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Abstract

Modularity plays a crucial role in the development and
maintenance of complex systems. While end-to-end text
spotting efficiently mitigates the issues of error accumula-
tion and sub-optimal performance seen in traditional two-
step methodologies, the two-step methods continue to be
favored in many competitions and practical settings due
to their superior modularity. In this paper, we introduce
Bridging Text Spotting, a novel approach that resolves
the error accumulation and suboptimal performance is-
sues in two-step methods while retaining modularity. To
achieve this, we adopt a well-trained detector and recog-
nizer that are developed and trained independently and
then lock their parameters to preserve their already ac-
quired capabilities. Subsequently, we introduce a Bridge
that connects the locked detector and recognizer through
a zero-initialized neural network. This zero-initialized
neural network, initialized with weights set to zeros, en-
sures seamless integration of the large receptive field fea-
tures in detection into the locked recognizer. Further-
more, since the fixed detector and recognizer cannot nat-
urally acquire end-to-end optimization features, we adopt
the Adapter to facilitate their efficient learning of these fea-
tures. We demonstrate the effectiveness of the proposed
method through extensive experiments: Connecting the lat-
est detector and recognizer through Bridging Text Spot-
ting, we achieved an accuracy of 83.3% on Total-Text,
69.8% on CTW1500, and 89.5% on ICDAR 2015. The code
is available at https://github.com/mxin262/
Bridging-Text—-Spotting.

1. Introduction

Text spotting, as a critical technology for reading text in
natural scenes, has garnered significant attention in recent
years, owing to its diverse real-world applications, includ-
ing autonomous driving [63], intelligent navigation [46, 53],
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Figure 1. Comparison between the proposed paradigm with ex-
isting text spotting paradigms. Our pipeline achieves better per-
formance with high modularity. We adopt the latest detector [66]
and text spotter [62] to test the training time of the two-step and
end-to-end methods, respectively. The training time is evaluated
on the RTX-3090. Detl. means the original detector. Det2. means
the new detector. Rec. means the text recognizer. Bri. mean the
proposed Bridge.

and visual information extraction [4, 23, 50]. Traditional
two-step text spotting separates text detection and recogni-
tion into two independent models [27]. In the first step, the
focus is on detecting the text regions within a natural scene
image. Once the text regions have been located, the second
step involves cropping these regions within the image and
employing a recognition model to recognize the text con-
tained within these cropped regions.

Recently, many researchers have integrated text detec-
tion and recognition within an end-to-end trainable frame-
work, aiming to address the issues of sub-optimal per-
formance and error propagation [15, 26, 31, 35]. Dom-
inant end-to-end text spotting methods mainly follow the
detection-by-recognition paradigm [26, 29, 31, 32, 34]. In
these approaches, text detectors are initially used to locate
text instances, followed by a Region-of-Interest (Rol) oper-
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ation that extracts features from the shared backbone for
recognition. These methods often require the incorpora-
tion of numerous heuristic designs involving Rol opera-
tions and post-processing steps [62, 67]. Inspired by the
Transformer [51], recent advances [21, 22, 62, 67] develop
a Transformer-based text spotting framework to avoid the
Rol operation and post-processing steps. Besides, some re-
searchers [15, 16, 62] attempt to enhance the synergy be-
tween the detection and recognition.

Despite the significant progress in end-to-end text spot-
ting, many competitions [38, 49, 58, 65] and practical appli-
cations [0, 7, 25] still favor the two-step text spotting. One
crucial reason for this preference is the high modularity in-
herent in two-step methods. Modularity refers to breaking
up a complex system into discrete pieces. Highly modular
text spotting systems allow simultaneous development and
independent maintenance of detectors and recognizers, with
the flexibility to adjust the amount of training data for each
module based on specific requirements [ 1, 24]. To more in-
tuitively illustrate the advantages of modularity, consider a
scenario where we need to replace the detector in the origi-
nal system. As depicted in Fig. 1, the two-step text spotting
approach simply requires training a new detector, which can
be completed in approximately 102 hours. In contrast, the
end-to-end text spotting method necessitates retraining the
entire system, which consumes roughly 272 Hours. Fur-
thermore, when aiming to improve the performance of the
detection by increasing training data, unlike two-step meth-
ods that only necessitate labeling for detection annotations,
end-to-end methods require labeling for both detection and
recognition annotations, resulting in higher resource con-
sumption than two-step methods.

