
A General and Efficient Training for Transformer via Token Expansion

Wenxuan Huang1* Yunhang Shen2* Jiao Xie3 Baochang Zhang4 Gaoqi He1

Ke Li2 Xing Sun2 Shaohui Lin1,5B

1School of Computer Science and Technology, East China Normal University, Shanghai, China
2Tencent Youtu Lab, China 3Xiamen University, China 4Beihang University, China

5Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, China
osilly0616@gmail.com, shenyunhang01@gmail.com, jiaoxie1990@126.com, bczhang@buaa.edu.cn

gqhe@cs.ecnu.edu.cn, tristanli.sh@gmail.com, winfred.sun@gmail.com, shaohuilin007@gmail.com

Abstract

The remarkable performance of Vision Transform-
ers (ViTs) typically requires an extremely large training
cost. Existing methods have attempted to accelerate the
training of ViTs, yet typically disregard method universality
with accuracy dropping. Meanwhile, they break the train-
ing consistency of the original transformers, including the
consistency of hyper-parameters, architecture, and strat-
egy, which prevents them from being widely applied to dif-
ferent Transformer networks. In this paper, we propose a
novel token growth scheme Token Expansion (termed ToE)
to achieve consistent training acceleration for ViTs. We in-
troduce an “initialization-expansion-merging” pipeline to
maintain the integrity of the intermediate feature distribu-
tion of original transformers, preventing the loss of cru-
cial learnable information in the training process. ToE can
not only be seamlessly integrated into the training and fine-
tuning process of transformers (e.g., DeiT and LV-ViT), but
also effective for efficient training frameworks (e.g., Effi-
cientTrain), without twisting the original training hyper-
parameters, architecture, and introducing additional train-
ing strategies. Extensive experiments demonstrate that ToE
achieves about 1.3× faster for the training of ViTs in a
lossless manner, or even with performance gains over the
full-token training baselines. Code is available at https:
//github.com/Osilly/TokenExpansion.

1. Introduction
Transformers have achieved excellent performance in the
tasks of natural language processing (NLP) [1–3] and com-
puter vision [4–7]. Despite their great success, modern Trans-
former models typically require extremely large parameters
and computation consumption due to the quadratic com-

*Equal contribution. BCorresponding author.

Table 1. Training results for DeiT [4] on ImageNet-1K. DeiT does not
use the EMA strategy by default. a/b in the column of Top-1 Acc. means
without/with EMA strategy using the official GitHub repo. The training
time is averagely measured on one/four NVIDIA RTX A6000 GPUs 3 times
with a batch size of 1, 024 for DeiT-Tiny/Base, respectively.

Model Method Training consistency Top-1 Acc. (%) Training time

Hyper Arch Strategy (GPU hours)

Tiny

Baseline [4] − − − 72.2 54.6h
S2ViTE (600 epoch) [10] × × ✓ 70.1 (-2.1) −

ToMeDeiT
r8→ [11] ✓ × ✓ 71.7 (-0.5) 53.3h

NetworkExpansion6→12 [12] ✓ ✓ × 70.3 (-1.9) / 70.1 (-2.1) 43.2h
ToEr1=0.5 (Ours) ✓ ✓ ✓ 72.6 (+0.4) 44.2h

Base

Baseline [4] − − − 81.8 292.8h
StackBERT [13] ✓ ✓ × 80.8 (-1.0) 231.6h

NetworkExpansion6→12 [12] ✓ ✓ × 81.0 (-0.8) / 81.5 (-0.3) 226.8h
ToEr1=0.5 (Ours) ✓ ✓ ✓ 81.6 (-0.2) 231.2h

putational complexity in the self-attention module. For ex-
ample, ViT-H/14 [8] requires ∼1,000B FLOPs, which is
250× larger than ResNet-50 [9]. The entire training process
needs a significant amount of computing resources to reach
model convergence, resulting in a substantial computation
overhead. To reduce the computational cost of large models,
there has been growing research attention on accelerating
Transformers for either training or inference.

Existing Transformer pruning methods [14–22] aim to
reduce the inference complexity. Among them, structure
pruning [14–17] and token pruning [18–22] focus on reduc-
ing the neurons or tokens of Transformers to accelerate the
inference. However, these pruning methods require addi-
tional training computational cost in each forward-backward
iteration to determine which neurons or tokens are important
enough to be retained, or the fine-tuning for pruned models.
Recently, Transformer quantization [23–26] accelerates the
inference via low-bit computation, but they also cannot re-
duce the training computation cost. Thus, it is challenging for
them to effectively accelerate the training of Transformers
in practical scenarios, e.g., cloud service.

To reduce the training computation overhead, recent
works [12, 13, 27–29] have proposed structure growth meth-
ods. They update a smaller number of model parameters
during the early stages of training and gradually increase

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

15783

https://github.com/Osilly/TokenExpansion
https://github.com/Osilly/TokenExpansion

Figure 1. The “initialization-expansion-merging” pipeline of proposed ToE. We take the 1st training stage (δ = 1), the kept rate r1 = 2r0 = 2
3

, the repetition
step k = 1 as example. ToE is only added after the first Transformer block to guide the token selection and usage. During training, steps (1), (2), and (3) are
performed for each iteration with the reduction of token numbers. First, seed tokens are selected for token initialization through step (1). Then, the number of
tokens is expanded via step (2) for token expansion. Finally, we merge the unselected token set (blue boxes) into the selected one (red boxes) with the close
feature distributions in step (3) for token merging. During testing, ToE can be safely removed to generate the same Transformer architecture as the original
full-token Transformer.

the number of parameters involved in the updating process
as training progresses. However, the existing methods fail
to achieve general transformer training acceleration with-
out accuracy dropping (shown in Tab. 1), and they break
the training consistency of the original transformers from
three perspectives: (1) Hyper-parameter consistency. Exist-
ing methods (e.g., SViTE [10]) delicately tune training hyper-
parameters (e.g., learning rate and epoch number) of the orig-
inal models, which are sensitive to individual ViTs [4] and
require additional trial-and-error costs for different networks.
(2) Architecture consistency. Existing methods [10, 11] al-
ter the final model architectures, which may deviate from
the user’s requirements and potentially necessitates addi-
tional hardware/software support to implement real training
speedup. For example, ToMe [11] progressively merges sim-
ilar tokens layer-by-layer to reduce the number of tokens in
ViTs during training, which replaces the attention operators
with the weighted average attention modules, generating a
different model architecture that deviates from the original
Transformer. Moreover, it cannot significantly accelerate
the practical training due to the unfriendly computation. (3)
Strategy consistency. Existing methods [12, 13, 27] may
suffer from performance deterioration across different Trans-
formers by adding additional training strategies, such as
EMA and reset optimizer states. It means the effectiveness
of these strategies is for specific models, which limits the
method’s universality whether employing them for training.
In Tab. 1, the extra EMA strategy in [12] plays different
roles to the performance across different models, i.e., the
effectiveness for DeiT-base but not for DeiT-tiny. Thus, this
begs our rethinkings: How to implement real and friendly
training speedup for Transformers while keeping the training
consistency and high accuracy?

