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Abstract

Multi-task visual scene understanding aims to leverage
the relationships among a set of correlated tasks, which
are solved simultaneously by embedding them within a uni-
fied network. However, most existing methods give rise to
two primary concerns from a task-level perspective: (1) the
lack of task-independent correspondences for distinct tasks,
and (2) the neglect of explicit task-consensual dependencies
among various tasks. To address these issues, we propose
a novel synergy embedding models (SEM), which goes be-
yond multi-task dense prediction by leveraging two innova-
tive designs: the intra-task hierarchy-adaptive module and
the inter-task EM-interactive module. Specifically, the con-
structed intra-task module incorporates hierarchy-adaptive
keys from multiple stages, enabling the efficient learning of
specialized visual patterns with an optimal trade-off. In ad-
dition, the developed inter-task module learns interactions
from a compact set of mutual bases among various tasks,
benefiting from the expectation maximization (EM) algo-
rithm. Extensive empirical evidence from two public bench-
marks, NYUD-v2 and PASCAL-Context, demonstrates that
SEM consistently outperforms state-of-the-art approaches
across a range of metrics.

1. Introduction

Dense scene understanding is a rapidly growing field that
learns multiple objectives from shared representations [17,
24, 34], allowing for improving the efficiency and accuracy
of each task. Its success on computer vision encompass-
ing numerous dense prediction tasks, for example, seman-
tic segmentation [38, 47], boundary detection [11, 27], and
geometric tasks like depth/normal estimation [10, 15, 21].
Intuitively, these dense prediction tasks inherently possess
distinctive representations (as illustrated in Fig. 1). This
distinction is of significant importance when striving for ex-
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cellence in resolving individual tasks. On the other hand,
exploring the interrelatedness among tasks is also crucial,
as leveraging these cross-task synergies can provide mu-
tual benefits. For instance, abrupt alterations in depth maps
could indicate semantic boundaries in segmentation maps.
Similarly, pixels belonging to certain semantic classes, such
as “bed”, might exhibit similar surface normals [22].

In this context, potential advantages of using both task-
independent and task-consensual representations go beyond
the direct implications of learning independently, since
learning multiple related tasks has been empirically shown
to often significantly improve performance [42, 43]. How-
ever, there remains a challenging issue in effectively learn-
ing the unique characteristics of each task (intra-task spe-
cialty) and the complementary aspects across separate tasks
(inter-task complementarity) within a unified model. As de-
picted in Fig. 1, the multi-task learning baseline (MTLB)
produces subpar predictions, with feature maps for each
task tending to be confusing and lacking clear distinction,
leading to unsatisfactory results for individual tasks.

In the pursuit of advancing multi-task learning (MTL),
most existing research [8, 24, 33, 39] heavily relies on
the capabilities of Convolutional Neural Networks (CNN)
[20, 32]. Significant progresses have been made in develop-
ing multi-task optimization losses [14], as well as in design-
ing [18, 33] or searching [9] for multi-task information shar-
ing strategies and network structures. Despite the success
of CNN-based MTL models, which have shown promis-
ing performance in multi-task dense prediction tasks, these
algorithms are still constrained by the limitations inher-
ent in convolutional operations. Specifically, they lack the
ability for global modeling and cross-task interaction [41].
To address these problems, recent Transformer-based MTL
methods [1, 40, 41] have leveraged the attention mecha-
nism [6, 19, 36], enabling effective global modeling and
task interactions. However, these approaches still struggle
with two key issues. (i) Intra-task dependency: Existing
Transformer-based methods either focus on learning at a
single stage or the simply concatenated multi-stage feature
maps. Such approaches overlook the importance of each
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Figure 1. Visualization of the Ground Truths (GT) in the 1st row, the feature maps (left) and predictions (right) of our method (Ours) in the
2nd row and multi-task learning baseline (MTLB) in the 3rd row for four different tasks on the NYUD-v2 dataset. Intuitively, the MTLB
suffers from the investigation of task-independent internal structure, leading to the confused feature maps and unsatisfactory results for
individual tasks. Impressively, our method efficiently alleviates above limitations and consequently improves the performance from the
intra-task and inter-task perspectives, achieving competitive results for multiple scene understanding tasks simultaneously.

stage and the cross-stage correlation during the construction
of task-specific features. Moreover, the weighted aggrega-
tion across all positions can lead to questionable pixel-wise
relationships, potentially undermining the consistent intra-
task dependencies. (ii) Inter-task dependency: According
to a recent survey of Transformer [41], they simply treat
all pixels, aggregated from different tasks, as bases for re-
constructing the feature space by focusing on pixel-to-pixel
dependencies. This may not be an optimal design, as the
inherent all-pair dependencies could be muddled and dis-
rupted by inconsistent details, leading to redundant compu-
tations and unnecessary noise that hinder high performance.

