLAM framework suc-
cessfully capitalizes on a suite of the latest engineering tech-
niques. Our benchmark also indicates that minimal fea-
ture dimensions are sufficient for achieving relatively high-
quality mapping and tracking. This enables us to achieve
extremely fine spatial partitioning without a substantial in-
crease in memory usage. Based on this, we have effectively
re-engineered the dense grid – a scene representation known
for its high memory demand but exceptional leaderboard
performance – for real-time high-fidelity mapping.

2. Related Works
NeRF-centric approaches stem from NeRF’s inherent po-
tential for pose estimation [2, 5, 15, 22, 48]. The pio-
neering study [38] showcased that the foundational NeRF
model [28] could act as the sole representation for con-
current localization and mapping. This spurred subse-
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Figure 2. The proposed pipeline for NeRF-SLAM benchmark. The asterisk * indicates the existing two values for evaluation.

quent research that illustrated the advantages of hybrid
representations [17, 40, 46, 55] over singular MLP struc-
tures. Predominantly, dense SLAM methods have relied
on RGB-D inputs to accelerate convergence on sampling
distributions. Yet, recent efforts have ventured into dense
SLAM with RGB-only inputs, where multi-level dense fea-
ture grids have yielded impressive results, whether an ex-
ternal depth estimator is used [54] or not [20]. Another
development is the shift in volume density representation
from occupancy [20, 35, 38, 54] to Signed Distance Fields
(SDF) [17, 40, 46, 55], with the latter demonstrating rapid
convergence and superior reconstruction quality. Further-
more, these methods have laid the groundwork for seman-
tic tasks, enhancing scene understanding and enabling real-
time reconstruction [12, 18], and have even shown promise
in style transfer applications [49].

SLAM-centric methods were developed to leverage
NeRF as an external module within a self-content SLAM
system, aimed at achieving the robustness similar to well-
acknowledged visual SLAM systems [3, 11, 19, 30, 31].
Initial adoption of hash-based sparse parametric encod-
ing [29] was favored for its memory efficiency and quick
convergence [6, 34]. Some recent studies have begun to re-
explore the superiority of purely MLP-based spatial repre-
sentations [21, 25]. The potential for dense reconstruction
and effective point cloud compression has led to a focus
on neural implicit mapping using posed RGB-D observa-
tions [10, 16, 24, 53], and even solely from posed RGB in-
puts [13] in contexts such as robotics and autonomous driv-
ing. Further, some research has expanded these methods for
practical applications, addressing challenges in large-scale
mapping and multi-robot mapping fusion [26, 39, 44].

3. NeRF-SLAM Benchmark

Problem Formulation. Given a stream of synchronized
RGB-D input frames I,Dt at timestamp t, the color and
depth of a pixel x are represented by cx and dx, respec-
tively. Along the camera ray passing through pixel x, we
sample N points, each associated with a specific sample pi

at a distance di. A learnable neural implicit function F (·) is
then employed to predict the appearance ci and geometric
properties gi of each sample:

(ci, gi) = F (pi) (1)
To determine the weight wi for each sample along a ray, we
employ a geometric rendering function G(·):

wi = G(gi) (2)
The color and depth can be estimated as:

c̃x =

N∑
i=1

wi· ci, d̃x =

N∑
i=1

wi· di (3)

We formulate NeRF-SLAM as a continuous online learn-
ing task. The training data, i.e., the sampled rays through
the pixel x, are cached, for the continuous optimization of
F (·) and camera pose Tt. This process adheres to the fun-
damental photometric epx and geometric egx constraints:

epx = c̃x − cx, e
g
x = d̃x − dx (4)

3.1. NeRFs for RGB-D SLAM

To address the RGB-D SLAM problem, our objective is to
formulate the neural implicit function F (·) and the geomet-
ric function G(·). As such, they can efficiently approximate
the true density distribution along a camera ray, thereby pro-
viding an accurate estimation of wi:

wi = G(Fgeo(pi)), F ∈ F , G ∈ G (5)
Denoting learnable geometric and appearance implicit neu-
ral functions {Fgeo, Fapp} ∈ F , consolidating choices from
prominent baselines [17, 38, 40, 46, 52, 54], we firstly uni-
fied the formulation of Fgeo in Tab. 1, laying the groundwork
for defining G(·).

