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Abstract

Portable 360◦ cameras are becoming a cheap and effi-
cient tool to establish large visual databases. By capturing
omnidirectional views of a scene, these cameras could ex-
pedite building environment models that are essential for
visual localization. However, such an advantage is often
overlooked due to the lack of valuable datasets. This paper
introduces a new benchmark dataset, 360Loc, composed
of 360◦ images with ground truth poses for visual local-
ization. We present a practical implementation of 360◦

mapping combining 360◦ images with lidar data to gen-
erate the ground truth 6DoF poses. 360Loc is the first
dataset and benchmark that explores the challenge of cross-
device visual positioning, involving 360◦ reference frames,
and query frames from pinhole, ultra-wide FoV fisheye, and
360◦ cameras. We propose a virtual camera approach to
generate lower-FoV query frames from 360◦ images, which
ensures a fair comparison of performance among differ-
ent query types in visual localization tasks. We also ex-
tend this virtual camera approach to feature matching-
based and pose regression-based methods to alleviate the
performance loss caused by the cross-device domain gap,
and evaluate its effectiveness against state-of-the-art base-
lines. We demonstrate that omnidirectional visual localiza-
tion is more robust in challenging large-scale scenes with
symmetries and repetitive structures. These results pro-
vide new insights into 360-camera mapping and omnidirec-
tional visual localization with cross-device queries. Project
Page and dataset: https://huajianup.github.
io/research/360Loc/.

1. Introduction

Visual localization refers to predicting the 6DoF abso-
lute pose (translation and rotation) of query images in a
known scene. Accurate visual localization has wide appli-
cations in augmented reality (AR), navigation, and robotics.

Over the last decade, many visual localization methods
have been proposed, including feature matching-based ap-
proaches [17, 33, 42, 45, 54], scene coordinate regres-
sion [5–7] and absolute pose regressors (APRs) [23, 24, 49].
Much of this progress has been driven by the availability of
numerous datasets and benchmarks targeting different chal-
lenges, as shown in Table 1. However, existing methods and
datasets focus on localization and mapping using pinhole
images. Although the merits of 360◦ camera on visual per-
ception have been recognized [22, 60, 62], the application of
360◦ cameras for visual localization is still under-explored.
Recently, SensLoc [61] started to apply 360◦ cameras to
facilitate data collection, but their pipeline cannot perform
omnidirectional localization directly from the 360◦ images.

This paper introduces 360Loc, a new challenging bench-
mark dataset to facilitate research on omnidirectional visual
localization. The dataset contains 360◦ images captured
in diverse campus-scale indoor and outdoor environments,
featuring highly symmetrical and repetitive features, as well
as interference of dynamic objects. To capture this dataset,
we present a practical pipeline using a portable 360-camera-
lidar platform to obtain reliable pose estimations of 360◦

cameras as ground truth. Although 360◦ cameras present
significant advantages for capturing reference data, real-life
applications applying visual localization often rely on tra-
ditional cameras. Examples include robots equipped with
fisheye cameras and phone-based AR applications using the
embedded pinhole camera. This raises the problem of cross-
device visual localization on image databases captured with
360◦ cameras. We thus supplement the reference database
composed of 360◦ images with query frames including pin-
hole, fisheye and 360◦ cameras.

We introduce the concept of virtual camera to generate
high-quality lower-FoV images with different camera pa-
rameters from 360◦ images. This enables a fair compari-
son of performance among queries from different devices in
cross-device visual localization. We adapt existing feature-
matching-based methods and APRs to support 360◦ image
queries and benchmark these methods for 360-based cross-
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Figure 1. Overview of dataset collection and ground truth generation: 1) Use the platform to collect 360◦ images and frame-by-frame
point clouds. Obtain real-time camera poses; 2) Apply optimization methodology to achieve data registration, resulting in a globally
reconstructed point cloud model. Then, align the models in daytime and nighttime to get consistent poses; 3) Perform cropping to get
virtual camera images and generate corresponding depth images. As a result, 360Loc takes advantage of 360◦ images for efficient mapping
while providing query images in five different camera models in order to analyze the challenge of cross-domain visual localization.

device visual localization. Since different cameras present
different imaging patterns, the cross-device domain gap is
expected to lead to performance loss. We extend the vir-
tual camera approach to data augmentation for end-to-end
solutions such as image retrieval (IR) and APRs.

By conducting exhaustive evaluations, we demonstrate
the advantages of 360◦ cameras in reducing ambiguity in vi-
sual localization on scenes featuring symmetric or repetitive
features. We also show improvements against state-of-the-
art (SOTA) baselines using the virtual camera method for
cross-device visual localization on images databases cap-
tured with 360◦ cameras. These results provide novel in-
sights on mapping using 360◦ images, enhancing the anti-
ambiguity capability of query images, reducing domain gap
cross-device in visual localization, and improving the gen-
eralization ability of APRs by applying virtual cameras.

Our contribution can be summarized as follows:

• We propose a practical implementation of 360◦ mapping
combining lidar data with 360◦ images for establishing
the ground truth 6DoF poses.

• A virtual camera approach to generate high-quality lower-
FoV images with different camera parameters from 360◦

views.
• A novel dataset for cross-device visual localization based

on 360◦ reference images with pinhole, fisheye, and 360◦

query images.

• Demonstration of our approach’s efficacy over state-of-
the-art solutions for visual localization using 360◦ image
databases, resulting in decreased localization ambiguity,
reduced cross-device domain gap, and improved general-
ization ability of APRs.

