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Abstract

Simulation is an invaluable tool for radio-frequency
system designers that enables rapid prototyping of vari-
ous algorithms for imaging, target detection, classifica-
tion, and tracking. However, simulating realistic radar
scans is a challenging task that requires an accurate model
of the scene, radio frequency material properties, and
a corresponding radar synthesis function. Rather than
specifying these models explicitly, we propose DART —
Doppler Aided Radar Tomography, a Neural Radiance
Field-inspired method which uses radar-specific physics
to create a reflectance and transmittance-based rendering
pipeline for range-Doppler images. We then evaluate DART
by constructing a custom data collection platform and col-
lecting a novel radar dataset together with accurate posi-
tion and instantaneous velocity measurements from lidar-
based localization. In comparison to state-of-the-art base-
lines, DART synthesizes superior radar range-Doppler im-
ages from novel views across all datasets and additionally
can be used to generate high quality tomographic images.1

1. Introduction
Driven by advances in the automotive industry, miniatur-
ized millimeter wave (mmWave) radar chips are becoming
cheaper and more ubiquitous. Boasting a high range reso-
lution and the ability to penetrate light materials, mmWave
radars have proven effective in many application domains
including collision avoidance and driver assistance in au-
tomobiles [14, 36, 57, 64, 65], through-occlusion imaging
in airport scanners [30, 68], and vision-denied tracking and
mapping [2, 9, 22, 37, 43].

Because designing, testing, and deploying new radar sys-
tems in the real world can be costly, many rapid prototyping
pipelines heavily rely on simulation. Modern radar simula-

*Equal Contribution.
1Our implementation, data collection platform, and collected datasets

can be found via our project site: https://wiselabcmu.github.
io/dart/.

Figure 1. DART uses scans from a handheld radar to learn an
implicit tomography of a scene in order to accurately render scans
from novel viewpoints (left). DART’s implicit tomography can
also be sampled to map the radar properties of a scene (right).

tion tools normally require the user to manually specify the
geometry and characteristics of the scene, including all ma-
terial properties [3]. While other sensors (e.g. lidar) can be
used to scan an environment and produce a mesh or voxel
map, they cannot capture radar-specific material properties
that are crucial for generating realistic radar scans. Thus, in
practice, this results in greatly simplified environment mod-
els due to the difficulty of meticulously surveying a scene
and generating (or annotating) a model by hand.

We envision a more intelligent, data-driven approach to
scene modeling for radar simulation where a user can carry
a handheld radar sensor through a static environment and
automatically generate a model suitable for accurate simu-
lation of that environment. To this end, we frame the radar
simulation problem as one of novel view synthesis: using
several radar measurements of a scene to simulate what a
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radar would see from a new pose. Such a system would
not only accelerate the development and testing of new al-
gorithms across a variety of environmental conditions, but
also open the door to a myriad of new inference techniques
in radar sensing such as localization, mapping, imaging, and
recognition which rely on accurate forward rendering mod-
els and could greatly benefit from realistic radar models.

Novel View Synthesis Neural Radiance Fields (NeRFs)
[48] have revolutionized novel view synthesis, leading to an
explosion in interest in graphics and beyond. By leverag-
ing a (neural) implicit scene representation instead of ex-
plicitly modeling scene geometry, textures, and materials,
NeRFs are able to capture and reproduce visual intricacies
such as specularity, translucency, reflections, and complex
occlusions. This results in a 3D scene capture and rendering
system that boasts an unprecedented level of photorealism.

Drawing inspiration from the success of NeRFs, we for-
mulate an analogous problem for mmWave radar imaging.
Our method, Doppler-Aided Radar Tomography (DART),
takes a similar approach by implicitly capturing material
properties from input scans which are reproduced when the
model is sampled from a novel viewpoint. Though our
model is implicit, we can also generate an explicit tomo-
graphic image by sampling along a voxel grid, which we
use to show that DART is not simply memorizing the in-
put data, but is in fact learning the geometry and material
properties of the scene (Fig. 1).