To overcome these challenges, we propose synergy em-
bedding models (referred to as SEM), a novel architec-
ture powered by both EM-driven learning and hierarchi-
cal adaption strategy with task conscious for multi-task
dense prediction (summarized in Fig. 2). Firstly, consider-
ing the unique characteristics of context modeling at differ-
ent stages, particularly when establishing task-independent
features grounded on multi-task dense predictions, we de-
sign an intra-task hierarchy-adaptive module. This module
is aimed at exploring task-specific visual patterns, thereby
yielding a more consistent representation for each task.
Specifically, we leverage features from multiple stages of
the encoder and update them individually by applying a
Transformer with global reasoning capabilities. However,
traditional Transformers involve a large number of keys for
each query, leading to redundant computations with high
complexity. To address this, we design a lightweight Trans-
former for the specialized task, equipped with hierarchy-
adaptive keys/values. This Transformer adaptively searches
for salient points at each stage and measures the importance
of each stage, effectively combining detailed aspects (from
shallow stages) and semantic aspects (from deep stages) to
construct task-specific feature representations.

Secondly, instead of using all pixels as the reconstruction
bases, we employ EM algorithms to map a series of approx-
imately compact basis sets from the original over-compact
ones, thereby generating a Hilbert space [44]. We use max-
imum likelihood along with appropriate filtering algorithms
to handle noisy observations, leading to accurate parameter
estimates with high computational efficiency [16, 25, 29].
Specifically, we construct a task-consensual basis for inter-
action among tasks. The number of these bases corresponds
to the total number of key points, representing a simplified
operation compared to the original space.

Our method, SEM, demonstrates its ability to model task
consciousness as shown in Fig. 1. Compared to the baseline,
SEM enhances the generation of task-specific representa-
tions and achieves accurate multi-task predictions by learn-
ing mutual information. In summary, our contributions are
four-fold: (1) We scrutinize the intra-task and inter-task de-
pendencies that existing Transformer-based methods over-
look, and propose two plug-and-play modules from a task-
level perspective, referred to as SEM, to improve the per-
formance of multi-task dense predictions; (2) We introduce
an intra-task hierarchy-adaptive module to learn cross-stage
dependencies, which aids in generating task-independent
representations; (3) We design an inter-task EM-based in-
teractive module to learn task-consensual bases, facilitat-
ing interaction among different tasks; (4) Extensive empiri-
cal evidence from two public benchmarks, NYUD-v2 and
PASCAL-Context, validates that our method consistently
outperforms state-of-the-arts across various metrics.

2. Related Work
Multi-Task Deep Learning. Recently, multi-task deep
learning has been validated to enhance the training effi-
ciency of scene understanding tasks. The field primar-
ily revolves around two main paradigms [34, 42]: multi-
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Figure 2. The overall architecture of SEM. There are two main task-aware sub-modules: (a) intra-task hierarchy-adaptive module that
receives multi-stage representations generated from the encoder and outputs task-independent features for the decoder; (b) inter-task EM-
interactive module that is plugged into the decoder stage for learning task-consensual correlations.

task optimization and network structure design. The for-
mer paradigm aims to mitigate the issue of task competition
by balancing multiple loss optimizations during the training
process [4, 5, 14]. The latter paradigm, on the other hand, is
extensively explored by investigating architectural designs
that facilitate interactions among tasks. Inspired by the su-
periority of the Transformer [6, 19] in extracting global de-
pendencies, several Transformer-based models have been
proposed for multi-task learning [40–43]. For instance,
DeMT [41] proposed a multi-task model that leveraged the
strengths of both deformable CNN and query-based Trans-
former. InvPT [42] explored spatial and cross-task relation-
ships at a global level, while TaskPrompter [43] designed
a multi-task prompting framework that stimulates spatial-
wise and channel-wise prompt learning. Despite their in-
novative designs, these existing methods still struggle with
limitations stemming from insufficient cross-stage relations
and redundant cross-task interactions. To address these is-
sues, we propose an effective Transformer-based model that
simultaneously captures hierarchical intra-task dependency
and EM-driven inter-task dependency.

