
FedMef: Towards Memory-efficient Federated Dynamic Pruning

Hong Huang1 Weiming Zhuang2 Chen Chen2 Lingjuan Lyu2*

1City University of Hong Kong 2 Sony AI
hohuang@cityu.edu.hk {weiming.zhuang, chena.chen, lingjuan.lv}@sony.com

Abstract

Federated learning (FL) promotes decentralized training
while prioritizing data confidentiality. However, its applica-
tion on resource-constrained devices is challenging due to
the high demand for computation and memory resources to
train deep learning models. Neural network pruning tech-
niques, such as dynamic pruning, could enhance model effi-
ciency, but directly adopting them in FL still poses substan-
tial challenges, including post-pruning performance degra-
dation, high activation memory usage, etc. To address
these challenges, we propose FedMef, a novel and memory-
efficient federated dynamic pruning framework. FedMef
comprises two key components. First, we introduce the
budget-aware extrusion that maintains pruning efficiency
while preserving post-pruning performance by salvaging
crucial information from parameters marked for pruning
within a given budget. Second, we propose scaled activa-
tion pruning to effectively reduce activation memory foot-
prints, which is particularly beneficial for deploying FL
to memory-limited devices. Extensive experiments demon-
strate the effectiveness of our proposed FedMef. In partic-
ular, it achieves a significant reduction of 28.5% in mem-
ory footprint compared to state-of-the-art methods while
obtaining superior accuracy.

1. Introduction

Federated learning (FL) has emerged as an important
paradigm for the training of machine learning models across
decentralized clients while preserving the confidentiality of
local data [27, 31, 51]. In particular, cross-device FL, as
described in [21], places emphasis on scenarios where FL
clients predominantly consist of edge devices with resource
constraints. Cross-device FL has gained significant atten-
tion in academic research and industry applications, fuel-
ing a wide range of applications, including Google Key-
board [15, 25], Apple Speech Recognition [38], etc. Despite
its success, the resource-intensive nature of training mod-

*corresponding author

els, which includes high computational and memory costs,
poses challenges for the deployment of cross-device FL on
resource-constrained devices.

Neural network pruning [14, 19, 33, 43] is a potential so-
lution to improve the efficiency of the model and reduce the
high demand for resources. However, a closer inspection of
some previous work on the application of neural network
pruning to FL [26, 29, 37, 41] reveals a potential pitfall:
They often rely on initial training of dense models, similar
to centralized pruning methodologies [14, 33, 43]. These
federated pruning methods are not suitable for cross-device
FL because the training of dense models still requires high
computation and memory costs on resource-constrained de-
vices.

To address these challenges, recent research has shifted
to federated dynamic pruning [3, 17, 20, 39]. These frame-
works derive specialized pruned models by iterative adjust-
ment of sparse on-device models. Devices start with a ran-
domly pruned model, followed by traditional FL training,
and periodically adjust the sparse model structure through
pruning and growing operations [11]. Through iterative
training and adjustments, devices can develop specialized
pruned models bypassing the need to train dense models,
which reduces both computational and memory demands.

However, existing federated dynamic pruning frame-
works [3, 17, 20, 39] face two issues: significant post-
pruning accuracy degradation and substantial activation
memory usage. First, these frameworks cause a significant
decline in accuracy after magnitude pruning because they
hastily eliminate low-magnitude parameters, regardless of
the substantial information they may contain. Such incau-
tious parameter pruning often results in the model’s inabil-
ity to regain its previous accuracy before the subsequent
pruning iteration, ultimately leading to suboptimal end-of-
training performance. Second, these frameworks fail to re-
duce the memory footprint of activation. For certain widely
adopted models for edge deployment, like MobileNet [40],
a significant portion of the total memory footprints is al-
located to activation. However, current federated dynamic
pruning methods focus primarily on reducing the model
size, overlooking optimization for activation memory.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

27548

4. Training w/
BaE and SAP

5. Aggregation

6. Pruning
& Growing

W/o BaE

W/ BaE

Ac
cu

ra
cy

-16.6%

-1.45%

Before
Pruning

After
Pruning

2. Training w/ SAP

Training Round ×	Δ𝑅 Times

Pruned
Parameters

Aggregated
Parameters

3. Aggregation

Full-Size
Parameters

Adjustment Round

Adjusted
Parameters

1. Random
Pruning

Pruned
Parameter
Magnitude

0

Server
Device

Trained
Parameters

70.1MB

233.1MB

W/o SAP W/ SAP

Ac
tiv

at
io

n
M

em
or

y Trained
Parameters

Trained
Parameters

BaE transfers info from low-
magnitude parameters to
others, making them close to 0.

SAP reduces the activation
memory during training.

Figure 1. Overview of FedMef for the memory-efficient dynamic pruning in federated learning. FedMef proposes budget-aware extrusion
(BaE) to preserve post-pruning accuracy by transferring essential information from low-magnitude parameters to the others, making them
close to 0, and introducing scaled activation pruning (SAP) to reduce memory usage. In FedMef, the server distributes a randomly pruned
model to devices for collaborative training with SAP. After multiple training rounds, devices employ BaE for information transfer. The
server adjusts the model structure through magnitude pruning and growing. The newly activated parameters are initialized as 0.

Batch N
orm

Conv

Dense Cache
Caching

N
SConv

Sparse Cache

Pruning

Caching

Forward
Backward

Baseline Scaled Activation Pruning

Figure 2. The illustration of training pipeline in baseline and
the proposed scaled activation pruning method. During the for-
ward pass, the scaled activation pruning generates near-zero acti-
vation via the Normalized Sparse Convolution (NSConv). Then,
the dense activation caches are pruned based on magnitude. Dur-
ing the backward pass, these pruned caches are used to compute
the gradients. Scaled activation pruning significantly saves acti-
vation memory footprints by more than 3 times in the CIFAR-10
dataset with the MobileNetV2 model.

