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Abstract

Novel view synthesis aims to generate new view images of
a given view image collection. Recent attempts address this
problem relying on 3D geometry priors (e.g., shapes, sizes,
and positions) learned from multi-view images. However,
such methods encounter the following limitations: 1) they
require a set of multi-view images as training data for a
specific scene (e.g., face, car or chair), which is often un-
available in many real-world scenarios; 2) they fail to ex-
tract the geometry priors from single-view images due to
the lack of multi-view supervision. In this paper, we pro-
pose a Geometry-enhanced NeRF (G-NeRF), which seeks
to enhance the geometry priors by a geometry-guided multi-
view synthesis approach, followed by a depth-aware train-
ing. In the synthesis process, inspired that existing 3D GAN
models can unconditionally synthesize high-fidelity multi-
view images, we seek to adopt off-the-shelf 3D GAN models,
such as EG3D, as a free source to provide geometry priors
through synthesizing multi-view data. Simultaneously, to
further improve the geometry quality of the synthetic data,
we introduce a truncation method to effectively sample la-
tent codes within 3D GAN models. To tackle the absence
of multi-view supervision for single-view images, we design
the depth-aware training approach, incorporating a depth-
aware discriminator to guide geometry priors through depth
maps. Experiments demonstrate the effectiveness of our
method in terms of both qualitative and quantitative results.

1. Introduction

Neural Radiance Fields (NeRFs) have emerged as a state-of-
the-art technique for synthesizing novel views of complex
scenes from 2D images. By using deep neural networks,
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Figure 1. Comparison of different methods. To achieve single-
shot novel view synthesis, previous methods either (a) require
real-world multi-view images to establish geometry priors or (b)
need additional optimization for a specific image. (c) In contrast,
our method captures the geometry priors from an existing 3D GAN
trained on single-view images only.

NeRF models are capable of modeling both the geometry
and appearance of a scene, enabling the generation of high-
quality and photorealistic 3D renderings from any desired
viewpoint. Its remarkable performance has made it a main-
stream method for novel view synthesis, and it has found
diverse applications in fields such as virtual reality and digi-
tal human generation [13, 20]. Although NeRF has demon-
strated exceptional performance in synthesizing novel views
for many scenes, it does exhibit two prominent limitations.

First, it requires multi-view images for training on a spe-
cific scene, while in most practical conditions only a single-
view image is available. This limitation is widespread in
real-world scenarios, such as when taking selfies or cap-
turing a portrait of a pet. Some recent works [12, 49, 52]
have attempted to address this limitation by introducing addi-
tional supervision, such as depth, or by collecting extensive
multi-view images of the same class to learn sufficient ge-
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ometry priors. For example, SinNeRF [49] adopts ground
truth depth or depth obtained from multi-view images to
train a NeRF model for each individual image. Nonethe-
less, it requires accurate depth information, which is often
hard to obtain from a single image. PixelNeRF [52] can
perform few-shot or even single-shot novel view synthesis
by collecting a set of multi-view images of the same class
for training. However, it is inapplicable to some real-world
scenarios where only single-view images are accessible. Fur-
thermore, Pix2NeRF directly optimizes with image-level
reconstruction and GAN losses. This, however, may incur a
challenging one-to-many problem, as there could be multiple
3D shapes corresponding to one input image (c.f. Sec 4.4).

Second, the conventional NeRF model only focuses on
overfitting to a particular scene while ignoring the sharable
intrinsic geometry prior among the relevant scenes, such as
scenes from the same class (e.g., faces, cars or chairs). To
address this issue, a recent line of research [7, 24, 37, 40]
has explored the combination of Generative Adversarial Net-
works (GANs) [18] and NeRF to extract 3D prior knowledge
from single-view datasets like FFHQ [26] and AFHQv2 [10].
While successful in diverse high-quality 3D scene generation,
these models synthesize images from randomly sampled la-
tent codes. This means to generate novel views for a specific
image, we have to first map the image back to the latent
space to obtain a corresponding latent code, which leads
to extra test-time optimizations (e.g., GAN inversion [41])
with additional time consumption. Additionally, these ap-
proaches adopt conventional reconstruction loss to fine-tune
3D GANs, neglecting the intrinsic geometry information em-
bedded in these models. Thus, they tend to yield suboptimal
outcomes characterized by geometry collapse [53], primarily
due to the absence of multi-view supervision.