To answer the above question, we propose a novel token
growth scheme, Token Expansion (termed ToE) to achieve
general training acceleration for ViTs, while adhering to

the training consistency of original models. Specifically, we
present an “initialization-expansion-merging” pipeline (in
Fig. 1) to maintain the integrity of the intermediate feature
distribution of original transformers, preventing the loss of
crucial learnable information during the accelerated training
process. Similar to structure growth methods, we initially
involve a limited number of tokens to participate in train-
ing and gradually grow the token number during training
progress, eventually reaching the utilization of the entire
token set. Then, a widest feature-distribution token expan-
sion is introduced to make the feature distributions of the
selected token set as wide as possible. Additionally, a feature-
distribution token merging combines the tokens with close
feature distributions to further avoid information loss. ToE
not only accelerates the training and fine-tuning process
of popular Transformers in a lossless manner or even with
performance improvement, but also can be integrated into
the existing efficient training frameworks (e.g., Efficient-
Train [30]) for further performance improvement, without
twisting the original training hyper-parameters, architecture,
and introducing additional training strategies.

Our main contributions can be summarized as follows:

• We propose ToE, a novel token growth scheme to acceler-
ate ViTs from the perspective of tokens. ToE is a consis-
tent training acceleration method and can be seamlessly
integrated into the training and fine-tuning process of trans-
formers without any modifications to the original training
hyper-parameters, architecture, and strategies.

• We propose an effective “initialization-expansion-merging”
framework to avoid the token information loss by maintain-
ing the integrity of the intermediate feature distribution.

• Extensive experiments demonstrate that ToE accelerates
the training and fine-tuning process of ViTs with a negligi-
ble accuracy drop or even surpassing the original full-token
counterparts, which outperforms previous SOTA methods.

15784

2. Related Work

2.1. Training Acceleration for Transformers

As mentioned above, many existing works focus on accel-
erating the training of transformers from the perspective of
structural parameters. These structure methods [10, 12, 13,
27, 31, 32] reduce the number of updated parameters in the
training process to save the computational cost. In contrast,
the proposed ToE accelerates training from the perspective
of reducing token redundancy. In other words, ToE computes
a smaller number of tokens but still optimizes all parame-
ters. It avoids potential performance drops in many structure
growth methods due to the inconsistent structures of before-
and-after models during structure growth and resetting of
optimizer state when updating new structural parameters.

ToMe [11] uses a limited number of tokens to participate
in training and progressively merges similar tokens layer-
by-layer, which changes the attention operator in inference.
ToE also involves merging tokens with close feature distri-
butions by feature-distribution token merging. However, our
merging strategy is performed only once at the end of the
“initialization-expansion-merging” pipeline during training,
which prevents the information loss of tokens. This ensures
that ToE avoids the mismatch between practical and theoreti-
cal acceleration caused by excessive merging operations and
operator modifications.

Additionally, several works [30, 33–35] also consider to
reduce the data for training. The work in [33] deduplicates
training datasets to save computational resources. Unfortu-
nately, it usually introduces additional computational costs
and sometimes becomes a bottleneck by using additional
time to process datasets during training [36]. PSS [35] uses
fewer patches obtained by splitting images during training.
EfficientTrain [30] and PL [34] use images of different sizes
and additional data augmentation. However, EfficientTrain
and PL change the training pipelines that differ from the
training of the original model, e.g., hyper-parameters. More-
over, the above methods consider the properties of training
data. In contrast, ToE focuses on the crucial learnable in-
formation in the intermediate feature space of transformers.
Thus, ToE can be integrated into the above methods in a
plug-and-play manner to further enhance training efficiency.

2.2. Training Acceleration for CNNs

Prior efficient training acceleration methods have explored
ways to speed up the training of CNN models [37–42]. For
example, works in [37, 38] consider pruning gradients to
reduce training computation costs. Works in [39, 40] attempt
to use quantization technical to achieve training acceleration.
Others try to reduce training time either by reducing the
number of optimization iterations with a linear decay for the
learning rate [41] or skipping easy samples that contribute
little to loss reduction [42]. However, these methods may not

be directly applied to Transformers for training acceleration
due to the specific architectural differences between trans-
formers and CNNs. Differently, ToE focuses on the training
acceleration for Transformers on the token dimension.

2.3. Transformer pruning

Transformer pruning methods typically reduce parameters
or tokens to generate sparse Transformers for fast inference.
Structure pruning methods [14–17] attempted to prune the
structures of transformers. Token pruning methods [18–22]
focused on dynamically determining the importance of input
tokens and pruning them during inference.

The key differences between our method and transformer
pruning methods are two-fold. (1) Transformer pruning meth-
ods primarily aim to accelerate transformer inference, while
our target is for training acceleration. (2) We obtain a dense
model after training by token growth, which is entirely con-
sistent with the original model for inference. In contrast,
pruning methods generate sparse models after training.

3. Method
3.1. Preliminaries and Notations

Given a Transformer with L blocks, we denote the sets of
input and output tokens for the l-th block as Sl−1 and Sl

with l ∈ {1, 2, · · · , L}, respectively. The index set of output
tokens for the l-th block is defined as I = {1, 2, · · · , Nl},
where Nl is the number of output tokens for the l-th block.
We further denote the i-th token of the output tokens for the
l-th block as tl,i ∈ Rd, thus Sl = {tl,i|∀i ∈ I}.