In this work, we introduce FedMef, an Federated
Memory-effcient dynamic pruning framework that adeptly
addresses all the aforementioned challenges. Figure 1 il-
lustrates the workflow of FedMef and highlights our two
new proposed components. First, FedMef presents budget-
aware extrusion (BaE) to address the challenge of post-
pruning accuracy degradation. Rather than simply discard-
ing low-magnitude parameters, our method salvages essen-
tial information from these potential pruning candidates by
transferring it to other parameters through a surrogate loss
function within a preset budget. Second, FedMef proposes
scaled activation pruning (SAP) to address the problem of
high activation memory. This method performs activation
pruning during the training process to dramatically reduce
the memory footprints of the activation caches, as illustrated
in Figure 2. To enhance the efficacy of SAP, especially for
devices with severe memory constraints, we are inspired

by recent methods that remove batch normalization (BN)
layers [4, 46] and replace convolution layers with Normal-
ized Sparse Convolution (NSConv). NSConv can normalize
most of the activation elements to be or close to zero. This
reduces the disparity between original and sparse activation,
mitigating the degradation of accuracy in SAP.

We conducted extensive experiments on three datasets:
CIFAR-10 [22], CINIC-10 [9], and TinyImageNet [23], us-
ing ResNet18 [16] and MobileNetV2 [40] models. Ex-
tensive experimental results suggest that FedMef outper-
forms the state-of-the-art (SOTA) methods on all datasets
and models. In addition, FedMef requires fewer memory
footprints than SOTA methods. For example, FedMef sig-
nificantly reduces the memory footprint of MobileNetV2 by
28.5% while improving the accuracy by more than 2%.

2. Related Work
2.1. Neural Network Pruning

Neural network pruning, which emerged in the late 1980s,
aims to reduce redundant parameters in deep neural net-
works (DNNs). Traditional techniques focus on achieving
a trade-off between accuracy and sparsity during inference.
This typically involves assessing the importance of param-
eters in a pre-trained DNN and discarding those with lower
scores. Various methods are employed to determine these
scores, such as weight magnitude [14, 19] and Taylor ex-
pansion of the loss functions [24, 34, 36]. However, these
methods need to train a dense model first, which increases
both computational and memory costs.

Modern pruning has shifted its focus towards enhanc-
ing the efficiency of DNN training processes. For exam-
ple, dynamic sparse training [10, 11, 32], actively adjusts
the architecture of the pruned model throughout the train-

27549

ing while maintaining desired sparsity levels. Neverthe-
less, these methods only simply prune low-magnitude pa-
rameters while neglecting the memory consumption of the
activation caches, resulting in decreased accuracy and sub-
optimal memory optimization.

2.2. Federated Neural Network Pruning

Federated learning has recently emerged as a promising
technique to navigate data privacy challenges in collabo-
rative machine learning [31, 48–50]. However, numerous
previous federated pruning efforts [26, 29, 37, 41] have
encountered setbacks because they rely on the training of
dense models on devices, which require high computation
and memory. Thus, they are not suitable for cross-device FL
[21], where clients are devices with resource constraints.

Recent studies [3, 17, 20, 39] introduce on-device prun-
ing via the dynamic sparse training technique [10, 11, 32].
For example, ZeroFL [39] divides the weights into active
and non-active weights for inference and sparsified weights
and activation for backward propagation. FedDST [3] and
FedTiny [17], inspired by RigL [11], perform pruning and
growing on devices, with the server generating a new global
model through sparse aggregation. However, these methods
are unable to reduce the memory footprints of the activation
cache and suffer from significant accuracy degradation af-
ter pruning, since they directly prune parameters that may
contain important information.

Therefore, all existing federated neural network pruning
works fail in creating a specialized pruned model that can
concurrently satisfy both accuracy and memory constraints.
To the best of our knowledge, FedMef is the first work that
can simultaneously address both issues.

2.3. Activation Cache Compression

High-resolution activation tensors are a primary mem-
ory burden for modern deep neural networks. Gradient
checkpoint [8, 12, 13], which stores specific layer ten-
sors and recalculates others during the backward pass, of-
fers a memory-saving solution, but at a high computational
cost. Alternatively, adaptive precision quantization meth-
ods [5, 30, 44] compress activation caches through quanti-
zation but introduce time overhead from dynamic bit-width
adjustments and dequantization. The activation pruning
(sparsification) method [7], which sparsifies the activation
caches, is lighter than other methods but relies heavily on
batch normalization (BN) layers to guarantee that most of
the elements in activation are zero or near zero. Relying on
BN layers would be problematic to train with small batches
and non-independent and identically distributed (non-i.i.d.)
data [28, 46, 47]. As a result, current activation pruning
methods are unsuitable for resource-constrained devices in
FL. To address these challenges, our proposed FedMef uti-
lizes scaled activation pruning, effectively compressing ac-

tivation caches without relying on BN layers.

3. Methodology
This section first introduces the problem setup and then out-
lines the design principles of our proposed FedMef. We
then introduce two key components in FedMef: budget-
aware extrusion and scaled activation pruning.