Key Challenges Applying NeRF’s implicit scene model-
ing paradigm to the radar domain presents substantial chal-
lenges. We derive a rendering model from the ground up
that appropriately reflects the unique nature of radar wave
propagation. In NeRF, rendering each pixel involves inte-
grating samples along a 1D ray, following a pinhole cam-
era model [48]. However, radar waves propagate radially
from the antenna. Even after range-azimuth-elevation pro-
cessing, each radar pixel corresponds to a coarse 2D re-
gion of space, as the elevation-azimuth resolution of com-
pact mmWave radars tends to be relatively poor2. One key
insight is to choose a radar representation space — range-
Doppler — which greatly reduces angular ambiguity in one
dimension under the assumption that the scene is static
and the radar is moving with a known velocity [26]. This
presents additional systems challenges, as the sensor plat-
form needs to be moving and its velocity must be measured
accurately alongside its position and orientation.

Even with the dimensionality reduction afforded by
range-Doppler processing, rendering a single radar pixel in-
volves integrating samples along a circle, rather than a ray

2For context, these radars have angular resolutions on the order of 15◦,
orders of magnitude worse than cameras (≈0.01◦) [58, 76]

Figure 2. NeRF’s pinhole camera model renders a pixel (left)
by integrating along a ray (right, green), while DART’s range-
Doppler model renders a pixel (middle) by integrating along a
velocity-dependent (right, blue) circle (right, red).

(Fig. 2). However, appropriately capturing occlusion ef-
fects requires that the nearest ranges are processed first due
to occlusion caused by objects closer to the radar. Addi-
tionally, the size of the integration arc grows as the distance
from the radar increases, resulting in an effective decrease
in sampling density for points further from the radar that
needs to be accounted for. Through careful modeling of
these effects and a clever sampling scheme prioritizing sam-
ple re-use, we derive a computationally efficient forward
rendering function that produces realistic novel radar scans.

Contributions We propose DART: Doppler-Aided Radar
Tomography, which implicitly learns a tomographic repre-
sentation of the world in order to accurately synthesize radar
range-Doppler images. To summarize our contributions:
1. We formulate the problem of radar novel view synthesis

from implicit reflectance and transmittance maps using
range-Doppler images.

2. Using a NeRF-inspired technique, we explicitly formu-
late the forward rendering of range-Doppler radar im-
ages and implicitly invert it using gradient descent to
learn a neural-implicit representation.

3. We construct a data collection rig and collect novel radar
imaging datasets with accurate position and instanta-
neous velocity along with reference lidar point clouds.

4. We evaluate DART across a range of scenarios and show
that it out-performs the state-of-the-art, quantitatively
and qualitatively, in both its synthetic radar renderings
and its implicit imaging of scenes.

Limitations Since we rely on Doppler, our method is lim-
ited to static scenes, and requires accurate velocity estimates
and a constantly moving radar. While motion is intrinsic to
our method, we believe that it is reasonable to require move-
ment during scanning. Poor velocity estimates or non-static
scenes can cause DART to perform poorly; we hope to relax
these limitations in the future.

2. Related Work
2.1. Radar Simulation

Model-Based Approaches Model-based methods use a
physics and environment models to simulate the propaga-
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Figure 3. DART tackles radar novel view synthesis by learning a neural implicit map of the world from a trajectory of radar measurements.
We make key radar-specific decisions in choosing (1) a high quality radar representation space — Range-Doppler, (2) a world model
that captures radar interactions — σ and α with spherical harmonics coefficients, (3) a network architecture to model our desired
representation — Instant NGP, and (4) an optimized radar rendering and training methodology — Range-Doppler specific rendering.

tion of radar signals through the environment using some
combination of ray tracing [3, 11, 25, 66, 67], finite el-
ement modeling (FEM) [13, 45], or finite-difference time
domain (FDTD) simulation [16, 19, 75]. While simulators
can replicate complex scene dynamics (e.g. occlusion, path
loss, multipath, non-Lambertian effects), they make no at-
tempt to infer the environment structure from sensor data,
and their accuracy is limited by the user’s ability to create a
radar-realistic model of the environment.

Data-Driven Approaches Data-driven methods use real
sensor scans to build an environment model. Sparse meth-
ods use constant false alarm rate detection (CFAR) to detect
discrete reflectors in the environment [15, 49, 63]. On the
other hand, dense methods divide the environment into an
explicit voxel grid and infer the radar properties of each cell.