A key benefit of employing the SDF over alternative
representations, such as occupancy grids, lies in its capa-
bility to leverage per-point losses across all samples and
losses from the rendered image. This contributes to the
model’s fast convergence, a finding validated by [17, 40].
Despite occupancy grids’ efficacy across various domains,
particularly in robotics, this paper focuses on the high-
fidelity reconstruction and accelerated convergence offered
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F Fgeo ∈ F
MLP1 (gi, hi) = MLP (γ(pi)).

Grid2 (gi, hi) = MLP (Φ∗
dense(pi), γ(pi)).

(gi, hi) = MLP (Φ∗
hash(pi), γ(pi)).

Decomposition2 (gi, hi) = MLP (Φ∗
tri(pi), γ(pi)),

(gi, hi) = MLP (Φ∗
fac(pi), γ(pi)).

G G ∈ G
SDF (direct)4 wi = sig( gitr )· sig(−

gi
tr ).

SDF (density)5 wi = exp(−
i−1∑
k=1

σi)(1− exp(−σi),

σi = β· sig(−β· gi).

SDF (surface)6 wi = αi

∏i−1
j=1(1− αj),

αi = max
(

sig(gi)−sig(gi+1)
sig(gi)

, 0
)
.

Table 1. The selection of Fgeo(·) and G(·). ∗ denotes the ex-
istence of multi-resolution spatial splits, and γ(·) represents the
positional encoding function, and sig refers to sigmoid function.
F1 represents a pure multi-layer perceptron [38]; dense and hash
in F2 refers to the dense [54] and hash [40] feature grid encoding,
respectively; tri and fac in F3 denote tri-plane [17] and factor-
ization [14] encoding, respectively. tr in G4 stands for truncation
of SDF [40, 46]; the β in G5 stands a learnable parameter [17],
and the G6 is originate from [41]and adopted by [52].

by SDFs. This focus aligns with that of the recent SOTA
methods [17, 55]. Thus, discussions on the occupancy are
excluded, with gi interchangeably referred to as si. In the
following, we delineate three structural paradigms for the
appearance functions corresponding to each F :

ci =


MLP (Φ∗(pi), γ(pi)), if coupled(base)
MLP (Φ∗(pi), γ(pi), hi), if coupled
MLP (ϕ∗(pi), γ(pi)). if decoupled

(6)

The distinction between coupled and decoupled structures
hinges on the encoding of color: it is either independently
encoded by ϕ or jointly encoded with geometry by Φ. We
further categorize the coupled structure into two types based
on the presence of channeled geometric features.

In examining hybrid representations that incorporate
structural elements beyond the standard MLP , we observe
a diversity of configurations w.r.t. the resolution levels and
feature dimensions. For example, some studies assign high-
dimensional features to spatial partitions, e.g., 32 dimen-
sions as in [17, 54] and 16 in [46], alongside relatively
low-resolution levels (3 in [54], 2 in [17], and 1 in [46]).
Conversely, other studies utilize extremely low-dimensional
features (2 dimensions in [20, 40]) while significantly in-
creasing the number of multi-resolution levels (6 in [20] and
16 in [40]). Also, the settings for resolutions vary widely:
the finest granularity for appearance embeddings is set at
16cm in [54] and 3cm in [17], with the broadest level at
200cm in [54] and 24cm in [17]. In this work, we ensure
a fair comparison of these representations by controlling
the feature dimensions and the number of resolution levels.

This minimizes the computational overhead (i.e., opting for
2 resolution levels and 2 feature dimensions in construct-
ing the leaderboard). Detailed visual descriptions for the
impacts of feature dimension are available in the supplmat.

While the sampling strategy is an ineligible component
in NeRF, this paper does not consider it a variable for ex-
amination, due to the substantial simplification of the sam-
pling process, afforded by the incorporation of additional
depth input. Therefore, we leverage the off-the-shelf sam-
pling strategy for a unified SLAM framework in the follow-
ing section, based on the validated techniques proposed in
the latest research [38, 54, 55].