To address the above issues, we seek to develop a frame-
work that can accomplish two goals simultaneously: ex-
ploiting geometry priors from an existing 3D GAN trained
on real-world single-view images only and enabling single-
shot novel view synthesis without the need for test-time
fine-tuning (see Fig.1). To achieve this, we propose a novel
single-shot novel view synthesis approach named Geometry-
enhanced NeRF (G-NeRF), which seeks to enhance the ge-
ometry priors by two approaches: Geometry-guided Multi-
View Synthesis (GMVS) and Depth-aware Training (DaT).
In GMVS phase, we use a pre-trained 3D GAN model to
generate a set of multi-view data, serving as a free source
for establishing geometry priors. To further enhance the
geometry priors in the synthetic data, we trade off the di-
versity against the geometry quality in 3D GANs, exploring
different truncation ratios [4] to achieve a balance for high-
quality geometry data synthesis. In the DaT training phase,
we introduce a depth-aware discriminator to address the lack
of multi-view supervision for single-view images. This dis-
criminator distinguishes between the depth maps generated

by the pre-trained 3D GAN model and those produced by
our model, thereby providing additional depth supervision to
enhance the geometry fidelity of our generated results. We
summarize our contributions in three folds:
• To obtain sufficient multi-view images for training a single-

shot NeRF model, we propose a Geometry-guided Multi-
View Synthesis scheme to synthesize a set of multi-view
data to build adequate geometry priors.

• To generate high-quality synthetic data, we explore the
trade-off between diversity and geometry quality in 3D
GANs, and then introduce a truncation method for multi-
view data synthesis with enhanced geometry priors.

• For better learning geometry priors from single-view im-
ages, we design a Depth-aware Training method. It adots
a depth-aware discriminator to enhance depth supervision,
guiding the model to generate more realistic results.

2. Related Work
Neural Radiance Fields for few views. Representing 3D
scenes as an implicit MLP-based function and using volume
rendering technology, NeRF [32] and its variants [2, 34,
38, 46, 48, 54] have shown promising results in novel view
synthesis tasks. However, these methods face a common
challenge: they require a large number of views to obtain
sufficient density information.

To address the data-hungry nature of NeRF, recent
works [9, 12, 43, 49, 50, 52] aim to learn shared priors or
incorporate additional supervision, such as depth maps. Pix-
elNeRF [52] conditions NeRF on images by computing a
fully convolutional image feature, which serves as a 3D
representation for volumetric rendering. This approach al-
lows for predicting NeRF from images in a feed-forward
manner while leveraging shared priors of scenarios. DS-
NeRF [12] introduces additional supervision by leveraging
depth information recovered from 3D point clouds estimated
using structure-from-motion methods. SinNeRF [49] further
divides the NeRF training process into geometry learning
and semantic learning. Combining camera and LiDAR data,
GINA-3D [43] achieves generating neural assets from a
single-view input. Despite their advancements, these meth-
ods still rely on a collection of multi-view images to provide
an adequate 3D prior or require additional depth supervi-
sion (e.g.,, LiDAR data, depth map).

Generative 3D-aware image synthesis. Generative Adver-
sarial Nets (GANs) [17, 19, 21, 26, 29, 33, 45] have achieved
impressive success in 2D image synthesis tasks (e.g., image
generation, image-to-image translation). Recently, many
attempts [5–7, 24, 35, 36, 42] have been made to extend
GANs to 3D-aware tasks. HoloGAN [35]successfully dis-
entangles 3D pose and identity by using an explicit vol-
ume representation, but this type of 3D representation also
limits the resolution of the generated images. Some meth-
ods [6, 7, 15, 24, 36, 42] combine GANs and NeRF to synthe-
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Figure 2. Overall scheme of G-NeRF. Given a latent code w randomly sample in W space, we first apply a truncation method to obtain w′,
bringing it closer to the center of mass of W space represented w̄. After that, in conjunction with a set of camera poses {Pf ,Ps,Pd}, we
generate a triplet of synthetic data {If , Is,Dsyn}. To capture geometry priors from synthetic multi-view images, we synthesize a novel
view Îs using If as the reference image and enforce it to be consistent with Is. Additionally, we employ a self-reconstruction task with the
real-world image Ir. Moreover, we design a depth-aware discriminator Dg to further enhance the depth quality of the generated scenes.