Dense methods can be further divided into coherent and
incoherent aggregation. If a fixed (e.g. linear or circu-
lar) trajectory or sub-wavelength-accurate pose estimates
are available, Synthetic Aperture Radar (SAR) can be used
[46, 50, 52, 56, 81, 82]; however, this is impractical for a
mobile platform over large areas. Instead, sensor readings
(with high angular resolution via many antennas or SAR
on smaller pieces of a trajectory) can also be aggregated in
an incoherent manner, which has been referred to as multi-
view 3D reconstruction [33–35] and radargrammetry [12].

2.2. Machine Learning Methods in Radar

Many classical radar problems such as radar super-
resolution [10, 17, 20, 21, 23, 53, 54, 72], odometry [2, 43],
mapping [42], activity recognition [39, 70, 77, 80], and ob-
ject classification [32, 69, 85] have been applied to cheaper,
lighter, and more compact radar systems using machine
learning. We now seek to solve the novel view synthesis
problem from compact, low resolution radars while implic-
itly creating a higher resolution map.

2.3. Neural Radiance Fields

Instead of defining an explicit inverse imaging algorithm
that recovers a representation of the scene from sensor
readings, Neural Radiance Fields [48] implicitly invert a
forward rendering function through stochastic gradient de-
scent. This requires the following components:

1. World model: NeRF defines the world as an RGB color
and transparency for each position and viewing angle;
subsequent works have generalized this to handle anti-
aliasing [5], different cameras, and lighting [47, 73].

2. World representation: Beyond neural networks [48] or
voxel grids [40], more recent works have explored spa-
tial hash tables [51] as well as function decompositions
for view angle dependence [18, 83].

3. Rendering function and Model Inversion: NeRFs
model each pixel as a ray and ray-trace the radiance field.
The invertibility of this rendering function is crucial: by
assuming that each pixel is a ray, the NeRF is “super-
vised” by one RGB image pixel per ray, allowing NeRF
to “solve” for the few opaque points along the ray.

We innovate on these key enablers of NeRFs in order to
apply this approach to mmWave radars. By applying NeRF
techniques to radar, we hope to leverage the extensive body
of neural radiance field literature, while also unlocking the
potential of neural-implicit representations.

Beyond Visual Fields The success of NeRFs has inspired
numerous other efforts to apply the same general princi-
ple to other sensors, including spatial audio [44], imaging
sonar [55, 59], LIDAR simulations [27], and RSSI (Re-
ceived Signal Strength Indicator) mapping [84]. NeRFs
have also been applied to radar [29, 71] for camera-like
high-resolution Synthetic Aperture Radar instead of the
compact and inexpensive radars we explore in this paper.
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3. DART: Doppler-Aided Radar Tomography
While our overall approach is inspired by Neural Radiance
Fields, the physics of radar presents several new challenges.
We make the following key design decisions (Fig. 3):
1. We first choose a radar measurement representation

space — range-Doppler — that overcomes the poor spa-
tial resolution of compact radars (Sec. 3.1, 3.2).

2. We then choose a model to account for radar-specific ef-
fects of electromagnetic wave interaction which are im-
portant for realistic view synthesis such as specularity,
ghost reflections and partial occlusions (Sec. 3.3).

3. Finally, to effectively train and learn neural implicit
maps for radars, we choose a network architecture for
an adaptive grid world representation, design a range-
Doppler rendering method, and propose key rendering
optimizations (Sec. 3.3 — 3.4).

3.1. Range-Doppler Representation

Unlike cameras, radars are active sensors which illuminate
a scene by transmitting a radio frequency waveform. Upon
processing reflections received from objects in the scene,
radars can perceive the world in 3 dimensions — range, az-
imuth, and elevation — as a heatmap indicating the reflec-
tivity of objects at that 3D coordinate [60, 61].

However, while bulky mechanical radars or large solid-
state radar arrays can provide azimuth and elevation resolu-
tion close to typical cameras, modern inexpensive and com-
pact solid-state radars feature small antenna arrays which
make them far inferior in the azimuth and elevation axes
[28]. As a result, these compact radars can only generate
coarse heatmaps (>15◦ resolution) in the azimuth and el-
evation axes, causing each range-azimuth-elevation bin to
point to a coarse region of 3D space which is far less sharp
than a ray from a camera pixel [38, 41, 76].