3.2. Unified Evaluation Protocol

In this section, we describe the proposed unified SLAM
framework for evaluating the possible combinations, de-
tailed in Tab. 1 and Eq. (6). The schematic diagram in Fig. 2
delineates the three primary components of our framework,
namely sampling, keyframe management, and training.
Training is continuously conducted in real-time to optimize
objectives that include common photometric and geomet-
ric losses in accordance with Eq. (4), as well as SDF loss
and free space suppressing loss that are used in previous
SDF-based INR-SLAM [17, 40]. Detailed formulations are
available in the supplmat.
Sampling. For pixels with available depth, we utilize strat-
ified sampling, dividing the samples into two categories:
surface and free space. Surface samples are densely placed
around the ground truth depth to accurately capture the sur-
face details within the truncation range. Free space samples,
on the other hand, are evenly distributed along the ray. In
cases where ground truth depth is absent, we evenly allocate
samples. This method highlights the fine details of surfaces,
making the use of an L2 loss more effective than the L1 loss
traditionally used in earlier studies [38, 46, 54].
Keyframe Selection. Enhanced pose estimation and con-
sistent global reconstruction can be achieved with a global
bundle adjustment strategy, as suggested in [40, 52]. For
better storage and retrieval efficiency, we follow the ap-
proach in [40], selectively caching only key sampled rays
from keyframes for optimization purposes.

3.3. Evaluation Metrics

For overall performance, We evaluate the final reconstruc-
tion quality using three established metrics that are com-
monly used in INR-based RGB-D SLAM [17, 38, 40, 54]:
Accuracy(Acc.[cm]), Completion(Comp.[cm]), and Com-
pletion Ratio that gauges the proportion of extracted meshes
that of Completion value smaller than 5cm (Comp.[%]).
For the sampled points on the reconstructed mesh and the
ground truth mesh, the Accuracy and Completion metrics
are calculated by determining the average distance from the
former to the latter, and from the latter to the former, respec-
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tively. Prior to metric calculation, mesh culling is conducted
in line with the procedure outlined in [1]. The overall accu-
racy of the camera trajectory is quantified by the Root Mean
Square Error (ATE[cm] RMSE).

For procedural performance, we assess the Peak Signal-
to-Noise Ratio (PSNR[db]) and L1 term of the estimated
depth (Depth L1[cm]) throughout the entire sequence by
comparing their mean values, since SLAM additionally em-
phasizes the continual estimation performance, unlike static
3D reconstruction tasks. The efficiency of mapping and
tracking is evaluated by the average update time per input
frame over the whole sequence.

3.4. Scenario Settings

As illustrated in Fig. 2, our goal is to incrementally unveil
the capabilities of INRs for RGB-D SLAM by implement-
ing a unified evaluation protocol. Thus, it is possible to
identify the best choices for subsequent refinements. To ac-
commodate the extensive range of evaluation metrics and
inherent complexity of SLAM systems, we establish two
distinct scenarios, each with a specific evaluative emphasis,
enhancing the modularity and clarity of our analysis:
Lab Scenario. This scenario aims to gain comprehensive
insights from a detailed leaderboard, see Tab. 2, based on
the synthetic Replica dataset [37]. The initial evaluation
centers on the structural paradigm of INRs, with the best-
performed one being adopted for subsequent benchmark
analysis. Then, we construct the main leaderboard using
eight synthetic sequences from the Replica dataset. Each
sequence includes ground truth trajectories, guaranteeing
thorough coverage of the entire room.
Practical Scenario. In contrast to simulated datasets, real-
world data are subject to noise. Also, camera trajectories
often only capture the scenes partially, posing distinct chal-
lenges for INR-based RGB-D SLAM systems. For this
practical scenario, we evaluate seven sequences from the
synthetic NeuralRGBD dataset [1], which are crafted to
mimic the noise and artifacts characteristic of real-world
depth sensors. Intentionally, the camera trajectories within
these experiments were designed to scan only portions of
the scenes. The leaderboard results are shown in Tab. 4.
Notably, the metrics of completeness and accuracy typi-
cally used for full-scene reconstruction are less definitive
in the context of partial observations. Nonetheless, prior re-
search suggests that increased completeness correlates with
improved pose estimation. Therefore, in this scenario, the
reconstruction quality (Acc. and Comp.) act only as indica-
tors for the SLAM performance. We instead place signifi-
cant emphasis on performance metrics such as ATE, Depth
L1, and PSNR.

Note that, due to substantial variations in sequence
lengths, it introduces considerable variability in average
frame processing time. Therefore, we remove the track-

ing and mapping speed metrics from the practical scenario
leaderboard for more transparent comparisons. The full
records of time measurement can be found in the supplmat.

3.5. Optimal INR Designs

We concentrate on the NeRF-centric paradigm to showcase
two distinct scenarios in our leaderboard. It provides critical
insights for developing an optimal INR. We will introduce
our new design in conjunction with the discussion in the
experimental section.