2. Related work

2.1. Visual Localization

Structure-based methods predict camera poses by estab-
lishing 2D-3D correspondences indirectly with local feature
extractors and matchers [16, 35, 42, 43, 52, 55] or directly
with scene coordinate regression [5–7]. HLoc [42, 43]
pipeline scales up to large scenes using image retrieval [1,
3, 18, 20] as an intermediate step, which achieves SOTA ac-
curacy on many benchmarks. This type of approach usually
supports pinhole cameras with different intrinsic parame-
ters. However, the performance of 360◦ and fisheye cam-
eras has not been evaluated before due to the lack of support
for 360◦ cameras in the Structure from Motion (SfM) tools
like COLMAP [45] and the lack of datasets for fisheye and
360◦ cameras. [25–27] are point-cloud-based panorama lo-
calization methods for 360◦ queries but they do not consider
cross-device visual localization.
Absolute Pose Regressors (APRs) are end-to-end learning-
based methods that directly regress the absolute camera
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pose from input images without the knowledge of 3D mod-
els and establish 2D-3D correspondences. APRs [4, 8, 12,
13, 23, 24, 36, 37, 49, 59] provide faster inference than
structure-based methods at the cost of accuracy and robust-
ness [47]. Besides, APRs have generally only been tested
on the [9], 7Scenes [50], and Cambridge Landmarks [24]
datasets in previous studies. A notable characteristic of
these datasets is that the training set and test set images
were taken from the same camera. In this paper, we en-
hance cross-device pose regression for APRs by introducing
virtual cameras as a data augmentation technique.

2.2. Datasets

The existing dataset has the following limitations. 1). Most
datasets [9, 10, 24, 50, 54, 58] do not consider the need for
cross-device localization, i.e., query images come from the
same camera. Even though some datasets [11, 14, 30, 44,
46, 48, 53, 61] take into account cross-device localization,
these devices are only pinhole cameras with different cam-
era intrinsic parameters and do not have particularly large
domain-gaps. Compared to [32], our pinhole and fisheye
images are extracted from 360◦ images via virtual cameras,
which makes less demands on the device and allows for
a fair and more flexible comparison of the effects of dif-
ferent FoVs. In this paper, our 360Loc datasets provide
five kinds of queries from pinhole, fisheye and 360◦ cam-
eras to promote the research of cross-device localization.
2). Now there is no 6DoF visual localization dataset and
benchmark considering 360◦ reference images and 360◦

query images, even though [2, 25, 38] contain 360◦ im-
ages with 6DoF pose labels, they are not standard visual
localization datasets with independent mapping/reference
sequences and query sequences like datasets in Table 1.
Other datasets [11, 61] use 360◦ cameras for data collec-
tion, in the end they cropped 360◦ to perspective images
and then tailor these images to the classical visual local-
ization pipeline of pinhole cameras. The academic com-
munity is mainly driven by benchmarks where all train-
ing, reference, and query images are pinhole images be-
cause they rely on SfM tools [45] which does not support
360◦ cameras to obtain ground-truth (GT) and get sparse
3D point cloud models for recovering camera poses. How-
ever, we note that the 360◦ camera can cover the scene with
greater efficiency than normal pinhole cameras with nar-
row Field-of-View (FoV), which makes 360◦ images par-
ticularly suitable as reference images. 3) Although the cur-
rent dataset has explored the challenges of visual localiza-
tion from various aspects such as weather variations, day-
night transitions, scene changes, and moving individuals
and objects [24, 30, 44, 46, 58, 61], there is still insuffi-
cient research specifically targeting highly ambiguous en-
vironments which contain symmetries, repetitive structures
and insufficient textures. Only two indoor datasets [9, 53]

(a) Atrium (b) Concourse

(c) Piatrium (d) Hall

Figure 2. The four scenes in 360Loc, all four scenes contain sym-
metrical, repetitive structures and moving objects. The camera
trajectories are visualized as spheres.

and LaMAR [44] consider challenges in ambiguous envi-
ronments. In this paper, we studied 4 ambiguous scenes
from both indoor and outdoor environments with a scale
much larger than dataset [9] (See Figure 2). We conduct ex-
haustive assessments of image retrieval, local matching lo-
calization, and absolute pose regression to show that queries
from the 360◦ camera are harder to obtain plausible solu-
tions than other queries from cameras with narrower FoV.

3. The 360Loc Dataset
The 360Loc dataset contains 4 locations from a local univer-
sity. Figure 2 displays the reference point cloud and exam-
ple frames from each scene. Atrium is inside a building with
a surrounding structure that exhibits a high degree of sym-
metry and repetition, making it a highly ambiguous environ-
ment. Concourse is a large indoor scene with many moving
people, which can be used for evaluating the robustness of
any localization algorithm in scenes with many moving ob-
jects. Piatrium is a scene containing both indoor Atrium and
outdoor environments, covering an outdoor piazza with cof-
fee shops, bookstores, and souvenir shops. Hall is a modern
building of a student dormitory.