In this paper, we introduce a new paradigm for text spot-
ting, termed Bridging Text Spotting, which addresses the
issues of error accumulation and sub-optimal performance
in two-step methods while retaining modularity. Specifi-
cally, Bridging Text Spotting adopts a well-trained detec-
tor and recognizer and then locks them to maintain their
already acquired capabilities. Then, we propose a Bridge
to integrate the locked detector and recognizer into a train-
able framework by incorporating the large receptive field
features from the detection into the locked recognizer. To
prevent the recognizer from misinterpreting the detection
feature as noise in the early stages of training, we initialize
the weights of the input and output layer in the Bridge to
zeros. Additionally, as the locked detector and recognizer
do not inherently possess end-to-end optimization features,
we adopt the Adapter [14] to facilitate their efficient learn-
ing of these features. When transitioning to a new scenario,
the Bridging Text Spotting simply requires training a new
detector and Bridge with the Adapter. It’s worth noting that
training the Bridge with the Adapter is efficient, as demon-
strated in the bottom part of Fig. 1. Benefiting from the uti-

lization of the well-trained detector and recognizer, Bridge
with Adapter eliminates the need for extensive data and en-
ables a rapid completion of the training process.

In conclusion, the main contributions are three-fold:

* We introduce a new paradigm for text spotting, termed
Bridging Text Spotting, which addresses the issues of er-
ror accumulation and sub-optimal performance in two-
step spotting while retaining modularity.

* We propose a Bridge with the Adapter that enables the
well-trained detector and recognizer to learn the end-to-
end optimization features based on their already acquired
capabilities.

* Experiments demonstrate the effectiveness of the pro-
posed Bridging Text Spotting: 1) Connecting the latest
detector and recognizer through Bridging Text Spotting,
we achieved an accuracy of 83.3% on Total-Text, 69.8%
on CTW1500, and 89.5% on ICDAR 2015; 2) Bridg-
ing Text Spotting can achieve an average improvement of
4.4% across multiple combinations of detectors and rec-
ognizers.

2. Related Work

Over the past few decades, the advent of deep learning tech-
niques has significantly advanced the field of scene text
spotting. Text spotting methods can be broadly classified
into two main categories: two-step text spotting and end-to-
end text spotting.

Two-Step Text Spotting. Two-step text spotting in-
volves performing detection and recognition through two
separate models. The detection model initially locates the
text regions, and then the recognition model recognizes the
text within these regions. In recent years, Wang et al. [54]
detect characters by a sliding-window-based detector and
subsequently classify each character. Jaderberg et al. [18]
introduce a method that first detects text instances by gen-
erating holistic text proposals with high recall and then rec-
ognizes the text content using a word classifier. Liao et al.
propose TextBoxes++ [28], which incorporate a single-shot
detector [27] and a text recognizer [47] in a two-step pro-
cess. Two-step text spotting methods have a high modular-
ity that allows independent development and maintenance
of detectors and recognizers. However, the advancement of
two-step text spotting faces constraints due to the accumula-
tion of errors and sub-optimal performance issues [26, 31].

End-to-end Text Spotting. To solve the error accu-
mulation and sub-optimal performance issues, researchers
have recently attempted to integrate detection and recogni-
tion within an end-to-end trainable framework. Li et al. [26]
integrate detection and recognition into a unified scene text
spotting framework, primarily focusing on horizontal text.
In order to handle oriented text, various sampling tech-
niques, including RoIRotate [32] and Text-Align [12], have
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Figure 2. The overall architecture of bridging text spotting. Rec. means the recognition. Crop represents the crop operation. The

predictions of the detector are used to crop the text regions.

been developed to convert the oriented text into a horizontal
grid. The Mask TextSpotter series [29, 31, 40] further uti-
lize character segmentation to handle the arbitrarily-shaped
text. Concurrently, arbitrarily-shaped sampling techniques
such as RolSlide [10] and BezierAlign [34, 35] are built
to rectify the curve texts. Similarly, Wang et al. [52] rec-
tify curve texts by the Thin-Plate-Spline [3]. In compari-
son, [44, 56] use the Rol Masking to connect the detector
and recognizer. In order to enhance text recognition per-
formance, Fang et al. [9] introduce a language model [8]
for text spotting. Additionally, GLASS [45] introduces a
global-to-local attention module aimed at improving the ca-
pability to read text under varying scales. SRSTS [57] re-
duces the dependence of recognition on detection through a
self-reliant sampling recognition branch.