From the SLAM-centric viewpoint, NeRF shows
promise as a dual-purpose tool for localization and map-
ping. However, its effectiveness is somewhat limited in ap-
plications, such as robot navigation. This domain necessi-
tates a SLAM system that is not only robust but also capa-
ble of rapid convergence, particularly in environments with
ambiguously defined scene boundaries. To address these
limitations, we propose to integrate the insights from the
NeRF-centric leaderboard into SLAM-centric paradigms.
We provide a qualitative evaluation (see Fig. 5) on Scan-
net Dataset [9], demonstrating its adaptability and enhanced
performance within the context of SLAM-centric methods.

4. Experiments and New Designs
In this section, we firstly observe the impact of various com-
binations of NeRF components on SLAM system perfor-
mance under a Lab scenario. Subsequently, we examine
whether the system’s performance alters in a practical sce-
nario. Finally, based on the analysis of these empirical ob-
servations, which are displayed as leaderboards in Sec. 4.1,
we propose new NeRF designs suitable for different SLAM
scenarios in Sec. 4.2. Please refer to the supplmat for imple-
mentation specifications, including parameters and platform
configurations. Note that ’Tri-plane’ and ’Factorization’ are
denoted as Tri. and Fact. in this section, respectively.

4.1. Benchmark Leaderboard

Lab Scenario. We begin by examining the impact of struc-
tural paradigms, which are commonly presumed but not
often analyzed within the current NeRF-SLAM paradigm.
In line with Eq. (6), we list the results in Tab. 3, focus-
ing on the initialization phase, where INRs are trained us-
ing a single posed RGB-D frame. It can be seen that cou-
pling geometric and appearance features boosts depth es-
timation within a limited number of iterations for MLP,
dense, and sparse representations, suggesting a faster SDF
convergence. MLP notably shows about a 25% reduction in
Depth L1 loss when adopting a coupled structure. However,
the coupled paradigm seems to compromise color rendering
in dense (0.91dB ↓) and Sparse (1.97dB ↓) methods. On the
contrary, decomposition methods (Tri. and Fact.) benefit
from decoupled structures, showing both enhanced geomet-
ric (0.08cm and 0.12cm ↓ in Depth L1 loss) and appearance
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G F From results From processes

Acc.[cm]↓ Comp.[cm]↓ Comp.[%]↑ ATE[cm]↓ PSNR[db]↑ Depth L1[cm]↓ Tracking[ms]↓ Mapping[ms]↓
SD

F(
di

re
ct

) MLP 11.95 8.36 76.82 14.41 24.20 3.12 293 421
Dense1 1.65 5.62 83.93 1.37 27.88 1.50 288 286
Sparse3 1.76 5.66 83.61 1.40 28.23 1.65 197 300

Tri. 1.69 5.64 83.60 1.42 27.52 1.80 352 820
Fact. 1.69 5.60 83.69 1.50 27.52 1.74 419 911

SD
F(

de
ns

ity
) MLP 9.64 9.92 72.22 24.58 23.51 7.01 250 419

Dense2 1.60 5.58 84.01 1.31 27.77 4.42 253 585
Sparse4 1.69 5.65 83.72 1.40 28.10 4.45 207 310

Tri.5 1.80 5.59 83.82 1.49 27.55 4.51 376 829
Fact. 1.75 5.60 83.73 1.55 27.54 4.48 414 897

SD
F(

su
rf

ac
e) MLP 30.44 24.28 20.21 44.68 17.13 98.24 342 585

Dense 32.83 20.71 42.28 135.39 16.21 176.15 418 669
Sparse 48.22 25.73 30.73 176.68 16.49 174.94 258 359

Tri. 30.28 18.06 41.77 87.71 16.05 180.68 490 897
Fact. 30.75 20.45 31.31 85.63 16.43 168.81 584 1009

Table 2. The leaderboard of lab scenario. Text in bold indicates the best performance, while text in blue bold denotes the second best.
1−5 indicated the top 5 combinations according to the counting of performance ranking.