3.1. 360 Mapping Platform

We utilized the handheld multimodal data acquisition plat-
form depicted in Figure 1 for data collection. This platform
incorporates a 360◦ camera, a Velodyne VLP-16 multi-line
lidar, an NUC mini-computer, and a display screen. Fig-
ure 1 also illustrates the relative relationship among the
360◦ camera coordinate system Oc-XYZ, the lidar coor-
dinate system Ol-XYZ as well as the world coordinate
Ow-XYZ. The portable 360 camera equipped on this
device can capture high-resolution omnidirectional images
with a resolution of 6144 x 3072 (2:1 aspect ratio). It also
features a built-in six-axis gyroscope that provides stabi-
lization support, making it suitable for handheld mobile
data capture. The Velodyne VLP-16 multi-line lidar has
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Dataset Scale and Environment Challenges Reference/Query type Groundtruth Solution Accuracy

7Scenes [50] Small Indoor None pinhole / pinhole RGB-D ≈ cm
RIO10 [58] Small Indoor Changes pinhole / pinhole VIO > d m

Baidu Mall [53] Medium Indoor People, Ambiguous pinhole / pinhole lidar+Manual ≈ d m
Naver Labs [30] Medium Indoor People, Changes pinhole / pinhole lidar+SfM ≈ d m

InLoc [54] Medium Indoor None pinhole / pinhole lidar+Manual > d m
AmbiguousLoc [9] Small Indoor Ambiguous pinhole / pinhole SLAM ≈ cm

Achen [46] Large outdoor People, Day-Night pinhole / pinhole SfM > d m
Cambridge [24] Medium outdoor People, Weather pinhole / pinhole SfM > d m

San Francisco [11] Large outdoor People, Construction pinhole / pinhole SfM+GPS ≈ m
NCLT [10] Medium Outdoor + Indoor Weather pinhole / pinhole GPS+SLAM+lidar ≈ d m

ADVIO [14] Medium Outdoor+Indoor People pinhole / pinhole VIO+Manual ≈ m
ETH3D [48] Medium Outdoor + Indoor None pinhole / pinhole lidar+Manual ≈ mm
LaMAR [44] Medium Outdoor+Indoor People, Weather, Day-Night, Construction, Changes, Ambiguous pinhole / pinhole lidar+SfM+VIO ≈ cm
SensLoc [61] Large Outdoor People, Weather, Day-Night, Construction, Changes pinhole / pinhole SL+VIO+RTK+Gravity < dm

360Loc (ours) Medium Outdoor+Indoor
People, Weather, Day-Night, Construction, Changes,

Ambiguous
360 / (360 +

pinhole + fisheye) lidar+VIO ≈ cm

Table 1. Overview of popular visual localization datasets. No dataset, besides ours, consider 360◦ images as reference and query frames
from pinhole, ultra-wide FoV fisheye, and 360◦ cameras.

Symbol Name Field of View Resolution Type

c0 360 360◦ 6144×3072 reference/query
c1 fisheye1 120◦ 1280×1024 query
c2 fisheye2 150◦ 1280×1024 query
c3 fisheye3 195◦ 1280×1024 query
c4 pinhole 85◦ 1920×1200 query

Table 2. The representation and parameters of 5 cameras.

# Frames # Frames Query (day / night) Spatial
Scene Reference 360 360 Pinhole Fisheye1 Fisheye2 Fisheye3 Extent (m)

Concourse 491 593/514 1186/1028 1186/1028 1186/1028 1186/1028 93× 15
Hall 540 1123/1061 2246/2122 2246/2122 2246/2122 2246/2122 105× 52
Atrium 581 875/1219 1750/2438 1750/2438 1750/2438 1750/2438 65× 36
Piatrium 632 1008/697 2016/1394 2016/1394 2016/1394 2016/1394 98× 70

Table 3. 360Loc dataset description.

a FoV of 360◦×30◦, angular resolution of 0.2◦×2.0◦, and
rotation rate of 10Hz, offering a comprehensive 360◦ en-
vironmental view. Regarding the calibration of the extrin-
sic poses between the lidar and the 360◦ camera, we em-
ployed a calibration toolbox [29] that applies to both lidar
and camera projection models. This toolbox utilizes the
SuperGlue [43] image matching pipeline to establish 2D-
3D correspondences between the lidar and camera image.
We perform pseudo-registration by synchronizing the two
data modalities, images, and point clouds. Eventually, we
use graph-based SLAM techniques for continuous pose es-
timations. In the four scenes, a total of 18 independent se-
quences of 360◦ images were captured (12 daytime, and
6 nighttime), resulting in a total number of 9334 images.
For each scene, we selected a specific sequence captured
during the daytime as the reference images, while the re-
maining images were defined as query images of the 360◦

image type. We provide more details and show why 360◦

mapping is superior to pinhole SfM in ambiguous scenes
with repetitive and symmetric structures in the supplemen-
tary material.

Figure 3. Illustration of obtaining virtual camera images through
random poses and image cropping.

3.1.1 Cross-device Queries

To enable a rigorous comparison of the difference in the
performance of different FoV queries for visual localiza-
tion tasks, we created four virtual cameras with diverse FoV
from 360◦ cameras, which are shown in Figure 2. Given a
360◦ image Ic0 , the corresponding virtual camera with pre-
configured intrinsic parameters is extracted by

Icn = Ψcn(Ic0) = π−1
cn (πc0 (RIc0)) , (1)

where πcn denote the projection function of virtual cam-
era and πc0 is the projection function of 360◦ camera.
R ∈ SO (3) is a random relative rotation matrix to increase
the diversity of views representing the scenes. Moreover,
the inversed operation Ψ−1

cn can convert the cn image back
to a 360◦ image. As reported in Table 2, the virtual cam-
eras include an undistorted pinhole model with 85◦ FoV and
three fisheye cameras in Dual Sphere mode [56] with 120◦,
150◦, and 195◦ FoV respectively. Table 3 presents the num-
ber of image frames in the 360Loc dataset.
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3.2. Ground Truth Generation

Besides the graph-based optimization in SLAM, we de-
signed a set of offline optimization strategies to further im-
prove the accuracy of camera pose estimation. After the
acquisition of precise dense point cloud reconstructions and
poses of 360◦ cameras, an Iterative Closest Point (ICP) al-
gorithm is applied to align models between reference and
the query sequences in the same scene. Moreover, we re-
constructed the mesh model of the scenes and generated
corresponding depth maps of 360◦ cameras.