Expectation Maximization in Computer Vision. With the
recent surge in deep learning applications, numerous studies
have integrated modern networks with the well-established
EM algorithm to harness its clustering and filtering capabili-
ties [7, 13, 31]. For instance, SSN [12] combined EM-based
iterations with a neural network to develop efficient super-
pixel sampling. Inspired by the success of attention scheme,
EMANet [16] proposed an EM-based attention method that
iteratively generates a more compact basis set, thereby re-
ducing computational complexity. AEMA-Net [45] further
extended EMANet into a 3D asymmetric EM-based atten-
tion network, which enhanced the performance of brain tu-
mor segmentation. Enlightened by the flexible and accurate
parameter estimation in the EM-based algorithm, we design
a simple yet effective EM-based interactive module to con-
struct a task-consensual basis among tasks.

3. Method
3.1. Overview of ClassFormer

The proposed SEM is designed to investigate both intra-task
hierarchical cues and inter-task correlations, as depicted in
Fig. 3. Specifically, we employ the Transformer backbone
as the shared encoder for individual tasks to yield stage-
wise representations from the cascaded blocks, and thereby
exploring long-distance relationships. Leveraging these hi-
erarchical features, the intra-task reasoning (in Sec. 3.2)
adaptively explores deformed points across stages. This
process decouples the characteristics of various tasks and
updates them separately based on their internal task struc-
tures. To further understand the correlation among various
tasks, we build an inter-task EM-based interactive module
(in Sec. 3.3). This module can explore the correspondences
among multiple-task features. Finally, the enhanced rep-
resentations, which incorporate both task-independent and
task-consensual contexts, are sent to a specialized head to
produce pixel-wise prediction. In the following sections,
we will elaborate on the details of our SEM.

3.2. Intra-Task Hierarchy-Adaptive Module

To decouple task-aware independence from the task-
agnostic features produced by a shared encoder, our ap-
proach identifies the distinctive salient region of each task.
This is particularly evident when considering the different
stages of representation; for instance, shallow layers tend
to capture more detailed, fine-grained features, whereas
deep layers increasingly focus on broader semantic context.
Given that each task may place varying levels of importance
on different stages of representation, it is crucial to estab-
lish a mechanism for capturing the long-range dependencies
across these stages. A direct approach would be to employ a
transformer block on the long sequence formed by concate-
nating multi-stage tokens. However, this method can lead to
unnecessary computational overhead and the potential for
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Figure 3. An overview of intra-task hierarchy-adaptive module. For clarity, we show the case with two stages (i.e., S = 2) and four
deformed points in each stage (i.e., Ns = 4, s = 1, · · ·, S).

interference due to the processing of irrelevant correlations.
To address this, we design an intra-task transformer that uti-
lizes a hierarchy-adaptive key/value mechanism tailored to
the specific task at hand. This allows for the learning of
task-relevant visual patterns with a more efficient balance
between computational cost and performance.

Hierarchical deformed points. As illustrated in the Fig. 3,
given a set of task-agnostic features from S hierarchical
stages F = {F1, . . . , FS}, we individually sent F into the
intra-task module with hierarchy exploration for T times
(where T is the number of tasks), which is capable of gen-
erating a collection of decoupled feature maps with task-
specific cues. To unify the channel-wise dimension of each
stage, a convolution operation is first utilized to transfer the
channel into the same number of C. Enlightened by [37],
a set of uniform grids is considered as reference points,
generated from a downsampling rate rs built upon the in-
put feature Fs ∈ RHs×Ws×C . In this way, the values
of reference points are formed into 2D spatial coordinates
{(0, 0), · · · , (⌊Hs/rs⌋ − 1, ⌊Ws/rs⌋ − 1)}. Subsequently,
a normalization operation is adopted to further constrain the
range into [−1,+1].