F Structure PSNR[db] ↑ Depth L1[cm] ↓ Time[s] ↓

MLP
Coupled(base) 23.03 2.19 65.59

Coupled 23.76 1.68 82.00
Decoupled 6.37 2.26 106.7

Dense
Coupled(base) 30.21 0.83 47.55

Coupled 29.66 0.84 93.00
Decoupled 31.12 0.85 85.76

Sparse
Coupled(base) 28.28 0.97 49.31

Coupled 28.45 0.92 70.27
Decoupled 30.42 0.99 32.72

Tri.
Coupled(base) 26.41 1.17 61.78

Coupled 25.45 1.16 120.40
Decoupled 27.95 1.08 83.22

Fact.
Coupled(base) 26.34 1.19 121.10

Coupled 25.58 1.28 127.40
Decoupled 28.36 1.07 85.83

Table 3. Impact of network architectures at initialization: per-
formance comparison on Replica Room0 sequence, where Time[s]
indicates the total processing time in seconds. All outcomes cor-
respond to the geometric function SDF (direct).

(1.54dB and 2.02dB ↑) accuracy compared to their coupled
counterparts.

The structure with the most top-ranked instances (high-
lighted in bold) in Tab. 3 is selected as the optimal choice
for each INR (F ) and is used to construct the following
leaderboards. We assess the collective performance of F
and G within the unified SLAM framework, with results for
the Lab scenario detailed in Tab. 2.

Overall, hybrid representations (i.e., F other than MLP)
demonstrate markedly superior color and geometry estima-
tion performance, with decomposition methods (Tri. and
Fact.) generally lagging behind grid-based ones (dense and
sparse) in terms of processing speed, shown in both Tab. 3
and Tab. 2. Despite using a coupled network structure that
halves the total optimization parameters, the dense grid rep-
resentation excels. It achieves overall six top and three
second-place rankings. This is followed by sparse encod-
ing, which secures two top spots and four second-place,

Indicators Targets

G F Acc.↓
[cm]

Comp.↓
[cm]

Comp.↑
[%]

ATE↓
[cm]

PSNR↑
[db]

Depth L1↓
[cm]

SD
F(

di
re

ct
) MLP 4.37 5.16 79.22 3.69 22.56 3.56

Dense 2.69 4.69 83.45 1.96 25.15 1.70
Sparse 2.84 4.81 82.64 2.12 25.23 1.84

Tri. 2.29 4.42 84.01 1.89 24.67 1.85
Fact. 2.62 4.47 83.54 1.94 24.69 1.87

Hybrid 2.40 4.64 83.48 1.86 25.25 1.68

SD
F(

de
ns

ity
) MLP 3.98 5.12 78.82 3.87 22.56 4.80

Dense 2.70 4.72 83.27 1.87 25.04 4.40
Sparse 2.84 4.71 82.79 1.96 25.08 4.46

Tri. 2.12 4.62 83.90 1.90 24.62 4.42
Fact. 2.11 4.45 84.01 2.01 24.63 4.41

Hybrid 2.34 4.71 83.25 1.91 25.05 4.40

Table 4. The leaderboard of practical scenario. Black bold text
indicates top performance, blue marks second place, with an ad-
ditional underline denotes third rank for the targeted metric. Note
that the hybrid denotes our proposed encoding strategy that syner-
gizes the strengths of dense grid and tri-plane.

with the Tri. claiming one second-place spot. It is worth
noting that the dense grid’s concatenated 4D features con-
sistently yield excellent SDF results (with first and second
rankings in both Acc. and Depth L1) and hold their own in
RGB quality (marginally lower than the 8D feature-encoded
sparse grid) across the SLAM process while maintaining the
quickest mapping speed.

Notably, the neural implicit surfaces [41] rendering
method shows significantly inferior performance than its
more naive counterparts [1], which also shares the unbiased
approximation but directly maps SDF to weighting factors
rather through volume rendering. This finding might sug-
gest the delicate formulation for occlusion in offline 3D vol-
ume rendering might be sensitive to relatively poorly esti-
mated poses in the online SLAM.
Practical Scenario. When adopting synthetic data with
noisy depth and incomplete scene coverage, decomposi-

21351



0.3

Hybrid Encoding

Explicit Hybrid Encoding

𝑝!

𝑠!

𝑐!

𝑐!

𝑠!"

𝑠!"#
𝑠!

𝑝!