3.1. Problem Setup

In the cross-device FL scenario, numerous resource-
constrained devices collaboratively train better models
without direct data sharing [21]. In this setting, K de-
vices, each with memory and computational constraints, co-
operate to train the model with parameters θ. Every de-
vice possesses a distinct local dataset, denoted as Dk, k ∈
{1, 2, . . . ,K}. The structure of the pruned model is rep-
resented using a mask, m ∈ {0, 1}|θ|, and θ ⊙ m denotes
the sparse parameters of the pruned model. Our objective
is to derive a specialized sparse model with mask m, us-
ing the local dataset Dk, to optimize prediction accuracy
in FL. During training, the sparsity levels of the mask sm
and the activation caches sa must be higher than the target
sparsity (stm and sta), which is determined by the memory
constraints of the devices. Thus, our optimization challenge
is to solve the following problem:

min
θ,m

L(θ,m) :=

K∑
k=1

pkLk(θ,m,Dk),

s.t. sm ≥ stm, sa ≥ sta,

(1)

where Lk is the loss function of the k-th device (e.g., cross-
entropy loss), and pk represents the weight of k-th device
during model aggregation in the server. Before communi-
cating with the server, each device trains its local model for
E local epochs.

3.2. Design Principles

To ascertain that specialized sparse models can be devel-
oped on resource-constrained devices while maintaining
privacy, the prevailing trend is to leverage federated dy-
namic pruning. However, contemporary methods [3, 17, 20,
39] face two pressing issues: significant post-pruning ac-
curacy degradation and high activation memory usage. As
illustrated in Figure 1, our framework, FedMef, introduces
two solutions to these challenges: budget-aware extrusion
and scaled activation pruning.

In the FedMef framework, the server starts by distribut-
ing a randomly pruned model to the devices. Subsequently,
these devices collaboratively engage in training sparse mod-
els using scaled activation pruning. During this phase, the
activation cache is pruned during the forward pass, effec-
tively optimizing memory utilization, as illustrated in Fig-
ure 2. After several iterative training rounds, the devices

27550

employ the budget-aware extrusion technique to transfer vi-
tal information from low-magnitude parameters to others.
Subsequently, the server adjusts the model structure through
magnitude pruning and gradient-magnitude-based growing.
Due to the information transfer facilitated by budget-aware
extrusion, the post-pruning accuracy degradation is slight.
Finally, the framework continues with the training and ad-
justment of the sparse model until convergence.

Specifically, budget-aware extrusion achieves informa-
tion transfer by employing a surrogate loss function with
L1 regularization of low-magnitude parameters. This pro-
cess not only suppresses their magnitude but also transfers
their information to alternate parameters. Additionally, the
devices set up a budget-aware schedule to speed up the ex-
trusion. In the scaled activation pruning, after each layer’s
forward pass, the activation caches are pruned to reduce
memory usage. During the backward pass, the sparse ac-
tivation caches are used directly. To ensure that the pruned
elements are zero or nearly zero, even when training with
small batch size, we adopt the Normalized Sparse Con-
volution (NSConv) to reparameterize the convolution lay-
ers instead of using batch normalization layers. Next, we
delve into in-depth discussions of budget-aware extrusion
and scaled activation pruning techniques.

3.3. Budget-aware Extrusion

It is essential to address the information loss that occurs
during pruning, as the parameters to be pruned often retain
valuable information. Direct pruning can cause a substan-
tial accuracy drop, demanding considerable resources for
recovery, as illustrated in Figure 1. This issue may become
even more pronounced in federated contexts due to the het-
erogeneous data distribution across devices, potentially am-
plifying the negative impact on model performance during
training.

To address this challenge, we take inspiration from the
Dual Lottery Ticket Hypothesis (DLTH) [2]. The DLTH
suggests that a randomly selected subnetwork can be trans-
formed into one that achieves better, or at least compara-
ble, performance to benchmarks. Building on this premise,
we introduce budget-aware extrusion within our FedMef
framework, which can extrude the information from the pa-
rameters to be pruned to other surviving parameters. Af-
ter sufficient extrusion, the parameters designated for prun-
ing retain only marginal influence on the network, ensuring
minimal information and accuracy loss during pruning.

In alignment with the findings of the DLTH [2], we em-
ploy a regularization term to execute this information extru-
sion. Given the parameters θ and its associated maskm, the
extrusion process on the k-th device can be realized through
the surrogate loss function Ls

k:

Ls
k = Lk(θ,m,Dk) + λ||θlow||22, (2)

where λ is constant and θlow represents the parameters ear-
marked for pruning, which is the subset of unpruned param-
eters θ ⊙m with the lowest weight magnitudes.

The inherent constraints associated with edge device
training resources require that information extrusion should
be executed within a limited budget before the pruning pro-
cess. However, adhering to the original learning schedule
represented by η is sub-optimal, as in the later epochs of
training, the learning rate following traditional decay mech-
anisms becomes significantly small, impeding the informa-
tion extrusion process. To address this issue, we introduce
a budget-aware schedule in the context of budget-aware
extrusion. Our proposed budget-aware schedule is con-
structed to accelerate the extrusion process, especially when
the original learning rate is insufficient for rapid extrusion.
We have adopted one of the SOTA budgeted schedules, the
REX schedule [6], whose learning rate in the t-th step is
represented as βt = p(t)η0, where η0 represents the ini-
tial learning rate in the original learning schedule and p(t)
is the REX schedule factor. However, the REX schedule
does not take into account the status of the extrusion pro-
cess, often resulting in an excessively high learning rate.
Therefore, we introduce a scaling term that ranges from 0
to 1, 2σ(||θlow||)−1 to moderate the budgeted learning rate
based on the extrusion status, which is represented by the
magnitude of the marked parameters. Given Tbudget as the
training budget, our proposed budget-aware learning rate βt
at t-th step is mathematically defined as:

βt = p(t)(2σ(||θlow||)− 1)η0, (3)

where the REX schedule factor p(t) is defined by p(t) =
2Tbudget−2t
2Tbudget−t . The main objective behind introducing this

factor is to effectively adjust the learning rate based on the
relative progression of the training and the preset training
budget. During the information extrusion process, the
learning rate µt is formulated as follows:

µt = max(ηt, βt), (4)

where ηt is the learning rate in the original schedule. The
budget-aware schedule ensures efficient and timely infor-
mation extrusion by adjusting an adequate learning rate
even in the later stages of training. During the normal train-
ing stage, the learning rate is µt = ηt.