To generate the corresponding offsets for all reference
points, an offset network θoffset(·) is designed and takes
the stage-wise feature Fs as input and outputs ∆p =
θoffset(Fs). Specifically, the offset network is designed
with a convolution with stride rs, following a GELU ac-
tivation and another convolution to generate the ∆p ∈
R⌊

Hs
rs
⌋×⌊Ws

rs
⌋×2. Similarly, tanh(·) is applied on the gen-

erated ∆p to scale the value into [−1,+1]. The locations of
deformed points ps can be obtained by:

ps = prefs + θoffset(xs). (1)

In this way, a collection of deformed points from hierar-
chical features can be obtained by p = {ps|s = 1, . . . , S}.
Accordingly, the corresponding features of selected points

can be further sampled, by adopting the differentiable bilin-
ear interpolation ϕ(·; ·):

x̃s = ϕ(Fs; p
j
i |i = 1, . . . , S; j = 1, . . . , Ns), (2)

where Ns is the number of deformed points in the s-th stage,
which is equals to ⌊Hs/rs⌋ × ⌊Ws/rs⌋. Accordingly, the
collected features x̃ = {xs|s = 1, . . . , S} have the size of
S ×N × C, and N denotes the total number of hierarchical
deformed points, which is equals to

∑S
s=1Ns.

Hierarchical weights. It is vital to emphasize the im-
portance of each stage, which can optimally highlight the
informative features while suppressing redundant feature
maps. Enlightened by this, we aim to generate the hier-
archical weight W from the query Q, adaptively. Specif-
ically, embedded with hierarchical cues, Q is generated
by unifying the multi-stage features into the same mini-
mum feature dimension (i.e., HS × WS), and followed by
a 3×3 convolution operation and GELU activation, result-
ing in Q ∈ RHS×WS×C . Then, the deformed features
x̃Q ∈ RN×C on the aggregated Q are selected position-
wisely, according to the sampling function ϕ(·; ·) in Eq. (2).
Then, a sub-network θHW (·) is adopted for measuring the
importance of stages for each deformed point. Specifically,
θHW (·) is designed with two linear operations with a RELU
function. The whole process can be formulated as:

W = θHW (x̃Q) ∈ RN×S , where x̃Q = ϕ(Q; p). (3)

Notably, we apply the softmax function to constrain its
value into [0,1]. Benefiting from the adaptive weight W , the
hierarchy-aware key k and value v can be obtained by the
weighted average of deformed points from multiple stages,
followed by two projection matrices Wk and Wv:

K̃ =
(
WT ⊗ x̃

)
Wk, Ṽ =

(
WT ⊗ x̃

)
Wv. (4)

⊗ is the weighted summation operation. By doing this, the
aggregated K and V are embedded with the cross-stage
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Figure 4. The structure of inter-task EM-interactive module.

cues. Finally, with the Q, K̃ and Ṽ , multi-head attention
is applied to capture long-range dependency. In this way,
the computational cost of our hierarchy-adaptive module
is O(CHSWS

∑S
s=1 ⌊Hs/rs⌋ × ⌊Ws/rs⌋), which is more

acceptable than the naive implementation by concatenat-
ing multi-stage tokens with the quadratic computation com-
plexity of O(C(

∑S
s=1 HsWs)

2).

3.3. Inter-Task EM-Interactive Module

The importance of learning task-mutual information cannot
be overstated, as it plays a critical role in uncovering the
intricate correlations among various aspects of an input im-
age. This process is fundamental for establishing a robust
multi-task framework capable of handling the complexities
and variations in different tasks. In pursuit of this objective,
the most straightforward approach would be to concatenate
the feature maps that are independent of each task. This
concatenated features can then be utilized to compute the
interdependencies across tasks by employing a multi-head
self-attention (MHSA) mechanism as delineated in [41]:

[X̃1,· · ·,X̃T ] = MHSA([X1,· · ·,XT ]) ∈ RC×THW . (5)

However, such a naive interaction is not effective, since the
built-in all-pair reliance might be confused and disturbed by
inconsistent details, and thus fails to achieve the satisfactory
performance. Additionally, the quadratic computation com-
plexity of O(CT 2H2W 2) may lead to the redundant calcu-
lation. Different from these methods with the concatenated
tokens as K,V ∈ RC×THW in the self-attention, our inter-
task interactive module (in Fig. 4) aims to find a compact set
of bases µ ∈ RC×K from various tasks. Since K ≪ HW ,
our module reduces the complexity from O(CT 2H2W 2)
to O(CTHWK), making the final pixel-wise prediction of
each task more tractable. Inspired by the verified efficacy of
EM [16, 29], our key idea is to find the maximum likelihood
solution for exploring the latent mutual information.