$𝑇

𝑇

(a)

(b)

Fine Grid Encoding

0.3

Coarse Grid Encoding Coarse Plane Encoding

MLPPositional Encoding SDF Prior

Figure 3. Illustration of new designs. For hybrid encoding, a
point pi is (a) encoded using feature planes and a feature grid at
a coarse level, and exclusively by a feature grid at a fine level. In
contrast, for explicit hybrid encoding, pi is (b) solely encoded with
an optimizable fine-level feature grid and decoded by MLP into an
SDF residual sri and color ci. This residual is then combined with
the SDF prior stored in an explicit octree soci to derive the inferred
SDF value si.

tion methods excel in achieving high geometric accuracy
(Acc.) and scene completion (Comp.) Tab. 4. This verifies
our statement in Sec. 3.4. The decomposition of 3D im-
plicit spaces into mutually orthogonal 2D (additional 1D for
the factorization method) results in planar geometries akin
to real-world indoor environments, extending even beyond
the observed view frustum. In these instances, more points
might align closely with the true spatial geometry.

Yet, this increase in scene completion doesn’t directly
improve targeting performance metrics. Specifically, dense
representation still performs better in position accuracy
(ATE) and depth estimation (Depth L1), compared to the
decomposition methods, especially when combined with
SDF(direct). In the realm of color estimation, dense grid ex-
hibit only a marginal drop in accuracy (0.08dB↓) compared
to their sparse counterparts. This trend is consistent with
the Lab scenario leaderboard Tab. 3, where both grid-based
methods notably surpass the performance of decomposition
methods in ATE, Depth L1 and PSNR.

4.2. New Designs for Encoding

Hybrid Encoding. NeRF-centric approaches estimate
camera trajectories by freezing the parameters of F and set-
ting 6-DOF poses as optimizable parameters. Therefore, ef-
fective modelling of spatial geometry and color is beneficial
for pose estimation. Decomposition-based methods encode
scenes in ways that echo the real three-dimensional world,
particularly within artificial indoor settings. This charac-

Dense Grid EncodingTri-Plane Encoding Hybrid Encoding

Figure 4. Reconstruction of ‘morning apartment’ sequence on
the NeuralRGBD dataset, Our hybrid encoding strategy brings the
best of two worlds.

teristic strengthens their capacity to project unobserved re-
gions accurately, allowing for sturdier pose estimates even
when faced with occasional inaccuracies in observed seg-
ments of the scene. However, their precision falls short
of grid-based methods, leading us to consider combining
the strengths of both approaches. For this reason, we in-
troduce hybrid encoding, a strategy blending the compre-
hensive spatial depiction of decomposition with the preci-
sion of grid-based methods, as depicted in Fig. 3 (a). This
strategy complies with our leaderboard protocol, with both
feature dimensions and resolution levels set at two. At the
coarse resolution level, a sample point undergoes both bilin-
ear and trilinear interpolation within the respective feature
plane and grid. At the fine resolution level, interpolation is
exclusively performed using a feature grid. Outputs from
both scales are then combined to form the input for MLP
decoders for estimating raw color and geometry.

The quantitative and qualitative results are shown in
Tab. 4 and Fig. 4 for the dense grid feature encoding. It
is revealed that hybrid encoding achieves superior trajec-
tory estimation accuracy and reconstruction fidelity, both in
color and depth. This is mainly due to the enhanced com-
pleteness augmented by plane-based representation, as con-
firmed by various indicators, i.e., increased performance for
Acc. and Comp., and visual demonstration in Fig. 4.

Notably, our benchmark strictly controls feature dimen-
sions and spatial resolution for the implicit encoding. How-
ever, optimal performance in such a controlled comparisons
may not always align with real-world application priori-
ties. For example, a minor compromise in accuracy (e.g.
a 1mm decrease in trajectory estimation accuracy) can lead
to substantial gains in memory efficiency. Hence, hybrid en-
coding combining tri-plane and hash grid feature encoding
might be a preferable alternative to the tri-plane and dense
combination. Such trade-off is discussed in the supplmat.
Explicit Hybrid Encoding. SLAM-centric methods uti-
lize external trackers to ensure robust pose estimation and
maintain system stability over time. Our evaluations show
that dense grids, along with their hybrid encoding with tri-
plane, excel in implicit scene encoding across two promi-
nent leaderboards. To evolve these techniques for NeRF-
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Figure 5. Qualitative evaluation of explicit hybrid encoding on ‘scene0000’ sequence of ScanNet Dataset. Both NICE-SLAM and Ours
run on the posed RGB-D stream to simulate an externally provided tracker.