In particular, upon receiving the pruned model from the
server, the devices mark the parameters θlow that have the
lowest weight magnitude. Then, the devices perform sev-
eral epochs of budget-aware extrusion with the surrogate
loss Ls

k in Equation 2. The learning rate for this phase is
dynamic and is governed by the function presented in Equa-
tion 4. After the extrusion phase, each device calculates
the Top-K gradients across all pruned parameters and up-
loads the gradients along with the parameters to the server,

27551

1 0 1
output value

0

500

1000

1500

2000

Co
un

t
BatchNorm

1 0 1
output value

0

500

1000

1500

2000

NSConv

1 0 1
output value

0

500

1000

1500
w/o Norm

Figure 3. Distribution of output from a convolution layer in ResNet18 using batch normalization layers (BatchNorm), without normalization
layers (w/o Norm), and with our proposed Normalized Sparse Convolution (NSConv). The output experiences an internal covariate shift
when training without normalization layers, whereas NSConv effectively mitigates this issue. Figure 8 in the appendix shows the output
distribution for all convolution layers in the ResNet18 model.

as indicated in [17]. The server then aggregates the sparse
parameters and gradients to obtain the average parameters
and average gradients. Finally, the server prunes the marked
parameters θlow and grows the same number of parameters
with the largest averaged gradient magnitude.

According to the pruning and growing process, the
server creates a global model with a new structure and then
FedMef begins to train the new global model. FedMef pe-
riodically performs adjustments and training to deliver an
optimal sparse neural network suitable for all devices. The
pseudo code can be viewed in Algorithm 1 in the appendix.

3.4. Scaled Activation Pruning

In cross-device FL, where devices may have extremely lim-
ited memory, small batch sizes are often employed during
training. This diminishes the effectiveness of batch normal-
ization (BN) layers in such a scenario. However, current ac-
tivation cache compression techniques, such as DropIT [7],
are limited in their ability to conduct training without BN
layers. To address this issue, we propose a scaled activation
pruning technique that achieves superior performance even
with small batch sizes, as illustrated in Figure 2.

Given a CNN model with ReLU-Conv ordering, in the
l-th convolution layer, the sparse filters are represented as
θl ∈ Rks×ks×cin×cout , where ks denotes the kernel size;
cin and cout denote the number of input and output chan-
nels, respectively. For an input value al−1, the convolution
operation in the l-th layer that yields the output value al is:

al = Conv(θl, f(al−1)), (5)

where f(·) is any activation function such as ReLU [1].
Note that al−1 is not only an input of l layer but also the
output of the l − 1-th layer. During the forward pass, the
activation f(al−1) must be retained in memory to compute
the gradients of the filters θl during the backward pass. Sim-
ilarly, for each layer, the activation f(al) must be stored for
later usage, which causes substantial memory footprints.

The activation pruning approach, DropIT [7], prunes
f(al) in the forward pass. It then uses sparse activation
S(f(al)) for gradient computation in the backward pass.
This approach requires that the input al be centered around
zero. This centering ensures a minimized disparity between
the sparse activation S(f(al)) and its original counterpart
f(al). However, this zero-centered requirement becomes
unattainable when the efficacy of the batch normalization
layer decreases. This ineffectiveness arises from internal
covariate shift issues [4, 18]. Figure 3 shows the mean shift
in activation within a ResNet18 model without a normal-
ization layer, resulting in a non-zero mean in the activation
distribution. The mathematical details of this effect can be
found in Appendix 6.1.

To reduce the disparity between the original and pruned
activation, inspired by the recent methods that remove BN
layers [4, 46], we introduce Normalized Sparse Convolution
(NSConv) into activation pruning. Our primary objective is
to ensure that the output of the convolution layer is consis-
tently centered around zero, i.e., the mean value is zero.
The convolution operation of NSConv at the l-th layer is
given by:

al = Conv(θ̂l, f(al−1)), (6)

where θ̂l represents the sparse normalized filters with filter-
wise weight standardization. The filter-wise standardiza-
tion formula of the i-th sparse filter, denoted by θ̂li ∈
Rks×ks×cin , is given by:

θ̂li = γ
√
cin

θli ⊙ml
i − µθ

σθ
, (7)

where θli ∈ Rks×ks×cin specifies the i-th filter of the origi-
nal filters, γ is a constant, andml

i denotes the corresponding
mask for the sparse filter θli. The terms µθ and σθ repre-
sent the mean and standardization value of the sparse filter
θli, excluding the pruned parameters whose corresponding
mask is 0.