To achieve better angular resolution, radars can instead
leverage the Doppler effect: objects moving at different
relative velocities to the radar have different Doppler ve-
locities, which can be measured by examining the residual
phase of the range-azimuth-elevation heatmap [79]. Cru-
cially, in a static scene, these relative velocities depend on
not just the relative speed between the radar and the world,
but also the relative azimuth and elevation angle between
objects and the radar, with each Doppler corresponding to a
cone in space [60]. Because of the fine range and Doppler
resolutions, Doppler greatly reduces the ambiguity of each
bin in 3D space down to a thin ring (Fig. 4), which we fur-
ther reduce by making a thinness argument across the range
and Doppler axis in order to simplify integration down to a
circle for radar rendering (Sec. 3.4).

3.2. Radar Pre-Processing

mmWave radars use a waveform called Frequency Modu-
lated Continuous Wave (FMCW), and measure a continu-

Figure 4. Doppler arises due to differences in relative veloc-
ities between points with different relative angles to the radar
(left). Each range value (red) corresponds to a sphere, while each
Doppler value corresponds to a cone (green). The intersection
forms the range-Doppler pixel (see Fig. 2).

ous time signal; we then convert these signals into range-
Doppler-antenna heatmaps. To summarize key points of our
radar processing pipeline (Appendix A.1):
• Undesirable Range-Doppler Side Lobes: A single re-

flective object can create sidelobes that bleed into several
range-Doppler bins and mask off weaker objects [61, 86].
Rather than forcing DART to model this, we use a Hann
weighting window along both range and Doppler axis to
mitigate this effect (Appendix A.1).

• Multiple Antennas: We perform range-Doppler process-
ing on each of the eight transmit-receive (TX/RX) pairs
in our radar. During our rendering process (Sec. 3.4), we
apply the antenna gain and array factor for each TX/RX
pair (Fig. 3), emphasizing 8 sections of the field of view.
While our sense of high-quality azimuth-elevation infor-
mation still stems from leveraging Doppler, this provides
some coarse directional information.

3.3. DART’s World Model

If we had an accurate model of the world and the electro-
magnetic wave interaction for all objects in the world, we
could just apply this model to the region defined by each
range-Doppler pixel to calculate its value. However, due to
the complex nature of real-world scenes and interactions,
both tasks are highly difficult and typically impractical. In-
stead, we model these properties in a data-driven way, rep-
resenting the reflectance and transmittance using a view-
dependent neural network-based approach.

Modeling RF Reflectivity Modeling mmWave material
interactions is one of the most challenging factors of radar
view synthesis. From the perspective of radar, points in
space have two key properties: reflectance (the proportion
of energy that reflects back), and transmittance (the propor-
tion of energy that continues past) [60]. However, millime-
ter waves also interact with objects differently depending
on incidence angles [4]; for example, metal surfaces can be
specular and may be invisible from certain view points. As
such, we model each physical point with a reflectance and
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transmittance value, each of which depend on the incident
angle. We formalize this as

σ : R6 −→ R, α : R6 −→ [0, 1], (1)

which model the reflectance σ and transmittance α as a
function of the position (R3) and incident angle (R3) of an
incoming radar wave, and allows DART to model a wide
range of radar phenomena such as partial occlusions, spec-
ularity, and ghost reflections (Appendix A.2).

World Representation While voxel-based approaches
are highly effective for learning visual radiance fields [18,
83], radar images have a much poorer elevation and azimuth
resolution compared to cameras even after exploiting the
Doppler axis. This magnifies the difference in spatial reso-
lution that σ and α can be resolved for between close and far
ranges. Moreover, unlike cameras, our angular resolution is
variable at all scales — be it at a trajectory level, frame-to-
frame level or even within a frame (Sec. 3.1). Similar to
NeRFs [48], we turn to neural implicit representations as a
means of creating an “adaptive” grid, and base our model
on the Instant Neural Graphics Primitive3 [51].

Unlike most visual NeRFs, we do not provide the inci-
dent angle as an input to the neural network [74]. Instead,
our architecture (visualized in the center block of Fig. 3)
outputs a “base” reflectance σ̄ and transmittance ᾱ, as well
as shared spherical harmonics coefficients [83] which are
applied to the incident angle as an inner product. In addition
to computational advantages, this allows us to directly inter-
pret (σ̄, ᾱ) as spherical integrals of our learned reflectance
and transmittance functions (Appendix A.3).