For the l-th Transformer block, we consider to reduce
the output tokens to a specified size N

′

l = ⌊rNl⌋, where
r ∈ (0, 1] is the kept rate of tokens, and ⌊·⌋ is a floor func-
tion. Further, we define the index set of kept tokens as I ′

=
{1, 2, · · · , N ′

l } and we obtain a subset S ′

l = {t′l,i|∀i ∈ I ′}
of output tokens. When the output tokens of the l-th block are
reduced, this results in a corresponding reduction in the quan-
tity of input tokens for blocks beyond the l-th block. Further-
more, the computational complexity of self-attention blocks
and MLP layers in Transformers is directly proportional to
the number of input tokens. According to the work [43], the
computation in the forward and backward propagation of
modern neural networks roughly conforms to 1:2. There-
fore, the reduction of tokens significantly accelerates the
computation in both the forward and backward propagations
during training if r < 1. Note that, to reduce the complex
search computation for the kept rate of tokens r across all
Transformer blocks, we simply and effectively set r to be
the same in all blocks that benefit from acceleration.

3.2. Overview of ToE

As shown in Fig. 1, ToE initially selects a significantly small
number of tokens, then progressively grows to the final full-

15785

token same as the original Transformer, thereby achieving
training acceleration. We divide the origin training process
into Ng stages on average. We use a limited number of
tokens to participate in each training stage and gradually
grow the token number along with the training stages. The
token growth strategy consists of three steps:

(1) Initial token selection as the seed tokens. we initially
select ⌊r0Nl⌋ output tokens from the origin token set Sl as
the seed token set by using Uniform sampling on the index
set I, where r0 represents the pre-defined initial kept rate,
which is default set to less than 0.3 in our experiments unless
otherwise specified.

(2) Token expansion. In the δ-th (δ ∈ {1, 2, · · · , Ng})
training stage, we perform δ times token expansion to pre-
serve the integrity of the original intermediate feature space.
Furthermore, we pre-define the keep rate of the first stage to
be r1. The kept rate of δ-th stage rδ is computed as:

µδ =

{
r1 − r0, if δ = 1,
1−r1
Ng−1

, otherwise,

rδ = rδ−1 + µδ,

(1)

where µδ is the token expansion rate in the δ-th training
stage and r1 = 2 · r0 ∈ (0, 1]. After the δ times token expan-
sion, we select ⌊rδNl⌋ tokens from the full-token set Sl. In
Sec. 3.3.2, we will introduce the widest feature-distribution
token expansion method to select ⌊rδNl⌋ tokens, which aims
to expand the token distribution space to effectively present
full-token feature distribution.

(3) Token merging. To further avoid information loss dur-
ing the training process, we consider merging the unselected
tokens into the selected ones in the token expansion process,
which retains effective information of the unselected tokens
in the merged token set S ′

l . Inspired by ToMe [11], we merge
averagely the tokens that the feature distributions are close
as one new token, which is further introduced in Sec. 3.3.3.

During training, ToE performs steps (1), (2), and (3) on
the original full-token set for each training iteration, which
reduces the number of tokens involved in training while
retaining the effective information from the full-token set.

3.3. Token Expansion

In this Section, we introduce the proposed ToE method,
including spatial-distribution token initialization, widest
feature-distribution token expansion, feature-distribution to-
ken merging, and its optimization.

3.3.1 Spatial-distribution Token Initialization

For the initialization, we apply a simple strategy to select the
initial token set from Sl. We define the index of the initial
token set as:

I(I) = {i|∀i mod ⌊ 1

r0
⌋ = 1 ∧ ∀i ∈ I}. (2)

The selected token set and the unselected tokens set can
be expressed as A = {tl,i|∀i ∈ I(I)} and B = Sl − A,
respectively. This initialization selection strategy is based on
spatial distribution. It indicates that we choose one token out
of every ⌊ 1

r0
⌋ tokens from the original token set and add it to

the initial token set. Our strategy is simple, yet effective, to
ensure that the initially selected tokens provide broad spatial
coverage across the image patches.

3.3.2 Widest Feature-distribution Token Expansion

Previous works [11, 18] show that the intermediate feature
space in modern Transformers is overparameterized, such
that they prune the full-token Transformers to be sparse ones.
Actually, through the above token initialization, we obtain
the sparse Transformers. However, the performance drops
significantly if we only train on these selected tokens. Thus,
we consider to grow the number of tokens, which is expected
to preserve the integrity of the original intermediate feature
space and avoid the loss of tokens containing valuable infor-
mation. Inspired by this, we seek to maintain the integrity
of the intermediate feature distribution. Intuitively, when the
feature distributions of two token sets are sufficiently close,
they have similar information that can be used to effectively
represent each other. In contrast, given one token whose fea-
ture distribution deviates significantly from all other tokens
in the token set, it will be difficult to be adequately repre-
sented by other tokens, such that we expect to select this
token to underscore its importance in the token expansion.

To this end, we propose the widest feature-distribution
token expansion strategy. Specifically, we perform the ex-
panding operation on the selected tokens from the initialized
set. For the δ-th stage of token expansion, we consider the
selected token set A ∈ R|A|×d and the unselected token set
B ∈ R|B|×d as the 2D matrices, where | · | and d respectively
denote the number of tokens and feature dimension, and
|A|+ |B| = Nl. We utilize Cosine Distance as the metric to
measure the distance between feature distribution of tokens
in these two sets (other metrics see Tab. 9):

D(B,A) = 1− cos ⟨B,A⟩ = 1− BAT

||B|| · ||A|| , (3)

where 1 is an all-one matrix. D(B,A) ∈ R|B|×|A| represents
the pairwise distances between tokens in B and A.

We further define the distance between the feature dis-
tribution of tokens in B and its closest token in A as
distance(B → A) ∈ R|B|:

distance(B → A)i = minj(D(B,A)i,j), (4)

where i ∈ {1, · · · , |B|} and j ∈ {1, · · · , |A|}. Eq. 4 in-
dicates that we sample the minimal values of the feature-
distribution distance matrix D(B,A) along the second di-
mension. Thus, distance(B → A)i measures importance of

15786

Figure 2. Visualization for the feature distribution of token set. We use T-SNE [44] to visualize the output token feature distributions at the first block, the
tokens selected by ToE, and the output tokens after the second block. Baselines are DeiT-small trained on ImageNet-1K. ToE preserves the distribution
integrity of intermediate features of the original token set across different Transformer blocks while ensuring that feature distributions are as wide as possible.

i-th token in B. At this point, we progressively add the most
important token to A, which is formulated as:

A = A+ t∗, B = B− t∗,
t∗ = {Bi|i = argmax(distance(B → A))}, (5)

where t∗ is the most important token in B. When the feature
distribution of one token is far from its closest token, it can
be said that the feature distribution of this token deviates
significantly from that of all other tokens in the token set.
The operation described in Eq. 5 is performed for ⌊µδNl⌋
times to select ⌊µδNl⌋ tokens from B into A. The widest
feature-distribution token expansion strategy ensures that
the feature distributions of the selected token set become
as wide as possible, preventing the loss of important tokens.
However, as we need to iterate ⌊µδNl⌋ times expansion,
it results in a considerable consumption of computational
resources. Considering the computation parallelization, we
modify the expanding operation in Eq. 5 parallelly:

A = A+ S∗, B = B− S∗,
S∗ = {Bi|i ∈ topk⌊µδNl/k⌋(distance(B → A))}, (6)

where k is the pre-defined repetition step of parallel expand-
ing operation, S∗ is a token set consisting of the important
tokens in B, topkn denotes the top argmax with the number
of n tokens. By this way, we only perform k times paral-
lel expanding operation to expand ⌊µδNl⌋ tokens, and its
computational consumption is negligible with small k.

3.3.3 Feature-distribution Token Merging

After token expansion, we aim to retain the effective infor-
mation of the unselected tokens, such that we merge the
unselected tokens that the feature distributions are close to
the selected ones. The feature-distribution token merging
can be formulated as:

S
′
l = {mean(Aj ,S(M)

j)|∀j ∈ {1, 2, · · · , |A|}},where
S(M)
j = {Bi|I(M)

i == j, ∀i ∈ {1, 2, · · · , |B|}},
I(M) = argminj(D(B,A)i,j),

(7)

where S ′

l ∈ R|A|×d is the token set merging the closest
tokens from B to A, and mean(Aj ,S(M)

j) indicate that we

merge B into A averagely based on the indice set I(M) ∈
R|B|. Note that every Bi participates in the merging to avoid
the information dropping for the unselected tokens.

3.3.4 Optimization of ToE

Our objective loss is the same as the original models, e.g.,
cross-entropy loss in DeiT. The training details of ToE are
presented in Algorithm 1. Note that we only apply ToE to
the output tokens of the first transformer block. The detailed
analysis is discussed in Sec. 4.4.

ToE is a plug-and-play acceleration module, which has
three following advantages: (1) As shown in Fig. 2, we ob-
served that the selected token set obtained by ToE in the mul-
tiple block outputs has a larger average distribution distance
via T-SNE [44], compared to that in the original full-token
set (see First block vs. After ToE). Moreover, it maintains
a feature distribution similar to the original token set. It in-
dicates ToE can preserve the integrity of the intermediate
feature distribution of the original token set across different
Transformer blocks by reducing the number of tokens. (2)
ToE is a parameter-free module, it does not introduce any
trainable parameters and utilizes efficient matrix calculations
that the computational overhead is negligible, compared to
computation-intensive self-attention. (3) The speedup factors
(e.g., token kept rate r1 and training stage Ng) of ToE are in-
dependent of the original model’s training hyper-parameters.
This decoupling allows ToE to be seamlessly integrated into
the training process of the original model, obviating the need
for any adjustments to the training hyper-parameters.

4. Experiments
4.1. Experimental Settings

Datasets and baselines. We evaluate our method on
ImageNet-1K [45] and CIFAR-10/100 [46]. For baselines,
we use two popular ViTs, i.e., DeiT [4] and LV-ViT [5], as the
base models to evaluate the proposed ToE on ImageNet-1K.
To further evaluate the universality, we integrate ToE into the
efficient training framework EfficientTrain [30]. Moreover,

15787

Algorithm 1: Optimization with ToE
Input: Input dataset X , output token number Nl, total training

stage Ng , kept rate of the first training stage r1, repetition
step of the parallel expanding operation k, Transformer
parameters θ, maximum iterations T .

Output: Updated Transformer parameters θ
1 for t← 1 to T do
2 Sample from X to obtain data sample x, feed-forwarded

through the embedding and first l-th transformer blocks to
obtain the output token set Sl;

3 %%%Spatial-distribution Token Initialization%%%
4 r0 ← 1

2
r1;

5 Initialize A and B by r0, Sl via Eq. 2;
6 %%%Widest Feature-distribution Token Expansion%%%
7 Obtain the current training stage δ = ⌈Ng ∗ t/T ⌉;
8 for m← 1 to δ do
9 if m = 1 then

10 µm ← r1 − r0;
11 else
12 µm ← 1−r1

Ng−1

13 end
14 for n← 1 to k do
15 Update A and B by µm, Nl, k, prior A and prior B

via Eq. 6;
16 end
17 end
18 %%%Feature-distribution Token Merging%%%
19 Obtain S′

l by A and B via Eq. 7;
20 S′

l feed-forwarded through the l+1-th transformer block to
final layer and progressively obtain the final prediction y;

21 %%%Parameter Updating%%%
22 Use y to compute the loss and obtain the gradient∇θ;
23 Use∇θ to update prior θ via the optimizer to obtain new θ;
24 end
25 return θ

we evaluate the transfer learning ability using pre-trained
weights of ToE on DeiT and the performance of accelerating
the fine-tuning process with ToE on CIFAR-10/100.

Evaluation metrics. We report Top-1 accuracy, the GPU
training time and FLOPs as the evaluation metric. To eval-
uate the training speed, we report the total GPU hours con-
sumed during the entire training process, as well as the theo-
retical FLOPs for one forward-backward process. To avoid
the impact of memory access and kernel launching on train-
ing time [12], we report the GPU hours on different numbers
of GPUs, but with the same GPU numbers to evaluate dif-
ferent training methods. The FLOPs for the forward process
are measured using thop 1, and for the backward process,
we follow [43] and calculate it as twice the FLOPs of the
forward process.

Implementations. All methods are trained by Py-
torch [47]. For DeiT and LV-ViT, all experiments are con-
ducted on four NVIDIA RTX A6000 GPUs2, while Effi-
cientTrain is trained on eight NVIDIA RTX A6000 GPUs.

1https://github.com/Lyken17/pytorch-OpCounter/blob/master/thop
2Note that the used number of GPUs for training may be different to the
evaluation of training speedup for a fair comparison.

All hyper-parameters (e.g., learning rate, decay strategy and
rate), and training strategies and optimization processes are
the same as the original papers unless otherwise specified.