Bundle Adjustment (BA) of lidar mapping. Incremen-
tal map construction can suffer from accumulating errors
due to environmental degradation. We utilized a BA frame-
work based on feature points extracted from lidar to refine
the map and the poses. The optimization process involved
minimizing the covariance matrix to constrain the distances
between feature points and edge lines or plane features that
are mutually matched.

First, we utilize an octree data structure to perform adap-
tive voxelization-based feature extraction. In this method,
the point cloud map is segmented into voxels of predeter-
mined size. Each voxel is checked to determine if its points
P f

u lie on a plane or a line, where u ∈ {1, 2, . . . , U},
obtained from the u-th frame of lidar scans. If not, the
voxel is recursively subdivided using an octree structure un-
til each voxel contains points P f

u belonging to the same fea-
ture. Let’s assume that the pose of the lidar in each frame
is η = {η1,η2, . . . ,ηM}, where ηu = (Ru, tu|Ru ∈
SO (3) , tu ∈ R3). In that case, the feature points in the
global map can be represented as follows:

Pu = Ru × P f
u + tu. (2)

After simplifying the lidar map to edge or plane features,
the process of BA becomes focused on determining the pose
η and the location of the single feature, which can be rep-
resented as (nf , q), where q represents the location of a
specific feature, nf is the direction vector of an edge line
or the normal vector of a plane. To minimize the distance
between each feature point and the corresponding feature,
we can utilize the BA:(

η∗,n∗
f , q

∗) = argmin
η,nf ,q

1

U

U∑
u=1

(
nT

f (Pu − q)
)2

. (3)

It has been proved that when the plane’s normal vector is
set to the minimum eigenvector, and q is set to the centroid

of the feature, i.e. q = P̂ = 1
U

U∑
u=1

Pu, Eq. 3 reaches

its minimum value. Additionally, the BA problem in lidar
mapping has a closed-form solution that is independent of
the features (nf , q) [34]. It can be simplified to the follow-
ing problem:

η∗ = argmin
η

λmin (A) , (4)

Figure 4. Overview of GT generation.

where, λ represents the eigenvalue of A, and

A =
1

U

U∑
u=1

(
Pu − P̂

)(
Pu − P̂

)T

. (5)

Now, the BA problem is simplified by adjusting the lidar
pose η to minimize the smallest eigenvalue λ3 of the point
covariance matrix A defined in Eq. 5. By employing this
strategy, we refined the pose η of each frame and the edge
or plane features in the lidar map.

Refined cameras poses. The poses of 360◦ camera
obtained from online SLAM are further optimized by the
registration with respect to the dense refined point cloud
model. Taking the pre-calibrated extrinsic parameters as
the initial guess, we used the RANSAC to refine the lidar-
camera transformation [29]. This registration process is
based on the normalized information distance (NID) [51],
which serves as a mutual information-based cross-modal
distance metric. Finally, we align the reference models and
query models into the same coordinate system to generate
the ground truth for the query sequences. Specifically, we
utilize the CloudCompare toolbox [19] to manually select
feature points across multiple point cloud models as ini-
tial values. Then, we employ the ICP algorithm to register
the point cloud models together. Afterwards, we employed
a practical approach to volumetric surface reconstruction
called Truncated Signed Distance Functions (TSDFs) [57]
to achieve the reconstruction from point clouds to meshes
with an efficient and sparse data structure called Voxel Data
Base (VDB) [39]. At this stage, we can utilize the ray-mesh
intersection method [15] to cast rays from cameras onto the
mesh model. By intersecting the rays with the mesh, we
can determine the depths of the corresponding points on
the mesh surface. After a series of joint optimizations be-
tween multiple modalities, we have generated a set of GT
data. Figure 2 shows some instances. This GT data includes
reference images Ir

c0 , the depth maps Dr
c0 of the reference

images, and the reference maps containing the point cloud
models P , mesh models M , as well as camera pose odom-
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etry {ξ}. Figure 4 summarizes the GT generation.

4. Omnidirectional Visual Localization
We extend the current feature-matching-based and absolute
pose regression pipelines for omnidirectional visual local-
ization. Given a query image Iq in any camera model, we
seek to estimate its poses within the environment modeled
by 360◦ images Ir. To minimize the domain gap between
the query image from c1, c2, c3,c4 and reference images, we
explore visual cameras (VC) in two ways: VC1, remapping
query images to 360 domain using Ψ−1

cn ; VC2, rectifying
360◦ images into queries’ domains using Ψcn .

4.1. Feature-matching-based Localization

Most feature-matching-based techniques first perform IR to
reduce the search space before estimating the pose.

4.1.1 Image Retrieval

For method VC1, if query Iq captured from c0, we re-
trieve the k most similar images from Ir by calculat-
ing and sorting simicos(F(Iq),F(Ir)), Ir ∈ Ir and
F(·) denotes the function to map each image to the
global feature domain. simicos(·) is cosine similarity
for two feature embeddings. If query Iq captured from
c1, c2, c3, c4, we then retrieve top-k reference images based
on simicos(F(Ψ−1

cn (Iq)),F(Ir)), Ir ∈ Ir.
In method VC2, we expand the global features for each

360◦ reference image by cameras c including virtual pin-
hole cameras forming a cube map and virtual fisheye cam-
eras. We define the similarity score between Iq and Ir as:

max(simicos(F(Iq),GF (Ir)), (6)

where global feature group of reference is GF (Ir) =
{F(Ψc(Ir)), . . . }. We use the highest similarity value cal-
culated from F(Iq) and GF (Ir) as the similarity score for
each Ir to ensure retrieve k most similar 360◦ reference im-
ages because some rectified images are from the same Ir.
Note that we can eliminate the domain gap during the image
retrieval step in this way.