Preliminaries of EM Algorithm: It is an iterative strat-
egy for estimating parameters of models with latent vari-
able. Given the observed data X = {x1,x2, · · ·,xN} and
unobserved hidden variables A = {a1,a2, · · ·,aN} with
N samples, the goal of EM is to estimate the parame-
ters θ(r) by maximizing the likelihood in r-th iteration:

θr = argmax
∑N

i=1 log
∑

ai
p(xi,ai; θ

(r−1)). In each EM
iteration, two steps are involved, i.e., the expectation step (E
step) and the maximization step (M step):

• E step. It uses the posterior to find the conditional prob-
ability expectation: Qi(ai) = p(ai|xi, θ

(r−1)).
• M step. It determines the newly revised parame-

ters by maximizing the likelihood function: θ(r) =

argmax
∑N

i=1

∑
ai
Qi(ai) log

p(xi,ai;θ
(r−1))

Qi(ai)
.

Both steps are alternately executed for R iterations to con-
verge to an optimum.

EM Algorithm for Gaussian Mixture Models (GMM):
As a special case of the EM, GMM [28] models the distri-
bution of data xn as a linear superposition of K Gaussians:

• E step. For GMM, latent a(r)nk can be re-estimated as:

a
(r)
nk =

N (xn|µ(r−1)
k , I)∑K

j=1N (xn|µ(r−1)
j , I)

. (6)

To simplify, the posterior probability of xn can be for-
mulated with the kernel function K as: p (xn|µk) =
K(xn,µk). In this way, Eq. (6) can be rewritten as:

a
(r)
nk =

K(xn,µ
(r−1)
k )∑K

j=1K(xn,µ
(r−1)
j )

. (7)

By taking the exponential inner dot exp
(
aTb

)
as the

formulation of kernel function, Eq. (7) can be re-
formulated in a form similar to the attention model as:

a
(r)
nk =

exp(xn(µ
(r−1)
k )

T
/τ)∑K

j=1exp(xn(µ
(r−1)
k )T/τ)

, (8)

where τ is the constant to adjust the distribution of A.
• M step. After that, the M step is adopted to calculate

the bias µ(r) with the estimated A(r), via maximizing
the likelihood. Specifically, µ(r) can be estimated by
applying the weighted average on X:

µ
(r)
k =

1

Nk
a
(r)
nkxn, where Nk =

∑N
m=1a

(r)
mk. (9)

Update X and µ on T tasks. After alternating for R itera-
tions, the parameters of GMM are converged, and the final
µ(R) and A(R) are used to reconstruct X̃ in Fig. 4, which
can be formulated as X̃ = A(R)µ(R).

Notably, each task-independent feature Xt is fed into the
EM-interactive module for enhancing the representations.
Specifically, they share the same initial µ(0) in the first it-
eration, and re-building a task-aware (µt)(R) (e.g., the final
bias for the t-th task) by the iterations. Then, we fuse the
(µt)(R) to obtain the final µR with the mutual information:

µ(R) =
1

T
((µ1)(R)+· · ·+(µt)(R)+· · ·+(µT )(R)︸ ︷︷ ︸

T tasks

).

(10)
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Table 1. Comparison with SOTA methods on the NYUD-V2 (left) and PASCAL-Context (right) datasets of different tasks.

NYUD-v2
Semseg
mIoU ↑

Depth
RMSE ↓

Normal
mErr ↓

Boundary
odsF ↑ PASCAL-Context

Semseg
mIoU ↑

Parsing
mIoU ↑

Saliency
maxF ↑

Normal
mErr ↓

Boundary
odsF ↑

Cross-Stitch [26] 36.34 0.6290 20.88 76.38 PAD-Net [39] 53.60 59.60 65.80 15.30 72.50
PAD-Net [46] 36.61 0.6270 20.85 76.38 ASTMT [23] 68.00 61.10 65.70 14.70 72.40
PAP [46] 36.72 0.6178 20.82 76.42 MTI-Net [33] 61.70 60.18 84.78 14.23 70.80
PSD [48] 36.69 0.6246 20.87 76.42 ATRC [2] 62.69 59.42 84.70 14.20 70.96
MTI-Net [33] 45.97 0.5365 20.27 77.86 ATRC-ASPP [2] 63.60 60.23 83.91 14.30 70.86
ATRC [2] 46.33 0.5363 20.18 77.94 ATRC-BMTAS [2] 67.67 62.93 82.29 14.24 72.42
MQTransformer [40] 49.18 0.5785 20.81 77.00 MQTransformer [40] 71.25 60.11 84.05 14.74 71.80
DeMT [41] 51.50 0.5474 20.02 78.10 DeMT [41] 75.33 63.11 83.42 14.54 73.20
InvPT [42] 53.56 0.5183 19.04 78.10 InvPT [42] 79.03 67.61 84.81 14.15 73.00
TaskPrompter [43] 55.30 0.5152 18.47 78.20 TaskPrompter [43] 80.89 68.89 84.83 13.72 73.50
Ours 56.82 0.4937 18.45 78.40 Ours 81.66 69.90 84.95 13.39 73.80