With the exceptional performance exhibited by the
Transformer [51], researchers have started to explore its ap-
plication in the field of text spotting. Zhang et al. [67] adopt
a dual decoder framework to represent detection and recog-
nition, respectively. TTS [22] add an RNN-based recog-
nition head on Deformable DETR [68]. SwinTextSpot-
ter [15, 17] propose a Recognition Conversion to enable the
back-propagation of recognition information to the detec-
tor. To enhance the coherence of detection and recogni-
tion, Ye et al. [62] develop shared point queries for detec-
tion and recognition within a single decoder. SPTS [36, 41]
and UNITS [21] treat text spotting as a sequence generation
problem. ESTextSpotter [16] further proposes a framework
to achieve explicit synergy between two tasks.

While end-to-end text spotting effectively addresses the
issues of error accumulation and sub-optimal performance
in traditional two-step methodologies, it faces a limitation
in leveraging a substantial amount of data that solely com-
prises detection or recognition annotations. Additionally,
end-to-end text spotting cannot directly utilize well-trained
detectors and recognizers. Therefore, in many competi-
tions and practical applications, two-step text spotting con-
tinues to be the preferred choice due to the high modular-

ity [7, 25, 49, 58, 65].

3. Methodology

Bridging text spotting represents a fresh methodology in the
realm of text spotting. It provides a novel solution to ad-
dress the issues of error propagation and sub-optimal per-
formance in two-step text spotting while preserving mod-
ularity. Within the framework of Bridging Text Spotting,
the detector and recognizer can be independently developed
and trained. Subsequently, they are unified via the proposed
Bridge.

3.1. Overall Architecture

The overall architecture is depicted in Fig. 2. Initially, we
employ a well-trained detector and recognizer, both devel-
oped and trained independently. This independent devel-
opment and training provide flexibility in adjusting training
data and structures for individual modules as needed. Sub-
sequently, the parameters of both the detector and recog-
nizer are locked to preserve their already acquired capabil-
ities. Given a scene text image, we send it to the trained
detector to locate text instances. Subsequently, the detec-
tion results are employed to crop the corresponding regions
within the features from the detection backbone and the im-
age. We directly use rectangles to crop the regions. These
cropped regions in the image, denoted as C;, are then fed
into the recognition backbone to extract the features. Then,
the output from the recognition backbone is sent into the
Bridge along with the cropped features C¢ from the detec-
tion backbone. In the final step, the output from the Bridge
is forwarded to the recognition head, which generates the
final recognition results. Additionally, Adapter [14] is in-
tegrated into the detection feature extraction and recogni-
tion head, facilitating the learning of end-to-end optimiza-
tion features in both the frozen detector and recognizer.
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the fundamental building blocks of a neural network, such as a
multi-head attention block or a transformer block. W1 and W2
represent the linear layer. Act means the activation function. All
normalization layers in the recognizer are used to tune.

3.2. Bridge

We propose a Bridge to connect the well-trained detector
and recognizer, addressing the challenges of error accu-
mulation and sub-optimal performance in two-step spotting
while preserving modularity. Note that, we lock (freeze)
the parameters of the well-trained detector and the recog-
nizer to preserve their already acquired capabilities. Sup-
pose R(;0,) is the recognizer’s backbone with parameters
0. and R(;0,) is the recognizer’s head with parameters
0..1,. Similarly, suppose D(; 645) is the detector’s backbone
with parameters 64, and D(; 04z) is the detector’s head with
parameters 645,. Given the input image I, the detection pro-
cess is as follows:

Faet = D(I;0a) , (D

Paet = D(Faet; 0an) , (2)

where Fget represents the features generated by the detec-
tion backbone. Pget represents the predictions of the de-
tector. After obtaining the predictions from the detector, we
proceed to extract the corresponding regions from the im-
ages and features generated by the detection backbone:

Ct = Crop(Faet, Pdet) , 3)
Ci = Crop(I,Pget) , 4
Fi = R(C;s;60,4), 5)

where C'rop represents the crop operation. F; represents
the recognition features generated by the recognition back-
bone. The recognition features F; and the cropped features
from detection backbone Cy are sent to the Bridge. Inspired
by [64], we design a zero-initialized convolution and zero-
initialized linear layers, whose weight and bias are both ini-
tialized to zeros, denoted Z.(; ) and Z,(;). The process in

the Bridge can be formulated as follows:
F.=F;+ ZZ(TT'(ZC((Cf =+ PE) : 026)) : 9zl) R 6)

where T'r represents the Transformer encoder. 6. and 6,;
denote the parameters of the zero-initialized convolution
and linear layers, which include the weight W and bias B.
F', denotes the output of Bridge. During the initial training
stage, the weight and bias parameters of the zero-initialized
convolution and linear layers are initialized to zero. Conse-
quently, this causes the component Z.(; ) and Z;(; ) ineq. 6
to yield a result of zero. Then, eq. 6 is changed as follows:

F,=F. (7

In this way, the recognition head will not be disturbed by
the sudden addition of features in the initial training phase.
Although the weight and bias parameters of the convolution
and linear layer are initialized to zero, the gradients are non-
zero. The gradient calculation of the convolution can be
formulated as follows:

8Z:(Cg; {W,B})

=1,
OB ®
0Z:(Ct; {W,B}) _ 4
oW -

where Cr is the feature extracted from the image, ensuring
it is non-zero. The gradient calculation of the linear layer is
similar to the convolution layer. As the training progresses,
the weights and biases of the convolution and linear layers
gradually adjust to transform the detection features into an
adaptive form for the recognition head.

3.3. Adapter

To enhance the synergy between the detector and recog-
nizer in achieving joint optimization, we adopt the Adapter
to fine-tune the model, inspired by [14]. The architecture of
the Adapter is illustrated in Fig. 3. We keep the parameters
of the neural network locked (frozen), with the exception of
the normalization layer. The purpose of the normalization
layer is to adjust the mean and variance of the distribution of
joint optimization features for the adapter. The adapter itself
comprises two linear layers and an activation function [13],
as represented by the following equation:

fo = o(EW17 + B1)W2" + By + £, 9)
where W1, W2, B; and B, represent the parameters of

the linear layers. ¢ is the activation function. f; and f,
represent the input and output.

3.4. Optimization

For optimization, we follow the original loss in the detector

and recognizer. The loss function is the sum of detection

loss L.+ and recognition loss L., formulated as follows:
»Csum = Adet»cdet + Arec»crec 3 (10)

where Agje¢ and A, represents a trade-off hyper-parameters
and set to 1 in this paper.
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Table 1. Scene text spotting results on Total-Text and TextOCR. “None” refers to recognition without lexicon. “Full” lexicon contains all
the words in the test set. DB+PARSeq, TESTR-det+MAERec, and DPText-DETR+DiG represent the two-step text spotting using the DB,
TESTR’s Detector, DPText-DETR as detector and PARSeq, MAERec, and DiG as the recognizer.

