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Figure 1. Taking text descriptions as input, HumanNorm can generate 3D human models with superior geometric quality and realistic
textures. The 3D human models can be exported as meshes and texture maps, making them suitable for downstream applications.

Abstract

Recent text-to-3D methods employing diffusion models
have made significant advancements in 3D human gener-
ation. However, these approaches face challenges due to
the limitations of text-to-image diffusion models, which lack
an understanding of 3D structures. Consequently, these
methods struggle to achieve high-quality human genera-
tion, resulting in smooth geometry and cartoon-like appear-
ances. In this paper, we propose HumanNorm, a novel
approach for high-quality and realistic 3D human gener-
ation. The main idea is to enhance the model’s 2D per-
ception of 3D geometry by learning a normal-adapted dif-
fusion model and a normal-aligned diffusion model. The
normal-adapted diffusion model can generate high-fidelity
normal maps corresponding to user prompts with view-
dependent and body-aware text. The normal-aligned dif-
fusion model learns to generate color images aligned with
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the normal maps, thereby transforming physical geometry
details into realistic appearance. Leveraging the proposed
normal diffusion model, we devise a progressive geome-
try generation strategy and a multi-step Score Distillation
Sampling (SDS) loss to enhance the performance of 3D
human generation. Comprehensive experiments substanti-
ate HumanNorm’s ability to generate 3D humans with in-
tricate geometry and realistic appearances. HumanNorm
outperforms existing text-to-3D methods in both geometry
and texture quality. The project page of HumanNorm is
https://humannorm.github.io/.

1. Introduction
Large-scale generative models have achieved significant
breakthroughs in diverse domains, including motion [42],
audio [1, 26], and 2D image generation [25, 30, 31, 33, 34].
However, the pursuit of high-quality 3D content genera-
tion [5, 28, 38, 40] following the success of 2D genera-
tion poses a novel and meaningful challenge. Within the
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broader scope of 3D content creation, 3D human genera-
tion [10, 17, 18, 36] holds particular significance. It plays
a pivotal role in applications such as AR/VR, holographic
communication, and the metaverse.

To achieve 3D content generation, a straightforward ap-
proach is to train generative models like GANs or diffusion
models to generate 3D representations [2, 4, 12, 44]. How-
ever, these approaches face challenges due to the scarcity
of current 3D datasets, resulting in restricted diversity and
suboptimal generalization. To overcome these challenges,
recent methods [19, 21, 28] adopt a 2D-guided approach to
achieve 3D generation. Their core framework builds upon
pre-trained text-to-image diffusion models and distills 3D
contents from 2D generated images through Score Distilla-
tion Sampling (SDS) loss [28]. Leveraging the image gen-
eration priors learned from large-scale datasets, this frame-
work enables more diverse 3D generation. However, cur-
rent text-to-image diffusion models primarily emphasize the
generation of natural RGB images, which results in a lim-
ited perception of 3D geometry structure and view direc-
tion. This limitation can result in Janus (multi-faced) ar-
tifacts and smooth geometry. Moreover, the texture of the
3D contents generated by existing methods is sometimes
not based on geometry, which can result in fake 3D details,
particularly in wrinkles and hair. Although some 3D hu-
man generation methods [3, 17, 18] introduce human body
models such as SMPL [20] for animation and enhancing the
quality of body details, they fail to address these fundamen-
tal limitations. Their results still suffer from sub-optimal
geometry, fake 3D details and over-saturated texture.

In this paper, we present HumanNorm, a novel approach
for generating high-quality and realistic 3D human models.
The core idea is introducing a normal diffusion model to
enhance the perception of 2D diffusion model for 3D ge-
ometry. HumanNorm is divided into two components: ge-
ometry generation and texture generation. For the geome-
try generation, we train a normal-adapted diffusion model
using multi-view normal maps rendered from 3D human
scans and prompts with view-dependent and body-aware
text. Compared with text-to-image diffusion models, the
normal-adapted diffusion model filters out the influence of
texture and can generate high-fidelity surface normal maps
according to prompts. This ensures the generation of 3D
geometric details and avoids Janus artifacts. Since normal
maps lack depth information, we also learn a depth-adapted
diffusion model to further enhance the perception of 3D ge-
ometry. The 2D results generated by these diffusion models
are presented in Fig. 2. The geometry is generated using
both normal and depth SDS losses, which are based on our
normal-adapted and depth-adapted diffusion models. Fur-
thermore, a progressive strategy is designed to reduce geo-
metric noise and enhance geometry quality.

As previously discussed, the core challenges for texture

generation are fake 3D details and over-saturated appear-
ances, as illustrated in Fig. 3. To avoid fake 3D details, we
learn a normal-aligned diffusion model from normal-image
pairs. This model efficiently integrates human geometric in-
formation into the texture generation process by taking nor-
mal maps as conditions. It accounts for elements such as
shading caused by geometric folds and aligns the generated
texture with surface normal. To tackle the over-saturated
appearances, we introduce a multi-step SDS loss based on
our normal-aligned diffusion model for texture generation.
The loss recovers images with multiple diffusion steps, en-
suring a more natural appearance of the generated texture.

The 3D models generated by HumanNorm are presented
in Fig. 1. The key contributions of this paper are:
1. We propose a method for detailed human geometry gen-

eration by introducing a normal-adapted diffusion model
that can generate normal maps from prompts with view-
dependent and body-aware text.