Figure 5. Visual comparisons of Ground Truth (GT), our SEM, and TaskPrompter (TP) among four tasks on the NYUD-v2 dataset.

Then, the obtained µ(R) is initialized as the µ(0) for
the next batch. Notably, to avoid catastrophic forgetting
from the previous stages, an exponential moving average
(EMA) [16] is utilized to ensemble the information in dif-
ferent training steps. Hence, the update of µ(0) can be for-
mulated as µ(0) = αµ(0) + (1 − α)µ̄(T ), where α is the
EMA decay that controls the updating rate, and µ̄(T ) is ob-
tained from averaging µ(T ) over a mini-batch.

Discussion. The EM-interactive design is noteworthy for its
ability to reconstruct low-rank, compact task-aware features
that are devoid of superfluous elements. During the iterative
process, each task starts with the same initial value of µ(0),
shared across all tasks. Concurrently, the representation of
each task is updated to reflect its unique internal structure.
As the EM iterations progress, the generated (µt)

(R) is re-
shaped and then reintegrated back into the initial µ(0) for
the next input feature; taking into account the consensus of
tasks, the EM algorithm effectively narrows the task dispar-
ities and enhancing task performance. Note that the learned
µ(0) remains constant during the inference.

In our approach, we introduce a task-specific decoder to
prevent feature corruption from other tasks. The decoder
design is informed by the principle of gradually increasing
spatial resolution, as suggested by [42], to preserve the es-
sential spatial structure. Specifically, at each stage of the
decoder, the input feature is first upsampled through bi-
linear interpolation to match the size of the correspond-
ing encoder stage, followed by an addition operation with
the encoder feature. Subsequently, the combined encoder-
decoder representation is refined using a lightweight global
self-attention mechanism [35]. Further details on this pro-
cess can be found in the Appendix. To further enhance the
decoder with interactive awareness, the refined decoder fea-

ture is input into our EM-based module, facilitating a more
nuanced and effective interaction among tasks.

4. Experiments
4.1. Setup

Datasets. Experiments are conducted on two public
datasets: (1) NYUD-v2 [30] is an indoor scene dataset that
pairs RGB and depth frames. It is typically used for tasks
such as semantic segmentation (SemSeg), monocular depth
estimation (Depth), surface normal estimation (Normal),
and boundary detection (Boundary). Following the settings
in [30], the dataset is divided into 795 training images and
654 testing images. (2) PASCAL-Context [3] is a natural
scene dataset featuring 21 semantic classes. It encompasses
tasks such as SemSeg, human parts segmentation (Parsing),
saliency estimation (Saliency), Normal, and Boundary, with
4, 998 images for training and 5, 105 images for testing.
Metrics. We employ five metrics to compare our method
with other multi-task schemes, including mean Intersection
over Union (mIoU), root mean square error (RMSE), mean
Error (mErr), optimal dataset scale F-measure (odsF), and
maximum F-measure (maxF). Following [41, 42], ∆m is
utilized to quantify the average performance gain of multi-
task models compared to single-task models.
Implementation Details. All models are trained for
40, 000 iterations with the same loss function as in [42].
Specifically, we evaluate our method on various backbones,
including Swin-Transformer (Swin) and ViT (discussed in
Sec. 4.4). We use the Adam optimizer with a learning rate of
1×10−5 for NYUD-v2 and 2×10−5 for PASCAL-Context,
a weight decay rate of 10−6, and a batch size of 4. All hy-
perparameter selections and ablation studies are conducted
on the NYUD-v2 dataset with the ViT-L encoder.
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Figure 6. Hyper-parameter analysis of two task-aware modules across four tasks on the NYUD-v2 dataset: intra-task module with various
encoder stages (ES) in (a); inter-task module on different decoder stages (DS) in (b) and iteration numbers (R) in (c).