Method Venue Backbone Detection End-to-End FPS
P R F None Full

DB [30]+PARSeq [2] - ResNet-18 89.3 78.4 83.5 69.1 79.1 28.2
TESTR-det [67]+MAERec [19] - ResNet-50 92.8 81.3 87.3 78.0 86.6 4.2
DPText-DETR [61]+DiG [60] - ResNet-50 91.2 86.3 88.7 77.5 87.6 7.1
Text Dragon [10] ICCV’2019 VGGI16 85.6 75.7 80.3 48.8 74.8 —
Boundary TextSpotter [52] AAATI’2020 ResNet-50-FPN 88.9 85.0 87.0 65.0 76.1 —
Unconstrained [44] ICCV’2019 ResNet-50-MSF 83.3 83.4 83.3 67.8 — —
Text Perceptron [42] AAATI’2020 ResNet-50-FPN 88.8 81.8 85.2 69.7 78.3 —
Mask TextSpotter v3 [29] ECCV’2020 ResNet-50-FPN — — — 71.2 78.4 -
ABCNet [34] CVPR’2020 ResNet — — 64.2 75.7 17.9
ABCNet v2 [35] TPAMI’2022 ResNet-50-BiFPN 90.2 84.1 87.0 70.4 78.1 10
MANGO [43] AAATI'2021 ResNet-50-FPN — — — 72.9 83.6 43
PGNet [55] AAATI'2021 ResNet-50-FPN 85.5 86.8 86.1 63.1 — 355
TESTR [67] CVPR’2022 ResNet-50 93.4 81.4 86.9 73.3 83.9 53
TTS (poly) [22] CVPR’2022 ResNet-50 — — - 78.2 86.3 —
SwinTextSpotter [15] CVPR’2022 Swin-Tiny - - 88.0 74.3 84.1 -
ABINet++ [9] TPAMI’'2022 ResNet-50-BiFPN — — - 77.6 84.5 10.6
SRSTS [57] ACMMM’2022 ResNet-50 92.0 83.0 87.2 78.8 86.3 18.7
GLASS [45] ECCV’2022 ResNet-50 90.8 85.5 88.1 79.9 86.2 3.0
SPTS v2 [36] TPAMI’'2023 ResNet-50 — — - 75.5 84.0 —
DeepSolo [62] CVPR’2023 ResNet-50 93.1 82.1 87.3 79.7 87.0 17.0
UNITS [21] CVPR’2023 Swin-Base — - 89.8 78.7 86.0 —
ESTextSpotter [16] ICCV’2023 ResNet-50 92.0 88.1 90.0 80.8 87.1 43
DG-Bridge Spotter - ResNet-50 92.0 86.5 89.2 83.3 88.3 6.7

4. Experiments
4.1. Implementation Details

We use the DPText-DETR [61] as the well-trained detec-
tor and the DiG [60] as the well-trained recognizer in this
paper, which is termed DG-Bridge Spotter. Official open-
source weights for both the detector and recognizer are uti-
lized. The adapter is incorporated into the Transformer en-
coder layer [68] in the detector and decoder in the recog-
nizer. We also attempt other combinations of detectors and
recognizers to verify the effectiveness of our method, as de-
scribed in Sec. 4.3. We utilize the AdamW [39] optimizer
to optimize the Bridge and Adapter in DG-Bridge Spotter.
The Bridge and Adapter are tuned on the training data of
the target set. We train the Bridge and Adapter for 10,000
iterations, employing a batch size of eight images. The in-
ference speed is tested on a single NVIDIA GeForce RTX
3090. The data augmentation strategies are similar to those
in prior works [34, 35, 67], as detailed below: 1) Random
resizing is conducted with the shorter dimension ranging
from 480 to 832 pixels, at intervals of 32, while the longer
dimension is constrained within 1600 pixels. 2) Random
cropping is used, ensuring that text is not cut off. For test-
ing, the shorter dimension of the image is resized to 1000
pixels, while the longer dimension is constrained to a max-
imum of 1824 pixels.

4.2. Comparison with State-of-the-art Methods

We evaluate our method on several benchmarks, including
the multi-oriented benchmark ICDAR2015 [20], the word-
level annotated arbitrarily-shaped text benchmark Total-
Text [5], and the line-level annotated arbitrarily-shaped text
benchmark CTW1500 [33]. For various benchmarks, we
replace only the detector and fine-tune the Bridge with the
Adapter. In contrast, end-to-end text spotters require train-
ing the entire system. Unless otherwise stated, all values
in the table are presented as percentages. We also present
the results on the TextOCR [48] and HierText [37], in the
supplementary material.

Total-Text. For the word-level annotated arbitrarily-
shaped text benchmark Total-Text, the results are presented
in Tab. 1. We find that our method achieves stronger im-
provement on the ‘None’ Lexicon than ‘Full’. On the
‘None’ lexicon, our method correctly recognizes the results
that are incorrect in the baseline, leading to higher perfor-
mance. However, on the ‘Full’ lexicon, many incorrect re-
sults in the baseline can be corrected by the lexicon, result-
ing in comparable performance with ours. Therefore, our
method shows better performance on the ‘None’ lexicon
compared to that on the ‘Full’ lexicon. Some qualitative re-
sults are shown in Fig. 6, demonstrating that our method is
capable of recognizing text even in highly curved scenarios.
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Table 2. End-to-end text spotting results on CTW1500. “None”
represents lexicon-free, while “Full” indicates all the words in the
test set are used.