Growth strategy. In default, we divide the origin training
process into Ng = 3 stages on average. The token kept
rate of 1st stage r1 is set to 0.4, 0.5 or 0.6, our method is
corresponding to be denoted as ToE r1=0.4, ToE r1=0.5 or
ToE r1=0.6. Correspondingly, the kept rate of the initial stage
r0 is set to 0.2, 0.25 and 0.3. The repetition step of parallel
expanding operation k is default set to 2, and we perform
ToE on the output tokens of the first block for all models.

4.2. Results on ImageNet-1k

DeiT and LV-ViT As shown in Tab. 2, ToE achieves lossless
training acceleration with SOTA performance. For exam-
ple, ToE r1=0.5 achieves 0.4% Top-1 accuracy improvement
with 1.27× theoretical and 1.24× practical faster speed to
train DeiT-tiny. For DeiT-small, it achieves 1.3× training
acceleration without accuracy drop. Compared to the SOTA
methods, ToE r1=0.5 outperforms SViTE [10] and Network-
Expansion [12] at least 1% Top-1 accuracy at the consistent
acceleration ratio for training both DeiT-tiny and DeiT-small.
Compared to ToMe [11], ToE r1=0.5 also achieves both
higher accuracy and practical training speed. Note that ToMe
is able to reduce GFLOPs, but fails to accelerate training due
to the usage of unfriendly weighted average attention and
layer-wise merging operations. For DeiT-base, ToE r1=0.5

drops only 0.2% Top-1 accuracy while saving more than
60 GPU hours in the practical training process, which is
comparable to NetworkExpansion with EMA. If we relax
the restriction of hyper-parameter consistency (presented in
Appendix), ToE Hyper

r1=0.4 outperforms NetworkExpansion with
0.2% accuracy and 24h training time reduction.

For LV-ViT-T and LV-ViT-S shown in Tab. 3, ToE r1=0.4

achieves efficient training with 1.2× acceleration rate, while
without accuracy drop or even with accuracy improvement
for training LV-ViT-T, compared to baselines. Note that the
results of ToE r1=0.4 and NetworkExpansion are reported
with EMA, due to the default LV-ViT training with EMA. In
addition, ToE r1=0.4 outperforms NetworkExpansion in both
training acceleration and accuracy with 0.5h training time
reduction and 0.6% accuracy for LV-ViT-T, respectively.

We also present the validation Top-1 accuracy of ToE and
NetworkExpansion during training DeiT-tiny and LV-ViT-T
in Fig. 3. As observed, ToE initially reduces token redun-
dancy during training, resulting in some performance drops
compared to the baseline. However, in the later stages of
training, ToE introduces more tokens for training, gradually
reducing the accuracy gap to the baseline. Benefiting from
the reduction of token redundancy in the early stages, mod-
els trained by ToE with the proposed token expansion and
merging achieve higher accuracies, compared to baselines.
Compared to NetworkExpansion, our ToE is more stable to

15788

Table 2. Performance comparison for DeiT on ImageNet-1K. a/b in the column of Top-1 Acc. means without/with EMA strategy using the official GitHub
repo†. The training time is averagely measured on one/two/four NVIDIA RTX A6000 GPUs for DeiT-tiny/small/base 3 times, and the batch size is set to
1, 024 in all following tables and figures.

Model Method Consistency Top-1 Acc. (%) GFLOPs Training time Acceleration

Hyper? Architecture? Strategy? (per training iter) (total GPU hours) (practical rate)

DeiT-tiny

Baseline [4] − − − 72.2 3.3× 103 54.6h 1.00×
(NeurIPS’21) S2ViTE-Tiny (600 epoch) [10] × × ✓ 70.1 (-2.1) 2.5× 103 (1.32×) − 1.19×

(ICLR’23) ToMeDeiT
r8→ [11] ✓ × ✓ 71.7 (-0.5) 2.5× 103 (1.32×) 53.3h 1.02×

(CVPR’23) NetworkExpansion6→12 [12] ✓ ✓ × 70.3 (-1.9) / 70.1 (-2.1) 2.5× 103 (1.32×) 43.2h 1.26×
ToE r1=0.5 (Ours) ✓ ✓ ✓ 72.6 (+0.4) 2.6× 103 (1.27×) 44.2h 1.24×

DeiT-small

Baseline [4] − − − 79.8 1.3× 104 124.5h 1.00×
(ICLR’23) ToMeDeiT

r8→ [11] ✓ × ✓ 79.7 (-0.1) 9.8× 103 (1.33×) 121.5h 1.02×
(CVPR’23) NetworkExpansion6→12 [12] ✓ ✓ × 78.8 (-1.0) / 78.6 (-1.2) 9.8× 103 (1.33×) 100.3h 1.24×

ToE r1=0.5 (Ours) ✓ ✓ ✓ 79.8 (+0.0) 1.0× 104 (1.30×) 102.2h 1.22×

DeiT-base

Baseline [4] − − − 81.8 5.2× 104 292.8h 1.00×
(ICML’19) StackBERT [13] ✓ ✓ × 80.8 (-1.0) 4.2× 104 (1.24×) 231.6h 1.26×

(CVPR’23) NetworkExpansion6→12 [12] ✓ ✓ × 81.0 (-0.8) / 81.5 (-0.3) 3.9× 104 (1.33×) 226.8h 1.29×
ToE r1=0.5 (Ours) ✓ ✓ ✓ 81.6 (-0.2) 4.0× 104 (1.30×) 231.2h 1.27×
ToE r1=0.4 (Ours) ✓ ✓ ✓ 81.4 (-0.4) 3.8× 104 (1.37×) 225.2h 1.30×
ToE Hyper

r1=0.5 (Ours) × ✓ ✓ 81.8 (+0.0) 3.6× 104 (1.44×) 213.2h 1.37×
ToE Hyper

r1=0.4 (Ours) × ✓ ✓ 81.7 (-0.1) 3.3× 104 (1.58×) 202.8h 1.44×
† https://github.com/huawei-noah/Efficient-Computing/tree/master/TrainingAcceleration/NetworkExpansion

Table 3. Performance comparison for LV-ViT on ImageNet-1K. ‡ indicates
that results reproduced by the official GitHub repo. The training time is
averagely measured on two/four NVIDIA RTX A6000 GPUs 3 times for
LV-ViT-T/S with a fixed batch size of 1, 024.