size high-fidelity novel views. However, these methods gen-
erate random scenes using randomly sampled latent codes.
To achieve single-view reconstruction, additional test-time
optimization (e.g., GAN inversion) is necessary [27, 51, 53].
While these methods excel at producing high-fidelity novel
perspective images, they are constrained to the original 3D
GAN model. Essentially, they rely on the original model for
every inference. In contrast, our approach is versatile and
capable of being applied to any model of the same type.

3. Geomery-enhanced NeRF
We aim to address the task of single-shot novel view synthe-
sis in a unified framework. In other words, given an unseen
single-view image (e.g., human face or cat face), our goal
is to synthesize novel views of the same scene. This task is
inherently difficult due to the limited geometry information
available in a single-view image. One potential solution in-
volves leveraging multi-view datasets to establish adequate
geometry priors. However, obtaining such datasets may
be impractical in many real-world scenarios. To overcome
this limitation, we introduce Geometry-enhanced NeRF (G-
NeRF), a novel approach designed to achieve high-fidelity
single-shot novel synthesis from single-view images.

As shown in Fig. 2, G-NeRF consists of two stages: 1)
Geometry-guided multi-view synthesis (c.f. Sec. 3.1). To
learn geometry priors of similar scenes, we leverage a pre-
trained 3D GAN model Ge to synthesize a collection of multi-
view images and corresponding depth maps. Simultaneously,
we delve into the trade-off between diversity and geometry
quality in 3D GANs, proposing an approach to achieve a bal-
ance for Geometry-guided data synthesis. 2) Depth-aware
training. (c.f. Sec. 3.2). We seek to train our model using the
combination of synthetic data and real-world single-view im-

ages with a reconstruction loss, denoted as Lrecon. However,
solely applying Lrecon is insufficient to learn satisfying ge-
ometry priors due to the absence of multi-view supervision
for single-view images. To provide additional supervision,
we introduce a depth-aware discriminator, which helps dis-
tinguish between the synthetic depth maps generated by our
model and the depth maps obtained from the pre-trained 3D
GAN model. We incorporate it into our training through a
depth-aware adversarial loss, denoted as Lgan.

The overall optimization of our proposed G-NeRF mini-
mizes the following objective function:

Ltotal = Lrecon + λgLgan, (1)

where λg is a hyper-parameter used to balance the recon-
struction loss Lrecon (see Eqn. (5)) and the adversarial loss
Lgan (see Eqn. (6)).

3.1. Geometry-guided Multi-View Synthesis

In the absence of multi-view supervision, it is challenging to
learn geometry information from single-view datasets, such
as FFHQ [26] and AFHQv2-Cats [10]. Inspired that exist-
ing 3D GAN models can synthesize high-fidelity multi-view
images while being trained solely on a set of single-view im-
ages. We aim to leverage the rich geometry priors embedded
in these models. To this end, we propose a Geometry-guided
Multi-View Synthesis scheme. In GMVS, we first utilize an
off-the-shelf 3D GAN (e.g., EG3D [7]) to synthesize a set of
multi-view data. However, the use of naive synthetic data can
lead to suboptimal results, such as unrealistic 3D shapes (see
Fig. 7). To address this, we delve into the balance between
diversity and geometry quality within 3D GANs. Building
upon this exploration, we apply a latent truncation method
to strike a more suitable balance between the diversity and
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geometry quality of the synthetic data, thereby contributing
to the generation of more realistic results.