Method Detection End-to-End
P R F None Full
Text Dragon [10] 84.5 828 836 39.7 724
Text Perceptron [42] 875 819 84.6 57.0 —
ABCNet [34] - — — 452 74.1
ABCNet v2 [35] 85.6 838 847 575 712
MANGO [43] - — - 589 78.7
ABINet++ [9] - — - 60.2 80.3
TESTR [67] 92.0 82.6 87.1 56.0 815
SwinTextSpotter [15] — — 88.0 51.8 77.0
SPTS v2 [36] - — — 63.6 843
DeepSolo [62] — 642 814

ESTextSpotter [16] 91.5 88.6 90.0 649 839
DG-Brigde Spotter 92.1 862 89.0 69.8 839

CTW1500. For the line-level annotated arbitrarily-
shaped text benchmark CTW 1500, the results are shown in
Tab. 2. Our method surpasses the state-of-the-art method by
a notable margin of 4.9% in the ‘None’ metrics, unequivo-
cally proving its efficacy in handling long text recognition.
Our method outperforms SPTS v2 and ESTextSpotter in
‘None’ metrics while yielding comparable results in ‘Full’
metrics. On the ‘None’ lexicon, our method correctly rec-
ognizes the results that are incorrect in the baseline, lead-
ing to higher performance. This discrepancy highlights a
prevalent issue in these methods, where a small number of
characters within a text line are frequently misidentified, ne-
cessitating the use of a lexicon for correction. However, in
many practical scenarios, lexicons are usually absent.

ICDAR2015. Since DPText-DETR [61] does not pro-
vide open-source weights for the ICDAR2015 dataset, we
adopt a similar method the detector of TESTR [67] as our
detector. It’s important to highlight that we have kept the
recognizer DiG [60] unchanged. We refer to this combi-
nation of the detector of TESTR and the DiG-based recog-
nizer as the TG-Bridge Spotter. The results are illustrated
in Tab. 3. The proposed TG-Bridge Spotter outperforms
the state-of-the-art method in all lexicons. Specifically, our
method outperforms the ESTextSpotter [16] by 1.6%, 1.2%
and 2.3% in terms of ‘Strong’, ‘Weak’, and ‘Generic’ met-
rics, respectively.

4.3. Ablation Studies

We conduct ablation studies on Total-Text with three com-
binations of detectors and recognizers to verify the validity
of our method. (1) we adopt the DPText-DETR [61] and the
DiG [60], termed DG-Bridge Spotter. (2) we attempt an-
other combination that involves the detector of TESTR [67]
and MAERec [19], termed TM-Bridge Spotter. (3) we also

Table 3. Results on ICDAR 2015 dataset. “S”, “W”, “G” represent
recognition with “Strong”, “Weak” or “Generic” lexicon, respec-
tively.

Method Detection End-to-End

P R F S W G
FOTS [32] 91.0 85.2 88.0 81.1 75.9 60.8
CharNet R-50 [59] 91.2 88.3 89.7 80.1 74.5 62.2
Boundary TextSpotter [52] 89.8 87.5 88.6 79.7 75.2 64.1
Unconstrained [44] 89.4 85.8 87.5 83.4 79.9 68.0
Text Perceptron [42] 92.3 82.5 87.1 80.5 76.6 65.1
Mask TextSpotter v3 [29] — — — 83.3 78.1 74.2
ABCNet v2 [35] 90.4 86.0 88.1 82.7 78.5 73.0
MANGO [43] - — — 818 789 67.3
PGNet [55] 91.8 84.8 88.2 83.3 78.3 63.5
ABINet++ [9] - — — 84.1 804 754
TESTR [67] 90.3 89.7 90.0 852 79.4 73.6
TTS [22] - - — 852 817 714
SwinTextSpotter [15] — — — 839 77.3 705
SPTS v2 [36] - - = 823717 72.6
SRSTS [57] 96.1 82.0 88.4 85.6 81.7 74.5
GLASS [45] 86.9 84.5 85.7 84.7 80.1 76.3
DeepSolo [62] 92.8 87.4 90.0 86.8 81.9 76.9
ESTextSpotter [16] 92.5 89.6 91.0 87.5 83.0 78.1
TG-Bridge Spotter 93.8 87.5 90.5 89.1 84.2 80.4

Table 4. Ablation study on Total-Text. DA means using the
adapter in the detector. RA means using the adapter in the recog-
nizer. DG/TM/BP-Baseline represent the corresponding two-step
pipelines.