27552

Theorem 1 Given a CNN model structured in a ReLU-
Conv sequence and l-th convolution layer performing op-
erations as depicted by the forward pass in Equation 6 and
NSConv in Equation 7, for the i-th channel of the activa-
tion value, f(al−1

i), with its mean and variance denoted as
µf , σ

2
f , the mean and variance for the i-th channel of the

output value, ali, will be:

E[ali] = 0, Var[ali] = γ2(σ2
f + µ2

f). (8)

Theorem 1 reveals insights into the capabilities of scaled
activation pruning. Specifically, it highlights its efficacy in
addressing the disparity between sparse and original activa-
tion in CNNs without BN layers. A key factor in its effec-
tiveness is NSConv’s ability to normalize the output of each
convolution layer, centering it around zero, as shown in Fig-
ure 3. By adjusting the hyperparameter γ, we can control
the variance of the distribution, causing a large portion of
the activation elements to be either zero or close to it. The
proof of Theorem 1 can be found in Appendix 6.2.

Incorporating NSConv into scaled activation pruning
brings several additional advantages: First, NSConv ig-
nores pruned parameters, focusing solely on the remaining
ones. This translates to minimal computational overhead
and maintains the sparsity of the normalized parameters.
Second, NSConv is suitable for training with small batch
sizes because there are no inter-dependencies between batch
elements. Lastly, NSConv ensures uniformity between the
training and testing phases.

4. Evaluation
In this section, we dive into an in-depth evaluation of our
framework, FedMef. We compare it against SOTA frame-
works, demonstrating its effectiveness in various testing
conditions. In addition, an ablation study reveals the com-
ponents that make our proposed framework effective.

4.1. Experimental Setup

We assess the effectiveness of FedMef in image recogni-
tion tasks using three datasets: CIFAR-10 [22], CINIC-
10 [9], and TinyImageNet [23]. Notably, the choice of these
datasets is motivated by the imperative of ensuring a fair
comparison, given that existing federated dynamic pruning
frameworks [3, 17, 20, 39] focus on simple datasets. We
employ the ResNet18 [16] and MobileNetV2 [40] models
for evaluation. We conduct experiments on a landscape of
100 devices. The datasets are divided into heterogeneous
partitions via a Dirichlet distribution characterized by a fac-
tor of α = 0.5. We train the models for R = 500 federated
learning rounds, where each round is composed of E = 10
local epochs. We set the training batch size as 64 by default.
The target parameters sparsity and target activation sparsity

are set to stm = 0.9, sta = 0.9 by default. The initial learn-
ing rate is set as η0 = 1 with an exponential decay rate of
0.95. We conduct each experiment five times and report the
average result and standard deviation.

We compare our proposed FedMef with FL-PQSU [45],
FedDST [3], and FedTiny [17]. FL-PQSU is a static prun-
ing method, which employs an initialized pruning based on
the L1 norm on the server prior to training. It can be con-
sidered as the lower bound of our method. FedDST and
FedTiny are SOTA federated dynamic pruning frameworks.
Both of them start with an initial pruned model, subse-
quently employing mask adjustments to adjust the model
architecture. The key distinction among these methods lies
in their locus of model structure adjustments. FedTiny cen-
tralizes this on the server, whereas FedDST decentralizes
it to the devices. Certain federated pruning frameworks,
such as ZeroFL [39] and PruneFL [20], which are memory-
intensive to process dense models, are consciously excluded
from our comparison.

In the FedDST, FedTiny, and FedMef frameworks, the
adjustment of the model structure is applied after ∆R = 10
training rounds. Upon reaching Rstop = 300 rounds,
the framework suspends further adjustment, continuing its
training until reaching R = 500 rounds. The pruning num-
ber for each layer is set to 0.2(1 + cos tπ

RstopE
)n in the t -th

iteration, where n is the number of unpruned parameters in
the l-th layer. Due to FedDST [3] necessitating a series of
on-device training epochs for fine-tuning after adjustment,
after 5 epochs of local training, we let FedDST adjust the
model structure and then proceed with 5 training epochs.
FedTiny’s [17] adaptive batch normalization module is am-
putated from our experiments, as its memory overhead ren-
ders it infeasible for our device constraints.

4.2. Performance Evaluation

To demonstrate the effectiveness of FedMef, we compare
it with other frameworks on the CIFAR-10, CINIC-10, and
TinyImageNet datasets using ResNet18 and MobileNetV2.
A holistic comparison is illustrated in Figure 4. The target
sparsity of the parameters is set to stm ∈ {0.95, 0.9, 0.8}.
Remarkably, FedMef outperforms all baseline frameworks
in terms of accuracy and memory efficiency. For instance,
FedMef achieves an accuracy improvement of 2.13% on
the CIFAR-10 dataset with the MobileNetV2 model, while
saving 28.5% memory usage compared to the best baseline
framework, FedTiny. Such advances in accuracy can be at-
tributed to budget-aware extrusion, while scaled activation
pruning primarily augments memory conservation.

An obvious trend is the superior accuracy benchmarks
set by ResNet18 over MobileNetV2 in all datasets. The de-
sign of MobileNetV2 is tailored to large-scale image classi-
fication, which may make it less suitable for relatively small
datasets. A noteworthy observation is that FedTiny gener-

27553

0.30 0.35 0.40

0.70

0.75

0.80

M
ea

n
Ac

cu
ra

cy
CIFAR-10

0.30 0.35 0.40

0.60

0.65

CINIC-10

0.50 0.55 0.60 0.65
0.12

0.14

0.16

0.18

TinyImageNet

0.6 0.7 0.8
Memory Footprint Ratio

0.50

0.55

0.60

0.65

M
ea

n
Ac

cu
ra

cy

0.6 0.7 0.8
Memory Footprint Ratio

0.425

0.450

0.475

0.500

0.525

0.6 0.7 0.8 0.9
Memory Footprint Ratio

0.04

0.06

0.08

ResNet18
M

obileNetV2

FL-PQSU FedDST FedTiny FedMef

Figure 4. Comparison of accuracy and memory footprint of our proposed FedMef with the existing federated pruning methods on three
datasets. The black dashed line marks the accuracy of training a full-size model (without pruning) in FedAvg. The memory footprint ratio
is the memory footprint relative to training a full-size model in FedAvg.

ally outperforms other baseline methods within comparable
memory footprints. Given this empirical trend, ResNet18
is chosen as the default model and FedTiny serves as the
primary reference for subsequent experiments.