Trade-off between diversity and geometry quality. As
confirmed by previous studies [1, 4], a trade-off exists be-
tween the fidelity and diversity of samples generated by
GAN models. Take StyleGAN-based [26] methods as an ex-
ample, we randomly sample a latent code zd ∼ pz ⊂ R512,
where pz is a normal distribution. Then, a mapping network
M is adopted to map zd to an intermediate latent space W
to acquire w. After that, as illustrated in Fig. 2, a truncation
method is leveraged to draw w closer to the center of mass
of W space by:

w′ = w̄ + ψ(w − w̄), (2)

where w̄ = Ez∼pz [M(z)] is the center of mass of W and
ψ ≤ 1 is a truncation ratio. The manipulation of ψ allows
us to finely tune the trade-off between diversity and fidelity.
Specifically, an increase in ψ augments diversity but may
simultaneously diminish fidelity or the visual appeal of the
generated results. This adjustment is driven by the fact that
regions with lower density may be inadequately represented,
posing challenges for the generator to effectively learn.

In this study, we delve deeper into this phenomenon
within the realm of 3D GANs. Specifically, we leverage
EG3D [7] to generate four sets of samples with varying trun-
cation ratios and examine their differences. As depicted in
Fig.3, our results demonstrate an augmented diversity with
increasing truncation ratios, albeit accompanied by a gradual
reduction in geometry quality.

Geometry-guided multi-view synthesis. Building upon
the above observation, we conclude that synthetic data gen-
erated with various truncation ratios plays a crucial role in
the geometry quality of final results. To obtain a set of multi-
view data with high-quality geometry priors, we devise a
Geometry-guided Multi-View Synthesis scheme. Specifi-
cally, we employ a pre-trained 3D GAN model Ge, such as
EG3D [7], to generate multi-view data of diverse scenes.
As shown in Fig. 2, we randomly sample a latent code w
and a set of camera pose (Pf ,Ps,Pd) ∼ pξ, where pξ is a
distribution associated with camera poses from real-world
single-view images. We then apply the truncation method
with an empirically selected ratio ψ = 0.5 to obtain a trun-
cated latent code w′ by Eqn. (2). As discussed earlier, this
truncation method draws w closer to the center of mass of
W space, ensuring the geometry quality of the generated
results. Finally, we synthesize a triplet of Geometry-guided
multi-view data I with a generator Ge by:

I = {If , Is,Dsyn} = Ge(w
′,Pf ,Ps,Pd), (3)

where If and Is denote the first and second synthetic im-
ages regarding a common scene but rendered from different
viewpoints, and Dsyn denotes the depth map of the scene.

(a) ψ = 0.0 (b) ψ = 0.3

(c) ψ = 0.7 (d) ψ = 1.0

Figure 3. Illustration of the trade-off between identity diversity and
geometry quality of the generated samples. Samples are generated
by EG3D [7] with the same set of latent codes and different trun-
cation ratios ψ. As ψ rises, the identity diversity (e.g., hair color,
skin color, and glasses) of the generated samples also increases. In
contrast, the geometry quality of these scenes gradually reduces.

3.2. Depth-aware Training

In this section, we seek to train our model with a combination
of synthetic data and real-world single-view images. How-
ever, directly applying reconstruction loss to single-view
images is not beneficial for learning satisfying geometry pri-
ors due to the absence of multi-view supervision. To address
this, we introduce a depth-aware discriminator Dg to provide
additional depth supervision.

Incorporating synthetic and real-world data. We incor-
porate synthetic data with real-world single-view images
to train our model. Specifically, we simultaneously gen-
erate a novel view and depth map with a selection factor
γ ∼ U(0, 1), which is formulated as:

Îs,Dfake =Gn(Ps, E(If )), if 0 ≤ γ ≤ 0.5;

Îr,Dfake =Gn(Pr, E(Ir)), if 0.5 < γ ≤ 1,
(4)

where Ir is a real-world image associated with the pose Pr,
Gn is a NeRF-based generator and E is an scene encoder.
This alternative training scheme allows the model to capture
the geometry priors within the multi-view images, while still
learning diverse appearance information from the real-world
images. With the generated views and depth maps, we depict
a reconstruction loss and an adversarial loss as follows.