Bridge DA RA _ DPPUOM  pop EpS Param

P R F

- — 912 863 887 775 7.1 81.5M
— 912 863 887 81.5 7.1 85.0M
91.7 86.7 89.1 82.1 7.0 852M
v’ 920 865 89.2 833 6.7 86.0M

92.8 81.3 873 78.0 42 77.4M
— 928 81.3 873 80.8 42 80.9M
923 83.6 87.8 81.1 4.0 8I.IM
v 924 827 873 819 3.6 81.5M

- — 893 784 835 69.1 282 37.6M
— — 893 784 835 70.7 28.0 40.4M
— 88.8 79.7 84.0 70.8 27.0 40.5M
v' 89.1 79.1 83.8 725 26.5 40.9M

Method

DG-Baseline
DG-Baseline+
DG-Baseline+

DG-Bridge Spotter

TM-Baseline
TM-Baseline+
TM-Baseline+

TM-Bridge Spotter

BP-Baseline
BP-Baseline+
BP-Baseline+

BP-Bridge Spotter

ANENEN
AR
|

NENENN
NN
|

ANENEN
ENEN

utilize the combination of segmentation-based text detec-
tor DBNet [30] as the detector and a fast decoding recog-
nizer PARSeq [2], dubbed BP-Bridge Spotter. We choose
the ResNet18 [11] as the backbone of the DBNet.

Ablation Study of The Bridge. To evaluate the effective-
ness of the proposed Bridge and Adapter, we conduct abla-
tion studies on the Total-Text. As shown in Tab. 4, Bridge
significantly improves text spotting performance in all three
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Figure 4. Ablative study of the zero-initialized weight in Bridge.
“F” indicates F-measure in end-to-end text spotting results on
Total-Text.

Table 5. Ablation study about different Transformer layers in the
Bridge.

Num layer Detection E2E FPS Param
P R F

0 91.3 86.0 88.6 823 29 84.2M

1 92.0 865 89.2 833 29 86.0M

3 91.1 86.6 88.8 82.6 29 89.6M

6 91.8 86.5 89.1 829 29 949M

combinations, with a 4.0% increase in DG-Bridge Spotter,
a 2.8% increase in TM-Bridge Spotter, and 1.6% increase
in BP-Bridge Spotter. The Bridge successfully merges de-
tection features with large receptive fields and recognition
features with high resolution, directing this combined in-
formation into a locked recognition head. This process en-
hances performance significantly, with only a slight reduc-
tion in speed and requiring minimal increases in parameters.
Moreover, we offer a more intuitive comparison to highlight
the efficacy of the Bridge, as depicted in Fig. 5. In scenar-
ios without the Bridge, if the detection results do not align
accurately with the text boundaries, it can readily result in
inaccurate recognition results. This situation is commonly
known as error accumulation. In contrast, the Bridge ef-
fectively alleviates this issue by utilizing features with large
receptive fields, thereby improving the performance.

Ablation Study of The Adapter. The influence of
Adapter is depicted in Tab. 4. Through the integration of the
Adapter into both the detector and recognizer, three com-
binations effectively acquire end-to-end optimization fea-
tures, thereby improving overall performance. Furthermore,
it introduces only a modest number of additional parameters

CAFE

A
DAl

<
, | ROASTED ‘g‘@ COFFEE
o (W
RoxsTeo

Figure 5. Effectiveness of Bridge. Red boxes indicate recognition
errors due to inaccurate detection results. Zoom in for best view.

and has a minimal impact on speed.

Ablation Study of the Zero-initialized Weight in Bridge.
To further investigate the efficacy of the proposed zero-
initialized architecture, we conduct an analysis of the alter-
native Bridge structure by substituting the zero-initialized
convolution and linear layers with counterparts initialized
using Gaussian weights. In order to control variables, we
do not add Adapter in this experiment. The results are
illustrated in Fig. 4. The findings reveal that the zero-
initialized weight within the Bridge facilitates rapid adap-
tation of the recognition head to features with large re-
ceptive fields, leading to a substantial performance boost
(from 77.5% to 81.5%). In contrast, employing a Gaussian-
initialized structure initially disrupts the training of the
recognition head, resulting in only marginal eventual im-
provement (from 77.5% to 78.4%).