Figure 7. t-SNE visualization of deep feature representations ex-
tracted by ours (a) and the baseline (b) on PASCAL-Context.

4.2. Benchmarking Against State-of-the-Arts

We substantiate the efficacy of our SEM by conducting a
series of experimental comparisons with state-of-the-arts.
Notably, the two prior leading algorithms, i,e, InvPT [42]
and TaskPrompter [43], along with our SEM, are built upon
an identical ViT-L encoder for feature extraction.

Quantitative Comparison. The experimental results are
highlighted in Table 1, with the top results accentuated in
bold. As depicted in Table 1 (left), our approach sets a new
benchmark across four metrics on NYUD-v2, outperform-
ing the erstwhile frontrunner, TaskPrompter, by margins of
1.52% and 2.15% for semantic segmentation and depth esti-
mation tasks, respectively. To further attest to the versatility
of our method, we compare it against extant state-of-the-
art models on an additional dataset (i.e., PASCAL-Context).
The comparative results, presented in Table 1 (right), show
that our approach also achieves superior performance across
five tasks, with improvements in Semseg: +0.77 in mIoU,
Parsing: +1.01 in mIoU, Saliency: +0.12 in maxF, Normal:
-0.33 in mErr, and Boundary: +0.30 in odsF. These gains
underscore the robustness of our method in learning effi-
cient intra-task and inter-task dependencies.

Qualitative Comparison. Fig. 5 shows visual comparisons
of the top two methods on the NYUD-v2 dataset across four
tasks. It is evident that our method is adept at producing
high-fidelity, pixel-accurate predictions for various tasks,
yielding results that are more congruent with the ground
truth and exhibit enhanced clarity in detail.

4.3. Hyperparameters

Intra-task Module with Various Encoder Stages. Our
initial investigation focuses on the impact of incorporating
a varying number of encoder stages (ES) into our intra-task
module. ViT-L encoder has 24 layers, and we treat 6 lay-
ers as a stage [42], e.g., the output of layer 6, 12, 18, 24
serves as stage 1, 2, 3, 4, respectively. As shown in Fig. 6
(a), we first integrate a single stage (ES=1) from the deepest
encoder, which achieves an improvement over our baseline
(ES=0). By increasing the number of stages, we observe a
corresponding enhancement in accuracy, with the optimal
performance attained upon the inclusion of all stages.

Inter-task Module on Different Decoder Stages. Subse-
quently, we investigate the effects of embedding our inter-
task module at various stages within the decoder (DS), with
iteration R = 3 throughout these trials. As can be observed
in Fig. 6 (b), the progressive incorporation of inter-task
module across different stages yields notable performance
gains, underscoring the value of facilitating full-stage inter-
action. Consequently, in our experiments, we incorporate
the inter-task module into all decoder stages.

Inter-task Module with Iterations R. To discern the op-
timal setting of the iteration R, that influences the conver-
gence of the EM-based interactions, we conduct a series of
experiments across a spectrum of R values. As evidenced
in Fig. 6 (c), the peak performance is attained at R = 5,
which is adopted as the equilibrium point that harmonizes
accuracy with complexity for subsequent experiments.

4.4. Ablation Study

Comparison of Multi-task and Single-task Learning. In
this section, we provide a comparative analysis between our
SEM and the baseline under two learning paradigms: multi-
task learning (MTL) and single-task learning (STL), to eval-
uate the efficacy of our multi-task approach. (i) MTL base-
line is anchored in ViT-L and incorporates a task-specific
head characterized by a 3 × 3 convolution block, mirror-
ing the head configuration of the proposed model. (ii) STL
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Table 2. Ablation study of our SEM on the NYUD-v2 dataset.