Reconstruction with paired images. For synthetic multi-
view image pairs {If , Is} , we adopt If as the reference
image and render a novel view image Îs from the same
viewpoint as Is. In this way, we train our G-NeRF by min-
imizing photometric error w.r.t. Is and Îs. For real-world
single-view images, our objective is to leverage them to
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Figure 4. Qualitative comparison. Compared to Pix2NeRF [5], our G-NeRF demonstrates the capability to generate novel views that
closely resemble reference images with higher clarity (Comparison at 5122).

augment the diversity of the synthesized scenes. To this
end, we select a single-view image Ir as a reference and
train G-NeRF by generating a Îr that shares the same view-
point with Ir. We update G-NeRF by enforcing similarity
between Îr and Ir. This schedule is implemented using a
reconstruction loss, which is formulated with the image-pair
data (Ifake, Iref )∈{(Îs, Is), (Îr, Ir)},

Lrecon = E [||Ifake − Iref ||1 + Lssim(Ifake, Iref )

+Lvgg(Ifake, Iref )] .
(5)

Lssim is SSIM loss [47] and Lvgg is perceptual loss [25].

Depth-aware discriminator. In the absence of multi-view
supervision for real-world single-view images, we observe
some degradation in the geometry quality of our generated
results (see Fig. 7). To address this, we introduce a depth-
aware discriminator denoted as Dg . Concretely, Dg is trained
to distinguish between the generated depth map Dfake and
ground truth Dsyn from the synthetic data, thereby intro-
duce additional geometry priors into our model. In contrast
to employing a simple reconstruction loss for basic depth
supervision, Dg offers several advantages: 1) enabling depth
supervision for real-world single-view images whose depth
maps may not be available; 2) ensuring that depth maps
generated from various viewpoints are realistic and coher-
ent with the scene, contributing to the overall quality of the
synthesized novel views. Following EG3D [7], we condition

Dg on a camera pose and use an adversarial loss with an R1
regularization [31] to train Dg:

Lgan = E[f(Dg(Dsyn|Pd)]

+E
[
f(−Dg(Dfake|Pf )) + λ|∇Dg(Dfake|Pf )|2

]
,

(6)
where Pf∈(Pr,Ps) is the camera pose used to generate
novel views and f(·) is a softplus activation. Note that, for
each real-world image, we train Dg not only with its corre-
sponding camera pose Pr but also with other camera poses
randomly sampled from pξ to provide more comprehensive
depth supervision.

4. Experiments

4.1. Experimental Setup

Datasets. We train our model with FFHQ [26] and
AFHQv2-Cats [10], repectively. During the evalua-
tion, we leverage an additional in-the-wild dataset named
CelebAMask-HQ [28]. FFHQ [26] is a real-world dataset
with around 70k high-quality human faces. CelebAMask-
HQ [28] is a large-scale face dataset with 30k high-resolution
human faces. After preprocessing, we randomly hold out 8k
images as the test set. AFHQv2-Cats [10] contains 5065 cat
images of different types. We randomly select 4k images as
the training set and the rest as the test set.
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Table 1. Quantitative comparison. For AFHQv2-Cats [10], since there is non-trivial to estimate depth maps for cat faces, we only evaluate
on FID and KID×100. Note that our results of 5122 resolution are synthesized by a super-resolution module and we did not apply the same
super-resolution operation to the depth map. Thus, the depth accuracy at this resolution is not available. The bold highlights the best results
among methods requiring single-view images only. Approaches labeled in gray necessitate the availability of multi-view training data.
Legend: * –requires multi-view training data and test time optimization.

Method FFHQ [26] CelebAMask-HQ [28] AFHQv2-Cats [10]
FID(↓) KID(↓) Depth(↓) ID(↑) FID(↓) KID(↓) Depth(↓) ID(↑) FID(↓) KID(↓)

Pix2NeRF 642 [5] 32.44 2.37 0.40 0.25 89.79 12.22 0.38 0.19 25.34 1.00
G-NeRF 642 (Ours) 26.04 2.09 0.35 0.43 75.76 10.48 0.32 0.37 18.64 0.73
Pix2NeRF 5122 [5] 75.04 5.97 0.41 0.20 118.92 13.08 0.38 0.15 50.55 3.33
G-NeRF 5122 (Ours) 40.24 2.72 - 0.36 78.38 8.68 - 0.31 21.78 1.00

Method ShapeNet Chairs [8] ShapeNet Cars [8] Average
SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓)