Model Method Top-1 Acc. (%) GFLOPs Training time
(per training iter) (total GPU hours)

LV-ViT-T
Baseline [5] 79.1 8.2× 103 130.5h

(CVPR’23) NetworkExpansion6→12 [12] ‡78.8 (-0.3) 7.1× 103 (1.15×) 114.4h (1.14×)
ToEr1=0.4 (Ours) 79.4 (+0.3) 7.0× 103 (1.17×) 113.9h (1.15×)

LV-ViT-S
Baseline [5] 83.3 1.9× 104 237.3h

(CVPR’23) NetworkExpansion8→16 [12] ‡82.9 (-0.4) 1.5× 104 (1.27×) 195.5h (1.21×)
ToEr1=0.4 (Ours) 83.3 (+0.0) 1.4× 104 (1.36×) 195.3h (1.22×)

LV-ViT-M
Baseline [5] 84.1 3.7× 104 368.7h

(CVPR’23) NetworkExpansion10→20 [12] 84.0 (-0.1) 2.9× 104 (1.28×) 292.7h (1.26×)
ToE r1=0.4 (Ours) 84.1 (+0.0) 2.7× 104 (1.37×) 292.5h (1.26×)

Table 4. Performance comparison between EfficientTrain [30] and our
combination framework on ImageNet-1K.

Model Method Top-1 Acc. (%) GFLOPs Training time
(per training iter) (total GPU hours)

DeiT-tiny
Baseline (EfficientTrain) [30] 72.5 1.3× 104 52.5h
(ICCV’23) EfficientTrain [30] 73.3 (+0.8) 8.8× 103 (1.48×) 36.5h (1.44×)

EfficientTrain + ToE r1=0.6 (Ours) 73.5 (+1.0) 7.6× 103 (1.71×) 32.3h (1.63×)

DeiT-small
Baseline (EfficientTrain) [30] 80.3 5.2× 104 121.3h
(ICCV’23) EfficientTrain [30] 80.4 (+0.1) 3.4× 104 (1.53×) 85.2h (1.42×)

EfficientTrain + ToE r1=0.6 (Ours) 80.4 (+0.1) 2.9× 104 (1.79×) 79.4h (1.53×)

train with consistent accuracy improvement during training,
while the accuracy of NetworkExpansion with EMA drops
significantly at the intermediate epoch number and then re-
stores due to the inconsistent structures of before-and-after
models when structure growing. More validation curves are
presented in the Appendix.
Combination with EfficientTrain [30]. ToE can be seam-
lessly integrated into the EfficientTrain framework to further
improve the performance. We do not modify the pipeline of
EfficientTrain and simply apply ToE to the output tokens
of the model’s first block. The results are summarized in
Tab. 4, which effectively evaluates the universality of ToE.
The combination of EfficientTrain and ToE achieves higher
training speeds to further enhance the training efficiency of
EfficientTrain with accuracy improvement.

4.3. Transfer Results on CIFAR-10/100

we further explore the transfer learning ability of ToE-pre-
trained weights and evaluate whether ToE can be used to
accelerate the fine-tuning on CIFAR-10/100. For the fine-

Figure 3. Validation Top-1 accuracy of DeiT-tiny and LV-ViT-T on
ImageNet-1k during training with different methods.

Table 5. Results for fine-tuning DeiT on CIFAR-10/100.

Model Pre-training Fine-tuning Top-1 Acc. (%)

Method Acceleration Method Acceleration CIFAR-10 CIFAR-100

DeiT-tiny

Baseline [4] 1.0x Baseline [4] 1.0x 98.07 86.78
Baseline [4] 1.0x ToEr1=0.5 1.3x 98.10 (+0.03) 86.74 (-0.04)
ToEr1=0.5 1.3x Baseline [4] 1.0x 98.19 (+0.12) 87.10 (+0.32)
ToEr1=0.5 1.3x ToEr1=0.5 1.3x 98.16 (+0.09) 86.91 (+0.13)

DeiT-small

Baseline [4] 1.0x Baseline [4] 1.0x 98.93 90.15
Baseline [4] 1.3x ToEr1=0.5 1.3x 98.96 (+0.03) 90.19 (+0.04)
ToEr1=0.5 1.3x Baseline [4] 1.0x 99.03 (+0.10) 90.37 (+0.22)
ToEr1=0.5 1.3x ToEr1=0.5 1.3x 98.99 (+0.06) 90.26 (+0.11)

tuning settings, we follow the settings of the official GitHub
repo 3. We introduce the training details in the Appendix.

As shown in Tab. 5, pre-training weights by ToE is able to
improve the accuracy on CIFAR-10/100 for DeiT-tiny/small,
when using the same baseline training for fine-tuning (see
the 1st and 3rd rows in both DeiT-tiny and DeiT-small).
For example, ToE pre-training outperforms baseline pre-
training by 0.32% accuracy on CIFAR-100, which evaluates
the strong transfer ability of ToE. In addition, our ToE is also
effective and efficient for fine-tuning (see the 1st and 2nd
rows in DeiT-tiny/small). ToE achieves 1.3× acceleration for
fine-tuning DeiT-tiny with 0.03 accuracy improvement on
CIFAR-10. Further, we employ ToE for both pre-training and
fine-tuning, which significantly accelerates the training with
an accuracy improvement of at least 0.06% on CIFAR-10 for
both DeiT-tiny/small, compared to that using both baselines.

3https://github.com/facebookresearch/deit

15789

Table 6. Ablation studies of different speedup factors for DeiT-tiny on
ImageNet-1K. The default r0/r1, Ng and k are set to 1/2, 3 and 2, respec-
tively. All results in this table have almost the same training speeds for 44h
training (total GPU hours).

DeiT-tiny
Factors r0/r1 = 1/3 r0/r1 = 2/3 Ng = 2 Ng = 4 k = 1 k = 3 default

Top-1 Acc. (%) 72.3 72.5 72.4 72.5 72.5 72.6 72.6

Table 7. Effect of “initialization-expansion-merge” pipeline for DeiT on
ImageNet-1K.± indicates we conduct 3 runs to calculate the mean and std.

Initialization Expansion Merge Top-1 Acc. (%)

Random Spatial DeiT-tiny DeiT-small

× ✓ ✓ ✓ 72.6 79.8
✓ × ✓ ✓ 72.3±0.2 79.7±0.1
× ✓ × ✓ 71.2 79.1
× ✓ ✓ × 71.7 79.6

Table 8. Results of applying ToE to different early transformer block’s
output tokens for DeiT-tiny on ImageNet-1K.