We also find that the output activation function on σ and
α is critical for numerical stability and performance. Since
σ is unbounded4, we apply a linear activation to σ. Then, to
constrain α ∈ [0, 1], we apply the activation function

f(α) = exp(max(0, α)), (2)

which we pair with a custom gradient estimator to handle
initialization instability (Appendix A.4).

3.4. Radar Rendering and Model Training

We train σ and α using a differentiable mapping which gen-
erates a multi-antenna range-Doppler heatmap from a given
(σ, α) network; we refer to this as radar rendering. Unlike
visual NeRFs, DART must account for a range of physical
effects in addition to occlusion including path attenuation,
antenna gain patterns, and the radar-specific Doppler axis.

3[51] implicitly creates an adaptive world grid by using many spatial
hash tables with geometrically increasing resolutions, and resolves the out-
put with a small neural network; we use the same general architecture.

4σ can be negative; however, since the observed range-Doppler-
antenna heatmaps cannot be negative, σ < 0 will always increase both
train and validation loss, so allowing this does not cause overfitting.

Ray Tracing Consider a single “ray” emitted from a radar
at position x and orientation (rotation matrix) A at an inci-
dence angle w. As the ray travels through space up to the
maximum range of the processed (range, Doppler, antenna)
image, each point x + riw at range ri receives a signal of
amplitude ui, which is attenuated by a factor of ri due to
free space path loss. Each point then reflects a signal of am-
plitude uiσ(ti) back towards the radar, and propagates an
amplitude of uiα(ti) onwards. As reflected signals return to
the radar, the signal loses an additional attenuation factor of
ri, while also suffering from occlusion from ∀j < i : α(tj).

Sampling r1 . . . rNr discretely along the range bins of
the processed heatmap across antennas, the radar return am-
plitude C(i, k,w) for ray w at range bin i and antenna k is

C(i, k,w) = gk(A
−1w)

σ(x+ riw)

r2i

i−1∏
i′=1

α(ti′)
2, (3)

where gk(A−1w) is the antenna beamforming gain antenna
k at angle w (specified relative to the radar orientation A).

Doppler Integration For a given pose with radar po-
sition x, velocity v, and orientation A, we evaluate the
return Y (ri, dj , k) ∈ R at each range-Doppler-antenna
bin (ri, dj , k), synthesizing a view-specific, multi-antenna
range-Doppler heatmap. Since the doppler velocity is mea-
sured as dj = ⟨w,v⟩, we integrate the return C along the
thin ring corresponding to each bin as:

Y (ri, dj , k) ∝
ri

||v||2

∫
⟨w,v⟩=dj , ||w||2=1

C(i, k,w) dw (4)

Note that we need to correct for the varying width of the dis-
crete bins as a function of range and radar speed by dividing
by the speed ||v||2 and multiply by ri (Appendix A.5).

Approximating this integral as a sum overM random di-
rections w1 . . .wM such that ⟨w,v⟩ = dj , we multiply by
an additional factor of ri to correct for the circumference of
the range-Doppler intersection as ri increases. This yields

Y (ri, dj , k) ∝
r2i

M ||v||2

M∑
m=1

C(i, k,wm). (5)

Optimized Rendering As the (σ, α) field function must
be evaluated for every sample, efficient sampling is criti-
cal to computational efficiency. Thus, a naive approach of
treating each (range, Doppler, antenna) “pixel” as an inde-
pendent sample as is standard practice in NeRFs would be
computationally prohibitive, requiring the field to be sam-
pled (range, Doppler, antenna, range integration, Doppler
integration) times to render a single image. As such, we ag-
gressively reuse samples of σ and α by rendering all bins
with the same Doppler simultaneously (Appendix A.6).
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Figure 5. Example (validation) range-Doppler frames and descriptive photos of our method and baselines. DART accurately reproduces
the overall radar image, though it lacks the resolution to resolve smaller weak reflectors. Lidar can model weak reflectors, but cannot
accurately scale them due to a lack of radar-specific information, while Nearest produces radar-realistic but inaccurate images since
exhaustively measuring all possible poses is impractical. Finally, CFAR cannot model transmittance or measure the “volume” of a point.