Computational and Communication Cost. While Fed-
Mef exhibits superior performance compared to various
baseline frameworks with relatively low memory footprints,
it is imperative to conduct a comprehensive analysis of
the computational and communication costs inherent in the
FedMef framework. To illustrate the computational and
communication costs, we evaluated FedMef on the CIFAR-
10 dataset using the ResNet18 model. The results, pre-
sented in Table 1, elucidate that FedMef induces marginal
communication and computational overhead. For example,
with a target density of stm = 90%, FedMef introduces
only a mere computational overhead of 0.003× and a com-
munication overhead of 0.005×, while improving the ac-
curacy by 2% compared to other baselines. The detailed
analysis for the training cost is shown in Appendix 7.

Training with Small Batch Size. Under strict memory
constraints, training requires a smaller batch size. However,
this compromises statistical robustness and often hinders
the effectiveness of batch normalization. To address this is-
sue, we propose scaled activation pruning. The evaluations
conducted on the CIFAR-10 dataset with ResNet18, where
the batch size is set to 1, as shown in Figure 5 (left), demon-
strate that FedMef outperforms all baseline methodologies.

stm Framework
Mean

Accuracy
Training
FLOPs

Data
Exchange

0 FedAVG 81.2%
1×

(8.33e12)
1×

(89.52MB)

95%
FedDST 72.8% 0.057× 0.083×
FedTiny 71.8% 0.057× 0.086×
FedMef 73.6% 0.061× 0.086×

90%
FedDST 76.2% 0.113× 0.133×
FedTiny 76.1% 0.113× 0.138×
FedMef 78.1% 0.116× 0.138×

80%
FedDST 79.7% 0.218× 0.232×
FedTiny 80.3% 0.218× 0.243×
FedMef 81.7% 0.221× 0.243×

Table 1. Accuracy and training cost of proposed FedMef and other
baseline framework. We report the maximum FLOPs for training
(Training FLOPs) and the maximum data exchange for communi-
cation (Data Exchange). All cost measurements are for one device
in one adjustment round.

The significant improvement in accuracy is mainly due to
the use of NSConv in scaled activation pruning, which is
further demonstrated in the appendix 6.3.

The Impact of Adjustment Period. After model struc-
ture adjustment, it is necessary to restore accuracy loss
through several training rounds. Therefore, the adjustment
period should be longer. Unfortunately, given the computa-
tional constraints of certain devices, there is an urgent need

27554

0.2 0.3 0.4 0.5 0.6
Memory Footprint Ratio

0.60

0.65

0.70

0.75

0.80

M
ea

n
Ac

cu
ra

cy

FL-PQSU
FedDST

FedTiny
FedMef

IID 5 2 1 0.5 0.3
degrees of Heterogeneity:

0.75

0.80

0.85

M
ea

n
Ac

cu
ra

cy

FedAvg
FedTiny
FedMef

0.80 0.85 0.90 0.95
Target Parameter Sparsity

0.65

0.70

0.75

0.80

M
ea

n
Ac

cu
ra

cy

FedMef w/o BaE
FedMef w/o SAP
FedMef

Figure 5. FedMef’s average accuracy and standard deviation are compared against: (left) various federated pruning frameworks when the
training batch size is 1, where the black dashed line represents the accuracy of FedAvg framework; (middle) FedAvg and FedTiny across
varying degrees of data heterogeneity; (right) modified versions of FedMef - one excluding BaE (similar to FedTiny’s approach) and the
other without SAP (omitting NSConv).

∆R FedTiny FedMef
3 55.09%(1.82%) 61.94%(0.49%)
5 58.73%(1.62%) 62.12%(0.58%)

10 61.18%(1.08%) 62.77%(0.78%)

Table 2. Mean accuracy (standard deviation) for FedMef and
FedTiny on CIFAR-10 with various adjustment periods, ∆R.

to limit the number of interval training rounds and local
epochs. The empirical results of the experiments on the
CIFAR-10 dataset with various adjustment periods, ∆R,
and a single local epoch are shown in Table 2. When
FedTiny performance decreases under resource constraints,
FedMef remarkably maintains the performance.

Analysis on Convergence Behavior. Given FedMef’s
capability to preserve post-pruning performance through
budget-aware extrusion, we anticipate that its convergence
speed will surpass that of other baseline frameworks, par-
ticularly with a smaller adjustment period. To assess this,
we evaluate the performance of FedMef and other baseline
frameworks in the CIFAR-10 datasets with the adjustment
period (∆R) set to 5. The results illustrate that the con-
vergence trajectory of FedMef is notably more stable than
other baselines, reaching a higher final accuracy, as shown
in Figure 6. This observation underscores the efficacy of
BaE in enhancing the convergence behavior of FedMef.

Analysis on Different Degrees of Data Heterogeneity.
We test the effectiveness of FedMef on heterogeneous data
distributions by modulating the Dirichlet distribution fac-
tor α, where the lower α indicates a higher degree of het-
erogeneity. For reference, we compare our results with the
full-size model and FedTiny on the CIFAR-10 dataset and
the results are shown in Figure 5 (middle). FedMef retains
its superior performance compared to the SOTA framework.