ENR 1282 [16] 0.91 22.83 0.10 0.90 22.26 0.13 0.91 22.55 0.12
SRN 1282 [44] 0.89 22.89 0.10 0.89 22.25 0.13 0.89 22.57 0.12
PixelNeRF 1282 [5] 0.91 23.72 0.10 0.90 23.17 0.15 0.91 23.45 0.13
CodeNeRF* 1282 [23] 0.90 23.66 0.11 0.91 23.80 0.12 0.91 23.73 0.12
VisionNeRF* 1282 [30] 0.93 24.48 0.08 0.91 22.28 0.08 0.92 23.37 0.08

Pix2NeRF 642 [5] 0.80 18.13 0.12 0.73 16.57 0.19 0.77 17.35 0.16
G-NeRF 642 (Ours) 0.88 22.31 0.07 0.86 21.03 0.10 0.87 21.67 0.09
Pix2NeRF 1282 [5] 0.83 17.73 0.12 0.78 16.24 0.20 0.81 16.99 0.16
G-NeRF 1282 (Ours) 0.88 20.29 0.08 0.86 19.44 0.11 0.87 19.87 0.10

Evaluation metrics. Following Pix2NeRF [5], we re-
port Frechet-Inception Distance (i.e., FID) [22] and Kernel-
Inception Distance (i.e., KID) [3] for novel view images. We
also use Depth accuracy (i.e., Depth) to measure the depth
quality. Specifically, we evaluate depth quality by calcu-
lating MSE loss against pseudo-ground-truth depth maps
estimated from test set images by [14] and our generated
depth maps. We assess multi-view consistency (ID) by calcu-
lating the mean Arcface [11] cosine similarity score between
the input images and the corresponding novel views. In the
ablation study, to assess the quality of the generated images,
we employ Structural Similarity (SSIM) [47].

Implementation details. We use two pre-trained mod-
els of EG3D [7] trained on FFHQ [26] and AFHQv2-
Cats [10] respectively to synthesize multi-view data. Specif-
ically, we generate 60k triplets of multi-view data for
FFHQ [26] and 4k for AFHQv2-Cats [10]. We adopt the
same pre-processing strategy as [7]. All images are aligned
and processed into size 5122. Note that we use a super-
resolution module to generate a promote a low-resolution
image (i.e., 642) to a high resolution (i.e., 5122). Please refer
to our appendix for more implementation details.

4.2. Comparison with State-of-the-art Methods

Quantitative comparison. We compare our method
against the state-of-the-art method Pix2NeRF [5] for novel-
view synthesis from a single image with real-world single-
view datasets. Note that we use scripts provided by the
authors of Pix2NeRF [5] to train with FFHQ [26] dataset
and AFHQv2-Cats [10] dataset. Since AFHQv2-Cats con-

Table 2. Comparison of inference cost with PTI [41]. We fine-
tune an EG3D model to fit a single-view image until it reconstructs
the same level of details as ours (i.e., LPIPS: 0.32). Then, we use
this fine-tuned model to synthesize four novel views and compare
the time taken at each stage with our model on an RTX A800 GPU.

Method Inference Cost (↓) Depth (↓) Depth† (↓) FID (↓) KID (↓) ID (↑)

PTI[41] 76.9s 0.37 0.55 35.53 2.30 0.36
Ours 1.1s 0.35 0.53 40.24 2.72 0.35

Input Reconstruction

OursPTI

Side View

OursPTI

Figure 5. Qualitative comparisons with PTI [41].

tains a relatively small amount of data, we train for 150k
iterations with a batch size of 48 for Pix2NeRF [5] until
convergence. Tab. 1 provides quantitative metrics com-
paring the proposed approach against Pix2NeRF [5]. Our
model demonstrates better results in terms of all metrics
across all datasets. Moreover, our model is capable of gen-
erating higher-resolution images without compromising on
efficiency, whereas Pix2NeRF requires significantly more
time to achieve comparable results [7]. In other words, our
model can generate novel views with more realistic appear-
ances and precise shapes from a single-view image. No-
tably, Pix2NeRF fails to synthesize novel views on AFHQv2-
Cats [10], because most of the cat faces in this dataset are
facing the camera, resulting in limited geometry informa-
tion. In contrast, our model derives advantages from train-
ing with a collection of synthetic multi-view images and
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Figure 6. Qualitative comparisons with Pix2NeRF [5] on
ShapeNet Cars & Chairs [8, 44].