Block Top-1 Acc. (%) GFLOPs Training time
DeiT-tiny (per training iter) (total GPU hours)

Embedding 72.1 2.51× 103 43.5h
First block 72.6 2.58× 103 44.2h

Second block 72.2 2.65× 103 45.2h
Third block 72.1 2.71× 103 46.9h

4.4. Ablation Study

Effect of speedup factors in ToE. As presented in Tab. 6,
we verify the sensitivity of the speedup factors mentioned in
Sec. 3.3, such as the ratio of r0/r1, training stages Ng and
parallel expanding operation k. At almost the same training
time, ToE is relatively insensitive to these factors, w.r.t accu-
racy. It allows ToE to be easily integrated into the different
models’ training pipeline with minimal factor adjustments.

We further adjust the keep rate of the first stage r1 to
control the training speed, and the relationship between r1
and training speed is illustrated in Fig. 4. We found ToE
achieves more than 1.3× acceleration on DeiT-tiny without
accuracy dropping. Additionally, it also demonstrates that
reducing token redundancy in the early stages of training
sometimes improves the model performance.

Effect of “Initialization-expansion-merging”. Tab. 7
provides an analysis of the necessity of each step in the pro-
posed “initialization-expansion-merging” pipeline. When we
randomly select tokens as the initial token set rather than
spatial-distribution token initialization, it leads to the perfor-
mance degradation. Furthermore, removing widest feature-
distribution token expansion and feature-distribution token
merging from the pipeline significantly decreases the accu-
racy, e.g., more than 0.9% and 1.4% accuracy drops without
the merging and expansion for DeiT-tiny, respectively.

Where to apply ToE. Work in [32, 48] demonstrates that
class attention tends to be a global pooling as more atten-
tion operations are performed, and tokens in early blocks
are more similar. This leads to more redundancy in tokens
from early blocks. Consequently, applying ToE to the output
tokens of early blocks can achieve higher acceleration. As
shown in Tab. 8, we default apply ToE to the output tokens
of the first block, which achieves the best trade-off between
accuracy and training speed, compared to other early blocks.

Figure 4. Trade-off between acceleration ratio and model performance by
setting different r1.

Table 9. Results of different feature-distribution distances in Eq. 3 for DeiT
on ImageNet-1K.

Measure Top-1 Acc. (%)

DeiT-tiny DeiT-small

Manhattan Distance 69.8 78.0
Euclidean Distance 70.6 78.4

Cosine Distance 72.6 79.8

Effect of the feature-distribution distance. We explore
the metric that measures the feature-distribution distance
between two tokens in Eq. 3. As shown in Tab. 9, we use
three different metrics: Manhattan distance, Euclidean dis-
tance, and Cosine distance. We observe that Cosine distance
achieves the best performance as the distance metric.

5. Conclusion

In this paper, we proposed a novel token growth scheme
Token Expansion (ToE) to achieve consistent training accel-
eration for ViTs. ToE introduce an “initialization-expansion-
merging” pipeline to maintain the integrity of the interme-
diate feature distribution of original transformers, prevent-
ing the loss of crucial learnable information in the training
process. In experiments, ToE can be seamlessly integrated
into the training of various transformers and efficient train-
ing frameworks in a lossless manner or even accuracy im-
provement, compared to the entire full-token training. These
experimental results of ToE also demonstrate the superior
performance gains over the SOTA methods.

Acknowledgements

This work is supported by the National Natural Sci-
ence Foundation of China (NO. 62102151), the Na-
tional Key Research and Development Program of
China (No. 2023YFC3306401), Shanghai Sailing Program
(21YF1411200), Shanghai Science and Technology Com-
mission (22511104600), CCF-Tencent Rhino-Bird Open Re-
search Fund, the Open Research Fund of Key Laboratory
of Advanced Theory and Application in Statistics and Data
Science, Ministry of Education (KLATASDS2305), the Fun-
damental Research Funds for the Central Universities.

15790

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 30, 2017. 1

[2] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. In NAACL, pages 4171–4186,
2019.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. NeurIPS, 33:1877–1901, 2020.
1

[4] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. In ICLR, pages 10347–10357. PMLR, 2021. 1, 2, 5,
7

[5] Zi-Hang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun
Shi, Xiaojie Jin, Anran Wang, and Jiashi Feng. All tokens
matter: Token labeling for training better vision transformers.
NeurIPS, 34:18590–18602, 2021. 5, 7

[6] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229. Springer, 2020.

[7] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and ef-
ficient design for semantic segmentation with transformers.
NeurIPS, 34:12077–12090, 2021. 1

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In ICLR, 2020. 1

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 1

[10] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and
Zhangyang Wang. Chasing sparsity in vision transformers:
An end-to-end exploration. NeurIPS, 34:19974–19988, 2021.
1, 2, 3, 6, 7

[11] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang,
Christoph Feichtenhofer, and Judy Hoffman. Token merging:
Your vit but faster. In ICLR, 2022. 1, 2, 3, 4, 6, 7

[12] Ning Ding, Yehui Tang, Kai Han, Chao Xu, and Yunhe Wang.
Network expansion for practical training acceleration. In
CVPR, pages 20269–20279, 2023. 1, 2, 3, 6, 7

[13] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang,
and Tieyan Liu. Efficient training of bert by progressively
stacking. In ICML, pages 2337–2346. PMLR, 2019. 1, 2, 3, 7

[14] Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo Molchanov,
Hai Li, and Jan Kautz. Global vision transformer pruning
with hessian-aware saliency. In CVPR, pages 18547–18557,
2023. 1, 3

[15] Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu,

and Li Cui. Width & depth pruning for vision transformers.
In AAAI, volume 36, pages 3143–3151, 2022.

[16] François Lagunas, Ella Charlaix, Victor Sanh, and Alexan-
der M Rush. Block pruning for faster transformers. In
EMNLP, pages 10619–10629, 2021.

[17] Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured
pruning learns compact and accurate models. In ACL, pages
1513–1528, 2022. 1, 3

[18] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision
transformers with dynamic token sparsification. NeurIPS,
34:13937–13949, 2021. 1, 3, 4

[19] Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan,
Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam Lim. Adavit: Adap-
tive vision transformers for efficient image recognition. In
CVPR, pages 12309–12318, 2022.