4.3. Ablation Study

We further analyze the individual contributions of budget-
aware extrusion and scaled activation pruning using trials
on the CIFAR-10 dataset with ResNet18. The variants in-

0 100 200 300 400 500
The Number of Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
Ac

cu
ra

cy

FedTiny
FedDST
FedMef

Figure 6. The validation accuracy during the training in FedMef
and the baseline frameworks.

clude a FedMef without budget-aware extrusion (akin to
FedTiny’s mechanism) and a FedMef without scaled acti-
vation pruning (mirroring DropIT’s approach [7] without
NSConv). The findings presented in Figure 5 (right) in-
dicate that both budget-aware extrusion and scaled activa-
tion pruning boost FedMef’s performance. In particular, re-
moving scaling in activation pruning results in substantial
information loss during backpropagation and leads to per-
formance degradation.

5. Conclusion
This paper introduces FedMef, a memory-efficient feder-
ated dynamic pruning framework designed to generate spe-
cialized models on resource-constrained devices in cross-
device FL. FedMef addresses the issues of post-pruning ac-
curacy degradation and high activation memory usage that
current federated pruning methods suffer from. It proposes
two new components: budget-aware extrusion and scaled
activation pruning. Budget-aware extrusion reduces infor-
mation loss in pruning by extruding information from pa-
rameters marked for pruning to other parameters within a
limited budget. Scaled activation pruning allows activation
caches to be pruned to save more memory footprints with-
out compromising accuracy. Experimental results demon-
strate that FedMef outperforms existing approaches in terms
of both accuracy and memory footprint.

27555

References
[1] Abien Fred Agarap. Deep learning using rectified linear units

(relu). arXiv preprint arXiv:1803.08375, 2018. 5
[2] Yue Bai, Huan Wang, Zhiqiang Tao, Kunpeng Li, and

Yun Fu. Dual lottery ticket hypothesis. arXiv preprint
arXiv:2203.04248, 2022. 4

[3] Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiao-
han Chen. Federated dynamic sparse training: Computing
less, communicating less, yet learning better. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages
6080–6088, 2022. 1, 3, 6

[4] Andrew Brock, Soham De, and Samuel L Smith. Character-
izing signal propagation to close the performance gap in un-
normalized resnets. arXiv preprint arXiv:2101.08692, 2021.
2, 5

[5] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang,
Ion Stoica, Michael Mahoney, and Joseph Gonzalez. Actnn:
Reducing training memory footprint via 2-bit activation
compressed training. In International Conference on Ma-
chine Learning, pages 1803–1813. PMLR, 2021. 3

[6] John Chen, Cameron Wolfe, and Tasos Kyrillidis. Rex: Re-
visiting budgeted training with an improved schedule. Pro-
ceedings of Machine Learning and Systems, 4:64–76, 2022.
4

[7] Joya Chen, Kai Xu, Yuhui Wang, Yifei Cheng, and Angela
Yao. Dropit: Dropping intermediate tensors for memory-
efficient dnn training. arXiv preprint arXiv:2202.13808,
2022. 3, 5, 8

[8] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
Training deep nets with sublinear memory cost. arXiv
preprint arXiv:1604.06174, 2016. 3

[9] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and
Amos J Storkey. Cinic-10 is not imagenet or cifar-10. arXiv
preprint arXiv:1810.03505, 2018. 2, 6

[10] Tim Dettmers and Luke Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance. arXiv
preprint arXiv:1907.04840, 2019. 2, 3, 6

[11] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all tickets
winners. In International Conference on Machine Learning,
pages 2943–2952. PMLR, 2020. 1, 2, 3, 6

[12] Jianwei Feng and Dong Huang. Optimal gradient checkpoint
search for arbitrary computation graphs. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11433–11442, 2021. 3

[13] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanc-
tot, and Alex Graves. Memory-efficient backpropagation
through time. Advances in neural information processing
systems, 29, 2016. 3

[14] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1, 2

[15] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ra-
maswamy, Françoise Beaufays, Sean Augenstein, Hubert
Eichner, Chloé Kiddon, and Daniel Ramage. Federated

learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018. 1

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2, 6

[17] Hong Huang, Lan Zhang, Chaoyue Sun, Ruogu Fang, Xi-
aoyong Yuan, and Dapeng Wu. Fedtiny: Pruned federated
learning towards specialized tiny models. arXiv preprint
arXiv:2212.01977, 2022. 1, 3, 5, 6

[18] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. pmlr, 2015. 5

[19] Steven A Janowsky. Pruning versus clipping in neural net-
works. Physical Review A, 39(12):6600, 1989. 1, 2

[20] Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko,
Wei-Han Lee, Kin K Leung, and Leandros Tassiulas. Model
pruning enables efficient federated learning on edge devices.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 2022. 1, 3, 6

[21] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated learn-
ing. Foundations and Trends® in Machine Learning, 14(1–
2):1–210, 2021. 1, 3

[22] A Krizhevsky. Learning multiple layers of features from tiny
images. Master’s thesis, University of Tront, 2009. 2, 6

[23] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015. 2, 6

[24] Yann LeCun, John Denker, and Sara Solla. Optimal brain
damage. Advances in neural information processing systems,
2, 1989. 2

[25] David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gissel-
brecht, and Joseph Dureau. Federated learning for keyword
spotting. In ICASSP 2019-2019 IEEE international confer-
ence on acoustics, speech and signal processing (ICASSP),
pages 6341–6345. IEEE, 2019. 1

[26] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li,
Yiran Chen, and Hai Li. Lotteryfl: Empower edge intelli-
gence with personalized and communication-efficient feder-
ated learning. In 2021 IEEE/ACM Symposium on Edge Com-
puting (SEC), pages 68–79. IEEE, 2021. 1, 3