a depth-aware discriminator, which facilitates explicit 3D
supervision. Consequently, our model effectively learns a
robust geometry prior, even in such challenging scenarios

Qualitative comparison. Fig. 4 presents results gener-
ated by our method and Pix2NeRF [5] on FFHQ [26],
CelebAMask-HQ [28], and AFHQv2-Cats [10]. Our method
can synthesize high-quality novel views even with a single
image as reference, yet existing few-shot NeRF methods
can not train on these single-view datasets without multi-
view image pairs. Compared to Pix2NeRF [5], our meth-
ods can generate more realistic results while preserving a
more similar identity to the reference images. Thanks to the
depth-aware discriminator, our method excels in producing
high-quality results even under extreme camera poses (see
the bottom row of the leftmost column in Fig. 4). Meanwhile,
our method can also learn geometry priors from AFHQv2-
Cats [10] which contains a limited range of poses while
Pix2NeRF [5] fails (see the rightmost column in Fig. 4).
We also provide more geometry visualization results, please
refer to our appendix for more details.

Comparison on multi-view datasets. Additionally, we
performed experiments on the training set of ShapeNet Cars
& Chairs [8, 44], which includes uniformly distributed cam-
era poses around a sphere. Following the experimental set-
ting of Pix2NeRF [5], we filtered the training set for both
datasets to only include the upper hemisphere and evaluate
the test split. Since EG3D [7] does not include an evaluation
on ShapeNet Chairs, we first train an EG3D model using
the same settings as those used for training ShapeNet Cars.
We evaluate the performance using well-established image
quality metrics commonly employed in novel view synthe-
sis tasks, including pixel-level measures such as SSIM and
PSNR, as well as a feature-level metric called LPIPS.

w/o synthetic

𝝍 = 𝟏. 𝟎

𝝍 = 𝟎. 𝟓

Ours

Input Image Novel Views

Figure 7. Ablation study. Without incorporating truncation method
( i.e., ψ = 1.0) and depth-aware training, our model fails to gener-
ate results with realistic geometry (see the red boxes in the figure).

As depicted in Tab. 1, our method consistently outper-
forms Pix2NeRF [5] in terms of all metrics. Simultaneously,
our method remains competitive with other approaches that
rely on multi-view training data, while our method does not
employ multi-view supervision on the ShapeNet datasets [8].
Fig. 6 demonstrates our method’s superior accuracy in shape
and texture predictions when compared to Pix2NeRF [5].

Comparison with GAN inversion method. We employ
Pivotal Tuning Inversion (PTI) [41] to fine-tune an EG3D
model, enabling its adaptation to a single-view image. The
fine-tuning process continues until the LPIPS [55] loss
matches that of our method. Subsequently, we compare the
time taken by our method with that of the fine-tuning-based
approach. As shown in Tab. 2, our method demonstrates sig-
nificantly faster than the GAN inversion method. Moreover,
our method outperforms PTI in terms of geometry quality
(Depth and Depth†) and inference cost while being competi-
tive in image quality (FID, KID, and ID). Visual results also
show the quality of another view produced by PTI exhibits
instability (see Fig. 5).

4.3. Ablation Study

In this part, we provide more experiments and analysis of
our proposed modules to verify their effectiveness. For sim-
plicity, we only conduct experiments on FFHQ [26], and all
the depth accuracy is evaluated at a resolution of 642 and the
others are evaluated at 5122. The data presented in Tab. 3
correspond to the cases in Fig. 7, which visualizes the results
of different training settings.
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Table 3. Quantitative results of ablation studies. The row
without truncation ratio means training without synthetic data. The
bold numbers highlight the best results. † Evaluated on side faces.