Ablation Study of The Number of Transformer Layers.
To comprehensively validate the impact of the number of
Transformer layers in the Bridge, we conduct experiments
on Total-Text to compare the performance with varying
numbers of Transformer layers in the Bridge. As presented
in Tab. 5, we observe that setting the number to 1 resulted
in the model achieving the best performance. Despite re-
ducing the number of parameters by 1.8M, the detection
performance dropped by 0.6%, and the text spotting perfor-
mance decreased by 1%. Further increasing the number of
Transformer layers does not lead to performance improve-
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Table 6. Comparison of different paradigms on Total-Text. Two-
step finetune represents fine-tuning the detector and recognizer,
respectively, without Bridge. Row3+Using C represents using
the C'y as the input of the recognizer. Row4+Using C’; represents
using Cy and C} as the input of the recognizer.

Method _ Defection  por EpS param

P R F

Two-step 91.2 863 887 775 7.1 81.5M
End-to-end 91.2 86.1 88.6 756 7.5 83.1M
Two-step finetune 89.4 85.7 87.5 78.8 7.1 81.5M
Row3+Using Cy 91.2 86.5 88.8 66.8 7.5 83.1M
Row4+Using C; 91.0 87.7 89.3 79.8 7.1 83.1M
Ours 92.0 86.5 89.2 833 6.7 852M

ment, but it does increase the model’s parameters.

Comparison with Existing Paradigm. To further vali-
date the effectiveness of our method, we conduct experi-
ments on Total-Text, comparing it with two-step and end-to-
end text spotting. This experiment uses the DPText-DETR
as the detector and DiG as the recognizer. The results are
illustrated in Tab. 6. In the case of end-to-end text spotting,
we made a modification by adjusting the first layer of the
recognition backbone. This adjustment enables a seamless
passage of cropped features from the detection backbone to
the recognizer. We observed that when using the same de-
tector and recognizer, two-step one outperforms end-to-end
one in text spotting metrics, despite their comparable de-
tection performance. This superiority can be attributed to
the high modularity of the two-step method. This modular-
ity enables the recognizer to be trained independently with
a larger dataset, potentially surpassing the impact of error
accumulation and sub-optimization. Additionally, we made
an effort to load pre-trained weights in a two-step method
to initialize both the detector and recognizer. We also make
efforts to fine-tune the detector and recognizer directly on
TotalText and connect them in a two-step manner, as illus-
trated in the third row of Tab. 6. Due to its limitations in ef-
fectively mitigating the issues of sub-optimal performance
and error accumulation, this approach offers only marginal
performance improvements. Subsequently, we load the pre-
trained weight of the detector and recognizer and use the C'y
as the input of the recognizer, referred to as Row3+Using
Cy. The Cy and C; are detailed in the Sec. 3.1. As shown
in Tab. 6, the results indicate a drop in performance. This
is because, during pre-training, the inputs of the recognizer
in Row3+Using C are the images. Consequently, when
the input transitions to features in detection, the recognizer
misinterprets them as noise, disrupting the fine-tuning pro-
cess of the recognizer. We further utilize the summation
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Figure 6. Qualitative results of DG-bridge Spotter on CTW1500
(left column) and Total-Text (right column). Zoom in for best
view.

of Cy and Cj as the input of the recognizer, referred to as
Row4+Using C;. The results demonstrate the effectiveness
of integrating both detection and recognition features.

5. Conclusion

In this paper, we introduce a new paradigm for text spot-
ting, termed Bridging Text Spotting, to address the issues
of sub-optimal performance and error accumulation in the
two-step text spotting while retaining modularity. The pro-
posed Bridge effectively connects the well-trained detector
and recognizer through a zero-initialized neural network.
The Adapter enables the well-trained detector and recog-
nizer to efficiently learn end-to-end optimization features,
thereby improving performance. Extensive experimental
results demonstrate the effectiveness of Bridging Text Spot-
ting: 1) Bridging Text Spotting with the latest detector and
recognizer outperforms the previous state-of-the-art end-to-
end method on various challenge benchmarks. 2) Bridging
Text Spotting can consistently enhance performance across
various combinations of detectors and recognizers. The pro-
posed method provides an effective way of integrating two
distinct modules for end-to-end optimization. In the future,
how to connect multi-task modules using our approach to
create a robust multi-task system is worthy of further study.
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