# Method Semseg
mIoU ↑

Depth
RMSE ↓

Normal
mErr ↓

Boundary
odsF ↑

MTL Gain
∆m ↑

1 STL Model 54.27 0.5147 18.96 77.80 -
2 MTL Model 52.39 0.5223 19.23 77.40 -1.72
3 Our baseline 53.40 (↑ 1.01) 0.5192 (↓ 0.0031) 19.15 (↓ 0.08) 77.70 (↑ 0.30) -0.90 (↑ 0.82)
4 Our baseline + intra-task module 56.01 (↑ 3.62) 0.5026 (↓ 0.0197) 18.63 (↓ 0.60) 78.20 (↑ 0.80) 1.95 (↑ 3.67)
5 Our baseline + inter-task module 55.83 (↑ 3.44) 0.5053 (↓ 0.0170) 18.60 (↓ 0.63) 78.10 (↑ 0.70) 1.75 (↑ 3.47)
6 Our baseline + inter- & inter-task 56.82 (↑ 4.43) 0.4937 (↓ 0.0286) 18.45 (↓ 0.78) 78.40 (↑ 1.00) 3.06 (↑ 4.78)

Table 3. Compatibility of our method built upon different Transformer-based encoders on the NYUD-v2 dataset.

Encoders
(for MTL)

Semseg
mIoU ↑

Depth
RMSE ↓

Normal
mErr ↓

Boundary
odsF ↑

Encoders
(for ours)

Semseg
mIoU ↑

Depth
RMSE ↓

Normal
mErr ↓

Boundary
odsF ↑

Swin-T 41.71 0.6463 23.18 75.40 Swin-T 47.44 0.5669 20.43 76.50
Swin-B 49.82 0.5638 21.50 76.20 Swin-B 54.95 0.5099 19.38 77.80
ViT-B 47.23 0.5712 19.69 76.20 ViT-B 51.34 0.5222 18.95 77.60
ViT-L 52.39 0.5223 19.23 77.40 ViT-L 56.82 0.4937 18.45 78.40

baseline is architecturally identical to the MTL baseline;
this model, however, is focused on one task at a time. As
evidenced in Table 2, our method (#6) markedly outper-
forms the MTL baseline (#2), registering a cumulative gain
of 4.78% across four tasks. Intriguingly, the proposed ap-
proach also demonstrates a substantial enhancement over
the STL baseline (#1), with a 3.06% uptick in multi-task
performance, demonstrating the capability of our model in
concurrently stimulating each task.

Dissection of Intra-task and Inter-task Modules. In our
ablation study, we meticulously evaluate the contributions
of the intra-task module and inter-task module. Referring
to Table 2, we establish our baseline (#3), which integrates
a decoder (as expounded in Sec. 3.3) into the MTL baseline
model (#2). By incorporating the intra-task module (#4),
we observe notable improvements across all four tasks rela-
tive to our baseline. This validates the capacity of our model
to harness cross-stage dependencies, thereby enhancing the
internal structural learning specific to each task. In addition,
the deployment of the inter-task module (#5) also elevates
the performance across all tasks, yielding a multi-task gain
(i.e., ∆m) of 1.75%, which is instrumental in promoting in-
teractive learning among tasks. By synergizing the intra-
task and inter-task modules, our method (#6) optimally ex-
ploits the potential of learning both task-independent and
task-consensual information, mutually reinforcing each as-
pect to achieve peak performance through the generation of
a more potent multi-task characteristic.

Integration with Different Encoders. We incorporat two
distinct categories of Transformer-based encoders to deter-
mine the compatibility of our SEM. Specifically, we utilized
the Swin-Transformer series (Swin-T and Swin-B) [19] and
the ViT variants (ViT-B and ViT-L) [6]. The comparative
results are presented in Table 3. The left columns of the ta-
ble delineate the outcomes for the MTL baseline, while the
right columns detail the performance metrics achieved by

our SEM. The results clearly indicate that our model con-
sistently boost the performance by a large margin across
different networks and various tasks.

Distribution of Deeply Learned Features. Fig. 7 presents
a comparative visualization of the deep feature representa-
tions derived from our model against those from the MTL
baseline. This comparison is facilitated by the application
of t-SNE on the Pascal-Context dataset. The enhanced clus-
tering and separation indicates that our model significantly
improves the discriminative capacity of the deep features,
which is essential for semantic segmentation.

5. Conclusion

In this paper, we introduced synergy embedding models
(SEM), a novel transformer-based architecture, which over-
comes the limitations of current multi-task dense prediction
methods. SEM provides an innovative intra-task module
that adaptively generates salient keys/values from hierar-
chical encoders for an optimal trade-off, and an inter-task
EM-based interaction that iteratively learns a compact set
of bases from various tasks for ensuring robustness. Ex-
tensive experimental analyses validated the effectiveness of
our SEM, demonstrating consistent superiority over exist-
ing state-of-the-art methods on two public benchmarks.
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