Trunc. Ratio Real Img. Dg FID (↓) KID (↓) Depth (↓) Depth† (↓) ID (↑) SSIM (↑)

✗ ✓ ✗ 33.13 2.22 0.42 0.83 0.43 0.66
1.0 ✓ ✗ 34.72 2.42 0.37 0.64 0.38 0.65
0.5 ✓ ✗ 40.13 2.64 0.35 0.59 0.35 0.64

0.5 (Ours) ✓ ✓ 40.24 2.72 0.35 0.53 0.35 0.63

Impact of geometry-guided multi-view synthesis scheme.
We train our model using synthetic data generated with
varying truncation ratios to assess the effectiveness of our
Geometry-guided Multi-View Synthesis scheme. As shown
in Tab. 3 (the first two rows), our model with synthetic data
obtains better depths and competitive identities (FID, KID,
ID, and SSIM) compared to the model without synthetic data.
When decreasing the truncation ratio (1.0 → 0.5), the depth
quality can be further improved. Particularly, we can ob-
serve a significant drop in the depth accuracy when applying
a truncation ratio of 1.0, which severely harms the realism
of the generated scenes (see the bottom row in Fig. 7). In
essence, if the truncation trick is not taken, it is challenging
for our model to generate realistic results.
Impact of depth-aware discriminator. To verify the effec-
tiveness of our depth-aware discriminator, we train a model
without Dg. We can see from Fig. 7 that the model learns a
degenerate solution where the human head appears flattened
and sunk into the background. This phenomenon typically
occurs when one of the ears is not visible in the input image.
As shown in Tab. 3, the removal of Dg yields to a slight im-
provement in image quality metric (i.e., SSIM: 0.63 → 0.64).
This is primarily because the addition of a discriminator nat-
urally brings some disturbance to our training process.

As Dg is directly applied to depth maps, depth accu-
racy is the most important metric for verifying its effec-
tiveness. From the fifth column in Tab. 3, we can ob-
serve that the depth accuracy remains almost unchanged
without Dg (i.e., 0.35 → 0.35). However, the sixth col-
umn in Tab. 3 reveals a significant drop in depth accu-
racy (i.e., 0.53 → 0.59) when faces are turned to the side.
In other words, Dg plays a crucial role in distinguishing
unnatural depth maps and contributes to achieving a more
realistic geometry from various viewpoints.

4.4. Further Discussion

We conduct two intuitive comparisons to further validate
the effectiveness of our method: 1) Conditional EG3D (de-
noted as C-EG3D). We condition the EG3D [7] model on
an input image and performed novel view synthesis using
only a single-view reconstruction loss and the GAN loss as
used in the original EG3D paper [7]. However, as shown in
Fig. 8, this approach fails to capture 3D information from the
input image. It also exhibits artifacts when presented with
novel viewpoints. We recognize that this is a challenging

Ours

SDS

C-EG3D

Input Novel Views

Figure 8. Further comparisons with two intuitive methods. We
compare our G-NeRF with two intuitive methods to further verify
the effectiveness of our method.

one-to-many problem, as it is non-trivial for models to learn
geometry without explicit multi-view supervision or accurate
depth information. 2) Simple depth supervision (denoted as
SDS). We use a state-of-the-art depth estimation model, such
as MiDaS [39], to generate depth maps for images in the
FFHQ dataset [26]. After scaling and adjusting these depth
maps, we employ them for basic depth supervision along
with a single-view reconstruction loss, without incorporating
our proposed geometry-guided multi-view synthesis scheme.
In Fig. 8, this approach fails to produce accurate geometry,
resulting in flat, plane-like facial reconstructions. The limi-
tations stem from the challenge of MiDaS [39] in estimating
fine-grained facial details, such as the nose, mouth, and eyes.

5. Conclusion
In this work, we propose the G-NeRF, a single-shot novel
view synthesis method designed for high-fidelity novel view
synthesis using only real-world single-view images. G-
NeRF seeks to enhance geometry priors into a NeRF model
through two stages: Geometry-guided Multi-View Synthesis
(GMVS) and Depth-aware Training (DaT). GMVS leverages
an off-the-shelf 3D GAN model to synthesize multi-view
data, enhanced with a truncation method for improved ge-
ometry quality. DaT further refines the NeRF model by
incorporating a depth-aware discriminator, guiding the learn-
ing process through depth maps. Our proposed method is
evaluated extensively on multiple real-world datasets and the
experimental results demonstrate its effectiveness.
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