4.1.2 Local Feature Matching and Pose Estimation

For each pinhole query frame, we retrieve relevant refer-
ence images, match their local features, leverage the depth
maps Dc0 to establish the 2D-3D correspondences, and fi-
nally estimate a pose with PnP+RANSAC. Unlike [11, 61],
we directly match query image with retrieved 360◦ refer-
ence images described in Section 4.1.1. For query images
from c0, c1, c2, c3, i.e., fisheye and 360◦ query frames, we
utilize the function that calculates pose error in sphere cam-
era model in OpenGV [28] library for PnP+RANSAC.

4.2. Absolute Pose Regression

APRs train deep neural networks to regress the 6DoF cam-
era pose of a query image.
PN. PoseNet (PN) is the first APR model. Since there is
no open source code [23, 24], we follow the modification
in [8, 36] and use ResNet34 [21] as the backbone network.
MS-T. MS-Transformer [49] is an APR model incorpo-
rating attention and implementing transformers as back-
bone. We note APR methods using our virtual camera
method, VC2, as APRvc2. The difference between APR
and APRvc2 is the training stage. For APR baselines, the
training set is Ir. For APRvc2, they are trained with 360◦

images, cropped pinhole images, and cropped fisheye im-
ages, i.e., Ir ∪Ψc(Ir) introduced in Section 4.1.1 and Eq. 1.

All APR models are implemented in Python using Py-
Torch [41]. During training, all input images are resized
to 256 × 256 and then randomly cropped to 224 × 224.
For both PN and MS-T, we set an initial learning rate of
λ = 10−4 and a batch size of 32 for 300 epochs of each
scene. Training and evaluation in Section 5 are performed
on an NVIDIA GeForce GTX 3090 GPU.

5. Evaluation
We provide detailed results for each scene in the dataset and
more settings in supplementary material.

5.1. Image Retrieval

We evaluate global descriptors computed by NetVLAD [1],
CosPlace [3], OpenIBL [18] and AP-GeM [20]. The query
image is deemed correctly localized if at least one of the
top k retrieved database images is within d = 5m from
the ground truth position of the query for Concourse and
d = 10m for the other three scenes. The image retrieval
results are shown in Table 4. Among all global feature de-
scriptor methods, the 360◦ query exhibits the best precision
and recall in most cases, while the pinhole query performs
the worst. The remap method (VC1) provides limited im-
provement for pinhole queries but yields higher improve-
ment for fisheye1, fisheye2, and fisheye3 queries. The rea-
son is that the FoV of pinhole cameras is only 85◦. Conse-
quently, VC1 results in significant black borders when con-
verting to a 360◦ image due to the limited coverage.

The rectify method (VC2) significantly improves pin-
hole, fisheye1, fisheye2, and fisheye3 queries by eliminating
the domain gap in IR. However, the pinhole, fisheye1, and
fisheye2 queries’ recall and precision are still much lower
than those of the 360◦ query. Only the query from fisheye3
(widest FoV) approaches the performance of 360◦ query.
The domain gap mainly affects the precision and recall of
fisheye3. Both remap (VC1) and crop (VC2) significantly
improve IR performance for fisheye3. On the other hand,
pinhole queries are more prone to being mistaken as erro-
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NetVLAD [1] Cosplace [3] OpenIBL [18] AP-GeM [20]

Query R@1 R@5 P@5 R@10 P@10 R@1 R@5 P@5 R@10 P@10 R@1 R@5 P@5 R@10 P@10 R@1 R@5 P@5 R@10 P@10

pinhole 0.23 0.45 0.22 0.58 0.22 0.15 0.26 0.15 0.33 0.15 0.18 0.36 0.18 0.48 0.18 0.2 0.37 0.2 0.47 0.2
+VC1 0.24 0.45 0.24 0.57 0.23 0.21 0.33 0.21 0.41 0.21 0.21 0.39 0.21 0.5 0.2 0.25 0.42 0.25 0.53 0.24
+VC2 0.5 0.67 0.48 0.75 0.47 0.32 0.41 0.32 0.48 0.31 0.51 0.67 0.49 0.75 0.47 0.5 0.68 0.49 0.77 0.47

fisheye1 0.42 0.67 0.41 0.77 0.39 0.28 0.43 0.28 0.52 0.28 0.37 0.58 0.36 0.69 0.34 0.35 0.55 0.34 0.66 0.33
+VC1 0.51 0.72 0.49 0.8 0.47 0.36 0.48 0.35 0.56 0.34 0.52 0.7 0.5 0.79 0.48 0.43 0.62 0.42 0.72 0.4
+VC2 0.73 0.91 0.63 0.95 0.57 0.63 0.85 0.51 0.92 0.43 0.74 0.91 0.62 0.95 0.54 0.65 0.88 0.57 0.94 0.51

fisheye2 0.45 0.7 0.44 0.8 0.42 0.3 0.46 0.31 0.55 0.31 0.41 0.62 0.4 0.73 0.38 0.38 0.59 0.36 0.68 0.35
+VC1 0.54 0.74 0.52 0.83 0.49 0.37 0.49 0.36 0.57 0.35 0.56 0.73 0.54 0.81 0.51 0.46 0.65 0.45 0.74 0.43
+VC2 0.74 0.92 0.65 0.95 0.58 0.64 0.87 0.53 0.93 0.45 0.76 0.92 0.65 0.96 0.56 0.67 0.89 0.58 0.94 0.52

fisheye3 0.57 0.79 0.55 0.86 0.52 0.4 0.56 0.4 0.65 0.4 0.53 0.74 0.51 0.83 0.49 0.45 0.66 0.43 0.75 0.41
+VC1 0.63 0.81 0.61 0.88 0.58 0.48 0.61 0.48 0.68 0.47 0.67 0.82 0.65 0.88 0.61 0.55 0.73 0.53 0.81 0.51
+VC2 0.77 0.93 0.68 0.96 0.61 0.69 0.89 0.58 0.94 0.5 0.79 0.93 0.68 0.96 0.6 0.67 0.9 0.59 0.94 0.54