Training We train our (σ, α) field function using stochas-
tic gradient descent with the Adam [31] optimizer and a l1
(i.e. mean-absolute-error) loss. For details about our train-
ing process and other hyperparameters, see Appendix A.7.

4. Experiments
We constructed a handheld data collection rig with a
mmWave radar and a lidar used for localization5 (Fig. 6;
Appendix B.1). We used this to collect 12 traces ranging
from 5 to 15 minutes long in a diverse set of environments
including a lab space, townhouse, high-rise apartment, and
an early 20th century house (Appendix B.2).

4.1. Baselines

We implement three baselines for radar novel view synthe-
sis and mapping, a model-based approach and two data-
driven approaches (see Sec. 2.1).
• Lidar Scan-Based Simulator: We use lidar scans to cre-

ate an occupancy grid, which we then use in a raytrac-
ing radar simulator (assuming occupied grids have a fixed
constant reflectance and no transmittance, similar to [3]
without material annotations). This baseline represents
the standard practice in radar simulation [3, 13, 66, 75].

• Nearest Neighbor: We implement a naive nearest-
neighbor baseline which finds the training point with the
closest (position, velocity) to the novel viewpoint. While
simple, this has the advantage of using radar data to “sim-
ulate” images compared to our lidar-based simulator [7].

• CFAR Point Cloud Aggregation: CFAR is a commonly
used adaptive algorithm in radar systems to detect target
returns against a background of noise, clutter and interfer-
ence [49]. We use the Matlab Phased Array System Tool-

5Note that while we use lidar to obtain pose estimates using Cartogra-
pher [24], any accurate 3D SLAM system can be used.

Figure 6. Handheld data collection system; see Appendix B.1.

box [1] to detect radar-reflective targets, de-project those
targets into 3D points using Bartlett direction-of-arrival
estimation [6], then reproject the points according to the
novel pose. This approach is similar to our lidar baseline
in that it uses point cloud aggregation, but is better able
to capture radar-specific scene properties.

For additional details on our baselines, see Appendix B.3.

4.2. Metrics

We apply our model to a holdout test set consisting of the
last 20% of each trace. We then compute the SSIM [78] of
the test images and the effective sample size-corrected stan-
dard error (SE) for the mean SSIM; see Appendix B.4. We
also compute the SSIM values of 25/30/35dB-equivalent
Gaussian noise to help quantify our SSIM values.

5. Results
DART synthesizes significantly more accurate radar images
than each baseline on all traces collected, while using min-
imal training. We also demonstrate DART’s ability to sam-
ple tomographic images from its implicit map which are
more dense than CFAR point clouds, and more faithfully
reproduce radar characteristics than lidar scans.
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Figure 7. Comparison of DART (top) with CFAR (middle) and a Lidar occupancy grid for reference. While CFAR struggles with cluttered
scenes and creates point clouds which are both noisy and sparse, DART creates relatively clear maps which capture radar-specific properties
on both ourdoors (Garden) and indoors (Apartment) environments. DART can also image objects with relative clarity (Car), including
resolving objects partially occluded by radar-transparent surfaces (Tent — Occupied/Empty).

Training Time We train DART for 3 epochs on each
dataset using a RTX 4090 GPU, taking between 1-2× the
data collection time (≈ 10 minutes) of each dataset6; this
indicates the potential of real-time training with future al-
gorithmic and computing hardware improvements.

Ablations Each part of DART’s design significantly im-
proves its accuracy, including view dependence using
spherical harmonics and our dynamic grid representation
(Tab. 1). For additional ablations, see Appendix C.1.

6Training time is not directly proportional to the dataset length: since
Doppler bins are not observed when the radar speed is less than the Doppler
velocity of that bin, we omit these bins, decreasing the training time. See
Appendix B.2 for the length and training time of each dataset.

5.1. Comparison with Baselines

DART synthesizes far more accurate radar images than each
baseline on all traces in our dataset (Appendix C.2), with the
Lidar-based simulator and Nearest Neighbor baselines per-
forming the worst, and CFAR-based simulation in between.
DART is also significantly better than each baseline when
evaluated as a whole (Tab. 1).