[20] Mohsen Fayyaz, Soroush Abbasi Koohpayegani,
Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and
Jürgen Gall. Adaptive token sampling for efficient vision
transformers. In ECCV, pages 396–414. Springer, 2022.

[21] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei
Niu, Mengshu Sun, Xuan Shen, Geng Yuan, Bin Ren, Hao
Tang, et al. Spvit: Enabling faster vision transformers via
latency-aware soft token pruning. In ECCV, pages 620–640.
Springer, 2022.

[22] Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya,
Jan Kautz, and Pavlo Molchanov. A-vit: Adaptive tokens for
efficient vision transformer. In CVPR, pages 10809–10818,
2022. 1, 3

[23] Sheng Xu, Yanjing Li, Mingbao Lin, Peng Gao, Guodong
Guo, Jinhu Lü, and Baochang Zhang. Q-detr: An efficient
low-bit quantized detection transformer. In CVPR, pages
3842–3851, 2023. 1

[24] Yanjing Li, Sheng Xu, Baochang Zhang, Xianbin Cao, Peng
Gao, and Guodong Guo. Q-vit: Accurate and fully quantized
low-bit vision transformer. NeurIPS, 35:34451–34463, 2022.

[25] Yefei He, Zhenyu Lou, Luoming Zhang, Jing Liu, Weijia Wu,
Hong Zhou, and Bohan Zhuang. Bivit: Extremely compressed
binary vision transformers. In ICCV, pages 5651–5663, 2023.

[26] Phuoc-Hoan Charles Le and Xinlin Li. Binaryvit: Pushing
binary vision transformers towards convolutional models. In
CVPR, pages 4664–4673, 2023. 1

[27] Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin,
Fengyu Wang, Zhi Wang, Xiao Chen, Zhiyuan Liu, and Qun
Liu. bert2bert: Towards reusable pretrained language models.
In ACL, pages 2134–2148, 2022. 1, 2, 3

[28] Xin Yuan, Pedro Savarese, and Michael Maire. Growing effi-
cient deep networks by structured continuous sparsification.
In ICLR, 2021.

[29] Wei Wen, Feng Yan, Yiran Chen, and Hai Li. Autogrow:
Automatic layer growing in deep convolutional networks. In
KDD, pages 833–841, 2020. 1

[30] Yulin Wang, Yang Yue, Rui Lu, Tianjiao Liu, Zhao Zhong,
Shiji Song, and Gao Huang. Efficienttrain: Exploring gener-
alized curriculum learning for training visual backbones. In
ICCV, pages 5852–5864, 2023. 2, 3, 5, 7

15791

[31] Changlin Li, Bohan Zhuang, Guangrun Wang, Xiaodan Liang,
Xiaojun Chang, and Yi Yang. Automated progressive learning
for efficient training of vision transformers. In CVPR, pages
12486–12496, 2022. 3

[32] Xuran Pan, Xuan Jin, Yuan He, Shiji Song, Gao Huang, et al.
Budgeted training for vision transformer. In ICLR, 2022. 3, 8

[33] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan
Zhang, Douglas Eck, Chris Callison-Burch, and Nicholas
Carlini. Deduplicating training data makes language models
better. In ACL, pages 8424–8445, 2022. 3

[34] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models
and faster training. In ICLR, pages 10096–10106. PMLR,
2021. 3

[35] Bradley McDanel and Chi Phuong Huynh. Accelerating
vision transformer training via a patch sampling schedule.
arXiv preprint arXiv:2208.09520, 2022. 3

[36] Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian,
and Dacheng Tao. On efficient training of large-scale
deep learning models: A literature review. arXiv preprint
arXiv:2304.03589, 2023. 3

[37] Yuedong Yang, Guihong Li, and Radu Marculescu. Efficient
on-device training via gradient filtering. In CVPR, pages
3811–3820, 2023. 3

[38] Xucheng Ye, Pengcheng Dai, Junyu Luo, Xin Guo, Yingjie
Qi, Jianlei Yang, and Yiran Chen. Accelerating cnn training
by pruning activation gradients. In ECCV, pages 322–338.
Springer, 2020. 3

[39] Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chaojian Li,
Kailash Gopalakrishnan, Zhangyang Wang, and Yingyan Lin.
Fractrain: Fractionally squeezing bit savings both temporally
and spatially for efficient dnn training. NeurIPS, 33:12127–
12139, 2020. 3

[40] Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang
Zhao, Yingyan Lin, and Zhangyang Wang. E2-train: Training
state-of-the-art cnns with over 80% energy savings. NeurIPS,
32, 2019. 3

[41] Mengtian Li, Ersin Yumer, and Deva Ramanan. Budgeted
training: Rethinking deep neural network training under re-
source constraints. In ICLR, 2019. 3

[42] Jiong Zhang, Hsiang-Fu Yu, and Inderjit S Dhillon. Au-
toassist: A framework to accelerate training of deep neural
networks. NeurIPS, 32, 2019. 3

[43] Marius Hobbhahn and Jaime Sevilla. What’s the backward-
forward flop ratio for neural networks? https://
epochai.org/blog/backward-forward-FLOP-
ratio, 2021. Accessed: 2023-9-28. 3, 6

[44] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. JMLR, 9:2579–2605, 2008. 5

[45] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. Ieee, 2009. 5

[46] Alex Krizhevsky et al. Learning multiple layers of features
from tiny images. 2009. 5

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library.
NeurIPS, 32, 2019. 6

[48] Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-
formers see like convolutional neural networks? NeurIPS,
34:12116–12128, 2021. 8

15792

https://epochai.org/blog/backward-forward-FLOP-ratio
https://epochai.org/blog/backward-forward-FLOP-ratio
https://epochai.org/blog/backward-forward-FLOP-ratio

	. Introduction
	. Related Work
	. Training Acceleration for Transformers
	. Training Acceleration for CNNs
	. Transformer pruning

	. Method
	. Preliminaries and Notations
	. Overview of ToE
	. Token Expansion
	Spatial-distribution Token Initialization
	Widest Feature-distribution Token Expansion
	Feature-distribution Token Merging
	Optimization of ToE

	. Experiments
	. Experimental Settings
	. Results on ImageNet-1k
	. Transfer Results on CIFAR-10/100
	. Ablation Study

	. Conclusion