360 0.79 0.86 0.77 0.88 0.73 0.92 0.95 0.91 0.96 0.89 0.89 0.94 0.88 0.95 0.83 0.79 0.9 0.77 0.94 0.72

Table 4. Image retrieval results based on 360◦ reference database average over four scenes, the recall, and precision for the top k retrieved
images, k = 1, 5, 10. # indicates the highest value of R@k and P@k for each device w and w/o virtual cameras (VC1, VC2). Best

results for all devices of R@k and P@k are in bold with # .

NetVLAD [1] CosPlace [3]

DISK + LG SP + LG SP + SG DISK + LG SP + LG SP + SG

Day Night Day Night Day Night Day Night Day Night Day Night

pinhole 6.0/11.3/24.6 1.7/4.4/10.3 8.0/14.9/30.9 2.2/5.5/13.5 8.4/15.2/30.7 2.3/5.6/12.3 4.2/7.8/18.0 1.6/3.5/8.6 4.8/10.2/22.1 1.9/4.7/11.1 5.4/10.4/21.1 2.1/4.7/10.4
+VC1 8.5/14.0/23.5 2.2/4.1/7.9 10.4/17.0/27.5 2.9/5.3/10.1 10.9/17.8/28.5 2.8/5.6/9.9 6.1/10.8/21.1 1.7/3.6/8.2 7.5/13.2/22.5 2.0/4.5/9.6 7.6/13.5/22.8 2.1/4.7/9.6
+VC2 14.2/22.2/35.5 4.1/7.8/13.6 19.8 / 29.7/42.9 6.1/10.4/16.9 21.6/33.2 / 49.7 5.9 / 11.0 / 18.4 8.0/13.1/23.5 2.5/4.6/9.1 10.7/16.4/26.6 3.0/5.7/11.4 11.6/18.5/30.5 3.5/6.8/12.8

fisheye1 1.6/4.4/17.7 0.5/1.8/7.4 1.9/5.4/20.1 0.7/2.3/10.5 1.6/4.7/18.4 0.5/1.9/8.2 0.8/2.5/11.8 0.4/1.4/5.8 1.0/3.5/13.0 0.5/1.4/8.2 0.9/3.4/12.1 0.3/1.4/7.0
+VC1 3.3/9.2/27.6 0.8/2.7/9.6 4.1/10.6/32.2 1.4/4.4/14.9 3.0/9.5/29.6 0.9/3.1/11.7 2.3/5.5/19.4 0.5/1.6/7.3 2.1/6.1/19.9 0.7/2.2/9.0 1.9/5.5/19.1 0.5/1.9/7.3
+VC2 3.9/10.5/33.0 1.0/4.0/14.6 4.3/12.4/38.2 1.9/6.4/21.8 3.6/11.0/34.5 1.1/5.3/19.4 2.5/6.9/25.3 0.8/2.8/12.2 2.8/8.2/29.0 1.3/4.6/18.0 2.1/7.1/26.7 1.0/4.0/16.2

fisheye2 1.6/4.9/20.9 0.5/2.0/8.7 1.9/6.7/23.2 0.8/3.0/11.8 1.7/5.2/19.5 0.7/2.5/9.9 1.3/3.5/14.2 0.4/1.6/6.9 1.2/3.8/15.2 0.5/1.5/9.1 1.2/3.9/12.9 0.6/1.6/7.2
+VC1 4.3 /10.8/30.9 0.8/3.0/11.2 4.7/12.4/34.1 1.8/5.4/15.8 4.1 /10.6/31.5 1.1/3.6/13.7 2.5/6.5/20.6 0.5/1.7/7.4 2.5/7.0/22.1 0.8/2.4/9.4 2.2/6.8/20.2 0.5/2.1/8.0

+VC2 4.3/11.0/34.4 1.1/4.7/17.3 5.1/14.0/41.1 2.0/7.2/24.8 3.7/ 11.5/36.8 1.5/5.9/21.2 2.8/7.3/27.1 0.8/2.9/13.4 2.9/8.9/32.0 1.6/5.3/20.1 2.5/8.0/27.9 1.1/4.2/17.7

fisheye3 3.8/9.5/29.8 1.0/3.6/13.8 4.0/10.5/31.6 1.3/4.6/16.4 3.4/9.1/28.4 0.8/3.8/13.8 2.5/6.3/21.9 0.6/2.4/10.1 2.8/7.2/22.3 0.9/2.9/12.4 2.0/5.9/20.0 1.3/4.2/15.0
+VC1 5.9/14.7 /39.5 1.5/5.2/17.7 6.0 /16.2/43.5 2.0/6.8/21.9 5.8/14.7 /39.1 1.8/5.5/18.3 4.4/10.2 /30.1 1.1/3.3/12.8 4.6/11.6/32.0 1.4/4.1/14.4 4.3/10.5 /29.7 1.2/3.8/12.3