Lab Practical

NICE-SLAM [54] Ours CO-SLAM [40] Ours
Depth L1↓ 3.53 1.50 3.02 1.68

Acc.↓ 2.85 1.65 2.95 2.40
Comp.↓ 3.00 5.62 2.96 4.64

Comp.%↑ 89.33 83.93 86.88 83.48
ATE↓ 1.95 1.37 - 1.86

Res×Dim↓ 3×32 2×2 16×2 2×2

Table 5. Quantitative comparison with the SOTA method, Co-
SLAM, featuring similar implicit scene representations. In the
Lab scenario, both NICE-SLAM and our approach use dense grid
representations, whereas, in the practical scenario, Co-SLAM and
Our method are both in the spirit of hybrid encoding.

based mapping, enhancements in computational and mem-
ory efficiency are necessary. Dense grids exhibit cubic
scaling with resolution (O(n3)), while octrees show loga-
rithmic scaling (O(log(n))) in sparse environments, leav-
ing room for memory optimization. Drawing inspiration
from [46, 53], we propose an explicit hybrid encoding, see
Fig. 3(b), to substitute the coarse-level feature grid with an
octree structure and simplifying the encoding process by us-
ing a single-level dense grid. To reduce the complexity of
simultaneously encoding color and geometry for real-time
applications using only two-dimensional features, we adopt
the SDF residual optimization strategy detailed in [16].

Our explicit hybrid encoding method’s capability for
high-fidelity online map updating is qualitatively show-
cased in Fig. 5. When tested on sequence ’scene0169’ with
a posed RGB-D stream on our hardware platform, explicit
hybrid encoding achieves map updating at approximately 1
Hz, compared to around 0.25 Hz for NICE-SLAM. More
records are available in supplmat.
Discussion. For context, we include comparisons with ex-
isting methods in Tab. 5. The top performances, i.e., dense
grid encoding with SDF(density) rendering in the Lab sce-

narios, and hybrid encoding with SDF(direct) rendering
in the Practical scenarios showcase higher reconstruction
and pose estimation accuracy, even with generally lower
completeness and notably fewer total feature dimensions
(Res×Dim). For a visual representation of these findings,
readers are directed to the supplmat. In this benchmark,
discussions concentrate on achieving optimal performance,
rigorously measured against specific metrics under strictly
regulated variables for fairness comparison. Nonetheless,
the appeal of computational efficiency often takes prece-
dence over the pursuit of complete comparative fairness.
Please refer to the supplmat for such trade-offs.

5. Conclusion and Future Work
We proposed an open-source benchmark to evaluate INRs
for RGB-D SLAM, filling a crucial gap in standardizing
performance assessments. We demonstrated the superior ef-
ficacy of dense grid representations and introduced a hybrid
encoding strategy that marries precision with efficiency.
Our work not only guided the selection of INR components
but also advanced practical SLAM applications.
Future Work. SLAM systems are intricate and are of-
ten tailored to specific environments. Consequently, it is
not feasible to declare a universally superior representation
within the scope of this paper. For example, in scenarios
with orthogonal geometry and muted colors, such as an of-
fice corridor, planar representations may stand as more suit-
able alternatives to the dense grids. We advise that future
research should expand to more diverse scenes.
Acknowledgement. This paper is supported by the Na-
tional Natural Science Foundation of China (NSF) un-
der Grant No. NSFC22FYT45 and the Guangzhou
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José MM Montiel, and Juan D Tardós. Orb-slam3: An accu-
rate open-source library for visual, visual–inertial, and mul-
timap slam. IEEE Transactions on Robotics, 37(6):1874–
1890, 2021. 3

[4] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16123–16133, 2022. 1

[5] Yu Chen and Gim Hee Lee. Dbarf: Deep bundle-adjusting
generalizable neural radiance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 24–34, 2023. 2

[6] Chi-Ming Chung, Yang-Che Tseng, Ya-Ching Hsu, Xiang-
Qian Shi, Yun-Hung Hua, Jia-Fong Yeh, Wen-Chin Chen,
Yi-Ting Chen, and Winston H Hsu. Orbeez-slam: A real-
time monocular visual slam with orb features and nerf-
realized mapping. In 2023 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 9400–9406.
IEEE, 2023. 2, 3

[7] Forrester Cole, Kyle Genova, Avneesh Sud, Daniel Vla-
sic, and Zhoutong Zhang. Differentiable surface render-
ing via non-differentiable sampling. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 6088–6097, 2021. 2

[8] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram
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