To understand the performance differences between
DART and each baseline, we selected two example range-
Doppler images from our dataset (Fig. 5):
• Lidar-based simulation (Lidar) can accurately identify re-

flector positions, but cannot correctly scale their radar re-
turn due to the lack of radar-specific material properties.

• Nearest-Neighbor (Nearest) approaches can, by defini-
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Method Mean SSIM SSIM Improvement

DART 0.636 ± 0.012 —
Lidar 0.463 ± 0.005 0.174 ± 0.013
Nearest 0.468 ± 0.006 0.168 ± 0.012
CFAR 0.545 ± 0.007 0.091 ± 0.006
No View Dep. 0.614 ± 0.015 0.022 ± 0.005
20cm Grid 0.591 ± 0.015 0.046 ± 0.004

Table 1. Mean SSIM and SSIM improvement of DART over
each baseline (and select ablations) across our dataset along with
95% confidence intervals; see Appendix C.2 for a breakdown by
dataset.

tion, generate radar-realistic images. However, measur-
ing all possible (position, orientation, velocity) poses is
impractical, leading to “misplaced” images which do not
vary continuously over different poses.

• Constant False Alarm Rate (CFAR) is commonly used
to generate point clouds from radar images. Compared to
lidar point clouds, CFAR point clouds are sparse and low-
resolution, but capture radar specific properties not mea-
sured in lidar. However, CFAR cannot provide any notion
of the size of each point or its transmittance, which re-
quires the point or grid size to be manually tuned, leading
to either excessively sparse or blurry images.

DART therefore achieves its efficacy by using a domain-
appropriate sensor and carefully selecting a representation
which allows it to use all available sensor information.

5.2. Tomography and Mapping

While DART is not designed primarily as an explicit to-
mography or mapping tool, we can sample the implicit rep-
resentation7 to create a (σ, α) reflectance and transmittance
grid. This also allows us to verify that DART truly learns the
mmWave properties of a scene (and does not simply mem-
orize and interpolate the training data).

Material Properties Example We created an evaluation
scene with 5 different boxes. DART is able to learn the
unique reflectance and transmittance properties of each ma-
terials, which we visualize through tomographic reflectance
and transmittance maps (Fig. 8). For additional examples
from our datasets, see Appendix C.3.

Comparison with Baselines In addition to creating more
accurate radar simulations, DART can also produce more
accurate and dense maps than CFAR. Fig. 7 shows sev-
eral examples comparing tomographic maps of reflectance
learned by DART with corresponding slices of the point
cloud generated by CFAR. While not as sharp as lidar scans,

7To address view dependence, we analytically take the spherical inte-
gral of σ and α at each point; see Appendix A.3 for details.

Reflectance

(1) (2)

(5)

(4)

(3)

Transmittance

(1) (2)

(5)

(4)

(3)
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Figure 8. Tomographic images of 5 boxes made from different
materials: (1) a metal filing cabinet which appears less reflective
(due to specularity), but blocks radar waves; (2) an empty box
which reflects radar waves but does not block them; (3) a stack
of boxes containing electronics equipment which both reflect and
block radar waves; (4) a highly reflective metal mesh with large
holes that allow radar to penetrate it; and (5) a different empty box
which neither reflects nor blocks radar waves.

DART produces reasonably clear maps which capture the
radar-specific properties of each scene.

6. Conclusion
We present DART: Doppler Aided Radar Tomography, a
NeRF-inspired radar novel view synthesis algorithm which
learns an implicit tomographic map from range-Doppler
images, and demonstrate its effectiveness against state-of-
the-art baselines. We derive a physics-based rendering
model for radar from first principles, and construct an end-
to-end system for learning an implicit scene representation
and generate realistic novel radar views. While DART pro-
vides a strong baseline for future work, many opportunities
remain to apply lessons learned from visual NeRFs; given
the rapid pace of innovation in NeRF, these opportunities
will likely multiply in the coming years. We also currently
make a number of assumptions – such as a static scene and
the availability of accurate ground-truth pose – which could
be relaxed as has been done with visual NeRFs, enabling
a single-chip radar solution for localization, mapping, and
imaging. Finally, as we add mmWave radar to the repertoire
of NeRF-enabled sensing technologies, this furthers the po-
tential for multimodal implicit mapping in the future.
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