+VC2 5.2/13.9/ 41.8 2.1/6.5/22.5 5.9/ 16.5/46.3 2.5/8.6/29.1 5.4/14.2/ 40.5 2.1/7.3/25.9 4.3/9.8/ 34.6 1.7/5.2/19.5 4.7/12.6 /36.8 2.2/7.1/23.8 3.8/ 10.5 /32.5 1.6/5.1/20.7

360 17.1 / 30.8 / 66.1 8.5 / 20.1 / 47.5 18.2 / 34.6 / 64.2 7.0 / 18.7 / 45.3 15.8 / 31.2 / 60.4 7.0 / 17.8 / 42.8 17.6 / 31.8 / 68.1 8.7 / 22.0 / 56.0 18.7 / 34.9 / 68.1 7.3 / 20.0 / 53.4 16.6 / 32.6 / 65.7 7.1 / 18.7 / 50.4

Table 5. Local matching localization results. The average percentage of predictions with high (0.25m, 2◦), medium (0.5m, 5◦), and low
(5m, 10◦) accuracy [46] (higher is better) over four scenes. # indicates the highest value for each device w and w/o virtual cameras

(VC1, VC2) of each accuracy level. The best results for all devices of each accruacy level are in bold with # .

neous locations with similar structures due to their narrower
FoV even there is no cross-device domain gap during IR by
applying VC2 (Some figures in supplementary material).

5.2. Visual Localization

We compare our approach with the following baselines in
two categories: 1) Local feature matching pipelines tailored
from HLoc [42], using different keypoint descriptors (Su-
perpoint (SP) [16] and DISK [55]), and matchers (Super-
Glue (SG) [43], follow-up SOTA LightGlue (LG) [31]). 2)
The end-to-end APRs: PN [23, 24] and MS-T [49].
Local feature matching: During local feature matching,
all 360◦ images are cropped to 1228 × 614 because of the
tradeoff of time and computation. We report the average re-
sults over four scenes in Table 5. The 360◦ query achieves
the best performance in three accuracy levels in most cases

across all IR, keypoint descriptors, and matchers settings.
It is especially more robust in challenging nighttime con-
ditions. VC1 and VC2 techniques improve the recall and
precision of IR, increasing the accuracy of 2D-2D matching
for all cameras. In most cases, the performance at the low
accuracy level (5m, 10◦) is correlated with the FoV, where a
larger FoV results in higher performance. However, the pin-
hole query with VC2 during IR performs comparably to the
360◦ queries at the high (0.25m, 2◦) and median (0.5m, 5◦)
accuracy levels. In contrast, query frames from c1, c2 and
c3 demonstrate relatively lower performance at the high and
medium accuracy levels.

As observed in Table 4, different IR methods display dif-
ferent performances depending on the type of camera. We
thus consider both NetVLAD and CosPlace in visual local-
ization. In most cases, 360◦ query frames achieve higher
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accuracy with CosPlace while pinhole and fisheye query
frames have lower accuracy than NetVLAD as shown in
Table 5. These results match the precision and recall dif-
ference noted in Table 4. We believe that the FoV not only
affects the robustness of IR but also has an impact on lo-
cal 2D-2D matching performance. Pinhole queries suffer
from erroneous matches due to interference from symmetri-
cal and repetitive structures, while the larger FoV of fisheye
and 360◦ query frames capture more unique visual features.
We provide examples in the supplementary material.
APR: APRs cannot extrapolate well beyond the training
set [40, 47]. cross-device queries further complicate this
challenge by introducing an additional dimension of FoV.
Due to the high efficiency of 360◦ mapping, the training
set Ir in 360Loc contains only around one-third of the im-
ages compared to datasets [24]. Figure 5 shows that when
PN and MS-T are trained solely on Ir with only 360◦ im-
ages, a smaller domain gap between the query and the 360◦

image yields a lower error. However, when we introduce
images from virtual cameras for data augmentation, PNvc2

and MS-Tvc2 exhibit significantly reduced translation and
rotation errors across all queries, particularly during day-
time. MS-Tvc2 reduces translation error by up to 79% and
rotation error by up to 72% compared to MS-T. PNvc2 dis-
plays similar improvement over PN. In most cases, except
for PNvc2’s rotation error for the 360◦ queries during day-
time, both the 360◦ and fisheye queries exhibit higher accu-
racy than the pinhole query on PNvc2 and MS-Tvc2. This
suggests that a larger FoV still helps improve visual local-
ization accuracy in challenging scenes. Another interest-
ing finding is that even though the augmented training set
Ir ∪ Ψc(Ir), which includes virtual camera images, does
not increase the number of 360◦ images, the error for the
360◦ query still decreases. This reduction is particularly
noticeable in the case of translation errors during daytime.
The result fully demonstrates the utility of employing vir-
tual cameras for data augmentation.

5.3. Analysis

Cross-device visual positioning presents significant chal-
lenges for IR, local matching, and APRs. Our VC1 and VC2
methods demonstrate practical enhancements in the perfor-
mance of IR and APR for cross-device scenarios. However,
it is essential to note that during the local matching process,
the accuracy of matches and the recall and precision of IR
for query frames from different cameras may not align per-
fectly. The chosen IR method and its training noticeably
affect accuracy for similar cameras. Fisheye cameras ex-
hibit better performance in IR compared to pinhole cameras.
However, pinhole cameras outperform fisheye cameras for
high accuracy and median accuracy levels in local match-
ing. This is likely due to existing feature extraction and
matching models lacking training data on 360◦ and fisheye
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Figure 5. The average of median translation/rotation errors in
(m/◦) over 4 scenes.

cameras, resulting in less accurate matching. We attribute
the inferior performance of pinhole query frames at the low
accuracy level to IR’s insufficient recall and precision. Ad-
ditionally, pinhole queries are more susceptible to interfer-
ence when there are many repetitive and symmetrical fea-
tures in the scene, even when the retrieved reference image
is correct (some example figures in the supplementary ma-
terial). By utilizing VC2 to augment IR and APR’s train-
ing data, we eliminate the cross-device domain gap. We
demonstrate that panoramic perspective and a larger FoV
can significantly improve the performance of IR and APRs
and find that query frames from 360◦ camera and ultra-wide
FoV cameras are less prone to being misidentified as erro-
neous locations with similar structures. This result suggests
the promising potential of fisheye and 360◦ cameras as vi-
able sensors for localization tasks in indoor environments
with low GPS accuracy.