[27] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and
Zhihua Zhang. On the convergence of fedavg on non-iid
data. arXiv preprint arXiv:1907.02189, 2019. 1

[28] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp,
and Qi Dou. Fedbn: Federated learning on non-iid
features via local batch normalization. arXiv preprint
arXiv:2102.07623, 2021. 3

[29] Shengli Liu, Guanding Yu, Rui Yin, and Jiantao Yuan. Adap-
tive network pruning for wireless federated learning. IEEE
Wireless Communications Letters, 10(7):1572–1576, 2021.
1, 3

[30] Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen,
Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu, Jie Tang,

27556

Joey Gonzalez, et al. Gact: Activation compressed train-
ing for generic network architectures. In International Con-
ference on Machine Learning, pages 14139–14152. PMLR,
2022. 3

[31] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282.
PMLR, 2017. 1, 3

[32] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone,
Phuong H Nguyen, Madeleine Gibescu, and Antonio Liotta.
Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science. Nature
communications, 9(1):1–12, 2018. 2, 3, 6

[33] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Fro-
sio, and Jan Kautz. Importance estimation for neural net-
work pruning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 11264–
11272, 2019. 1

[34] P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Prun-
ing convolutional neural networks for resource efficient in-
ference. In 5th International Conference on Learning Repre-
sentations, ICLR 2017-Conference Track Proceedings, 2019.
2

[35] Hesham Mostafa and Xin Wang. Parameter efficient train-
ing of deep convolutional neural networks by dynamic sparse
reparameterization. In International Conference on Machine
Learning, pages 4646–4655. PMLR, 2019. 6

[36] Michael C Mozer and Paul Smolensky. Skeletonization: A
technique for trimming the fat from a network via relevance
assessment. Advances in neural information processing sys-
tems, 1, 1988. 2

[37] Muhammad Tahir Munir, Muhammad Mustansar Saeed, Ma-
had Ali, Zafar Ayyub Qazi, and Ihsan Ayyub Qazi. Fed-
prune: Towards inclusive federated learning. arXiv preprint
arXiv:2110.14205, 2021. 1, 3

[38] Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar,
Joris Kluivers, Rogier van Dalen, Chi Wai Lau, Luke Carl-
son, Filip Granqvist, Chris Vandevelde, et al. Federated eval-
uation and tuning for on-device personalization: System de-
sign & applications. arXiv preprint arXiv:2102.08503, 2021.
1

[39] Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao,
Yan Gao, Titouan Parcollet, and Nicholas Donald Lane. Ze-
rofl: Efficient on-device training for federated learning with
local sparsity. arXiv preprint arXiv:2208.02507, 2022. 1, 3,
6

[40] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 1, 2, 6

[41] Rulin Shao, Hui Liu, and Dianbo Liu. Privacy preserving
stochastic channel-based federated learning with neural net-
work pruning. arXiv preprint arXiv:1910.02115, 2019. 1,
3

[42] Maying Shen, Pavlo Molchanov, Hongxu Yin, and Jose M
Alvarez. When to prune? a policy towards early struc-

tural pruning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12247–
12256, 2022. 6

[43] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient
second-order approximation for neural network compres-
sion. Advances in Neural Information Processing Systems,
33:18098–18109, 2020. 1

[44] Guanchu Wang, Zirui Liu, Zhimeng Jiang, Ninghao Liu, Na
Zou, and Xia Hu. Division: Memory efficient training via
dual activation precision. arXiv preprint arXiv:2208.04187,
2023. 3

[45] Wenyuan Xu, Weiwei Fang, Yi Ding, Meixia Zou, and
Naixue Xiong. Accelerating federated learning for iot in big
data analytics with pruning, quantization and selective up-
dating. IEEE Access, 9:38457–38466, 2021. 6

[46] Weiming Zhuang and Lingjuan Lyu. Is normalization in-
dispensable for multi-domain federated learning? arXiv
preprint arXiv:2306.05879, 2023. 2, 3, 5

[47] Weiming Zhuang and Lingjuan Lyu. Fedwon: Triumphing
multi-domain federated learning without normalization. In
The Twelfth International Conference on Learning Represen-
tations, ICLR, 2024. 3

[48] Weiming Zhuang, Yonggang Wen, Xuesen Zhang, Xin Gan,
Daiying Yin, Dongzhan Zhou, Shuai Zhang, and Shuai
Yi. Performance optimization of federated person re-
identification via benchmark analysis. In Proceedings of the
28th ACM International Conference on Multimedia, pages
955–963, 2020. 3

[49] Weiming Zhuang, Xin Gan, Yonggang Wen, Shuai Zhang,
and Shuai Yi. Collaborative unsupervised visual represen-
tation learning from decentralized data. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 4912–4921, 2021.

[50] Weiming Zhuang, Yonggang Wen, and Shuai Zhang.
Divergence-aware federated self-supervised learning. In
The Tenth International Conference on Learning Represen-
tations, ICLR. OpenReview.net, 2022. 3

[51] Weiming Zhuang, Yonggang Wen, Lingjuan Lyu, and Shuai
Zhang. Mas: Towards resource-efficient federated multiple-
task learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 23414–23424, 2023.
1

27557

	. Introduction
	. Related Work
	. Neural Network Pruning
	. Federated Neural Network Pruning
	. Activation Cache Compression

	. Methodology
	. Problem Setup
	. Design Principles
	. Budget-aware Extrusion
	. Scaled Activation Pruning

	. Evaluation
	. Experimental Setup
	. Performance Evaluation
	. Ablation Study

	. Conclusion