6. Conclusion
360Loc is the first dataset and benchmark that explores
the challenge of cross-device visual positioning, involving
360◦ reference frames, and query frames from pinhole,
ultra-wide FoV fisheye, and 360◦ cameras. We first
identified the absence of datasets with ground truth
6DoF poses for 360◦ images, and the limited research on
cross-device localization and the robustness of different
cameras in ambiguous scenes. To address these limita-
tions, we build a dataset with 360◦ images as reference
and query frames from pinhole, ultra-wide FoV fisheye
camera and 360◦ cameras via a virtual camera solution.
This method enables fair comparisons in cross-device
visual localization tasks and helps reduce the domain
gap between different cameras. By evaluating feature-
matching-based and pose regression-based methods,
we demonstrate the effectiveness of our virtual camera
approach and the increased robustness of 360◦ cameras
in visual localization for challenging and ambiguous scenes.
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Roimela, Xin Chen, Jeff Bach, Marc Pollefeys, et al. City-
scale landmark identification on mobile devices. In CVPR
2011, pages 737–744. IEEE, 2011. 3, 4, 6

[12] Shuai Chen, Zirui Wang, and Victor Prisacariu. Direct-
posenet: absolute pose regression with photometric consis-
tency. In 2021 International Conference on 3D Vision (3DV),
pages 1175–1185. IEEE, 2021. 3

[13] Shuai Chen, Xinghui Li, Zirui Wang, and Victor A
Prisacariu. Dfnet: Enhance absolute pose regression with
direct feature matching. In ECCV 2022. Tel Aviv, Israel, Oc-
tober 23–27, 2022, Part X. Springer, 2022. 3

[14] Santiago Cortés, Arno Solin, Esa Rahtu, and Juho Kannala.
Advio: An authentic dataset for visual-inertial odometry. In

Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 419–434, 2018. 3, 4

[15] Dawson-Haggerty et al. trimesh. 5
[16] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-

novich. Superpoint: Self-supervised interest point detection
and description. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages
224–236, 2018. 2, 7

[17] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-
net: A trainable cnn for joint description and detection of
local features. In Proceedings of the ieee/cvf conference on
computer vision and pattern recognition, pages 8092–8101,
2019. 1

[18] Yixiao Ge, Haibo Wang, Feng Zhu, Rui Zhao, and Hong-
sheng Li. Self-supervising fine-grained region similarities
for large-scale image localization. In European Conference
on Computer Vision, 2020. 2, 6, 7

[19] Daniel Girardeau-Montaut. Cloudcompare. France: EDF
R&D Telecom ParisTech, 11, 2016. 5

[20] A. Gordo, J. Almazan, J. Revaud, and D. Larlus. End-to-end
learning of deep visual representations for image retrieval.
IJCV, 2017. 2, 6, 7

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[22] Huajian Huang, Yinzhe Xu, Yingshu Chen, and Sai-Kit Ye-
ung. 360vot: A new benchmark dataset for omnidirectional
visual object tracking. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 20566–
20576, 2023. 1

[23] Alex Kendall and Roberto Cipolla. Geometric loss functions
for camera pose regression with deep learning. In IEEE con-
ference on computer vision and pattern recognition, pages
5974–5983, 2017. 1, 3, 6, 7

[24] Alex Kendall, Matthew Grimes, and Roberto Cipolla.
Posenet: A convolutional network for real-time 6-dof cam-
era relocalization. In Proceedings of the IEEE international
conference on computer vision, pages 2938–2946, 2015. 1,
3, 4, 6, 7, 8

[25] Junho Kim, Changwoon Choi, Hojun Jang, and Young Min
Kim. Piccolo: point cloud-centric omnidirectional localiza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 3313–3323, 2021. 2, 3

[26] Junho Kim, Hojun Jang, Changwoon Choi, and Young Min
Kim. Cpo: Change robust panorama to point cloud local-
ization. In European Conference on Computer Vision, pages
176–192. Springer, 2022.

[27] Junho Kim, Eun Sun Lee, and Young Min Kim. Calibrat-
ing panoramic depth estimation for practical localization and
mapping. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8830–8840, 2023. 2

[28] Laurent Kneip and Paul Furgale. Opengv: A unified and gen-
eralized approach to real-time calibrated geometric vision.
In 2014 IEEE international conference on robotics and au-
tomation (ICRA), pages 1–8. IEEE, 2014. 6

22322



[29] Kenji Koide, Shuji Oishi, Masashi Yokozuka, and Atsuhiko
Banno. General, single-shot, target-less, and automatic
lidar-camera extrinsic calibration toolbox. arXiv preprint
arXiv:2302.05094, 2023. 4, 5

[30] Donghwan Lee, Soohyun Ryu, Suyong Yeon, Yonghan
Lee, Deokhwa Kim, Cheolho Han, Yohann Cabon, Philippe
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