2. We propose a method for geometry-based texture gen-
eration by learning a normal-aligned diffusion model,
which transforms physical geometry details into realis-
tic appearances.

3. We introduce the multi-step SDS loss to mitigate over-
saturated texture and a progressive strategy for enhanc-
ing stability in geometry generation.

2. Related work
Our study is primarily centered on the realm of text-to-3D,
with a specific emphasis on text-to-3D human generation.
Here, we revisit some recent work related to our method.

Text-to-3D content generation. Early methods, such as
CLIP-Forge [35], DreamFields [14], and CLIP-Mesh [23],
combine a pre-trained CLIP [29] model with 3D repre-
sentations, and generate 3D content under the supervision
of CLIP loss. DreamFusion [28] introduces the SDS loss
and generates NeRF [22] under the supervision of a text-
to-image diffusion model. Following this, Magic3D [19]
proposes a two-stage method that employs both NeRF and
mesh for high-resolution 3D content generation. Latent-
NeRF [21] optimizes NeRF in the latent space using a la-
tent diffusion model to avoided the burden of encoding im-
ages. TEXTure [32] introduces a method for texture gen-
eration, transfer, and editing. Fantasia3D [5] decomposes
the generation process into geometry and texture generation
to enhance the performance of 3D generation. To address
the over-saturation issue, ProlificDreamer [45] proposes a
Variational Score Distillation (VSD) loss to produce high-
quality NeRF. IT3D [6] introduces GAN loss and leverages
generated 2D images to enhance the quality of 3D contents.
MVDream [38] proposes a multi-view diffusion model to
generate consistent multi-views for 3D generation. Dream-
Gaussian [41] uses 3D Gaussian splatting [16] to acceler-
ate the generation process. However, these methods are un-
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Figure 2. 2D results by normal-adapted and depth-adapted diffusion models. The view-dependent texts like “front view” are utilized
to control the view direction. The body-aware texts like “upper body” are employed to control which body part is generated.

Figure 3. Problems of existing methods.

able to generate high-quality 3D humans, leading to Janus
artifacts and unreasonable body proportions. Our method
addresses these issues by introducing normal-adapted dif-
fusion model that can generate normal maps from prompts
with view-dependent and body-aware text.

Text-to-3D human generation. Recently, EVA3D [11],
LSV-GAN [47], GETAvatar [51], Get3DHuman [46] intro-
duce GAN-based frameworks to directly generate 3D rep-
resentations for 3D human generation. AvatarCLIP [10] in-
tegrates SMPL and Neus [43] to create 3D humans, lever-
aging CLIP for supervision. DreamAvatar [3] and Avatar-
Craft [15] utilize the pose and shape of the parametric
SMPL model as a prior, guiding the generation of humans.
DreamWaltz [13] creates 3D humans using a parametric
human body prior, incorporating 3D-consistent occlusion-
aware SDS and 3D-aware skeleton conditioning. DreamHu-
man [17] generates animatable 3D humans by introducing
a pose-conditioned NeRF that is learned using imGHUM.
AvatarBooth [48] uses dual fine-tuned diffusion models sep-
arately for the human face and body, enabling the creation
of personalized humans from casually captured face or body
images. The most recent model, AvatarVerse [49], trains a
ControlNet with DensePose [7] as conditions to enhance the
view consistency of 3D human generation. TADA [18] de-
rives SMPL-X [27] with a displacement layer and a texture
map, using hierarchical rendering with SDS loss to produce
3D humans. While these methods reduce Janus artifacts
and unreasonable body shapes by introducing human body
models, they still produce 3D humans with fake 3D details,
over-saturation and smooth geometry. Moreover, the intro-
duction of SMPL presents challenges for these methods in
generating 3D humans with intricate clothing such as puffy
skirts and hats. Our method addresses these issues by learn-
ing normal diffusion model and introducing multi-step SDS
loss, thereby enhancing the both geometry and texture qual-
ity of 3D humans.

3. Preliminary
3.1. Diffusion-guided 3D Generation Framework

When provided with text y as the generation target, the
core of the diffusion-guided 3D generation framework aims
to align the images x0 rendered from the 3D represen-
tation θ with the generated image distribution p(x0|y)
of the 2D diffusion model. Specifically, during the 3D
generation process, the rendered images x0 are obtained
by randomly sampling cameras c and rendering through
a differentiable rendering function g(θ, c). Suppose the
rendered images from various angles are distributed as
qθ(x0|y) =

∫
qθ(x0|y, c)p(c)dc, the optimization objec-

tive of diffusion-guided 3D generation framework can be
represented as follows:

min
θ

DKL(q
θ(x0|y) ∥ p(x0|y)). (1)

Directly optimizing this objective is highly challenging, and
recent methods have proposed losses such as SDS [28] and
VSD [45] to solve it. To further enhance the quality of ge-
ometry, Fantasia3D [5] proposes to disentangle the geome-
try θg and appearance θc in the 3D representation θ. In the
geometry stage, it aligns qθg (zn0 |y), the distribution of the
rendered normal maps zn0 , with the natural image distribu-
tion p(x0|y):

min
θg

DKL(q
θg (zn0 |y) ∥ p(x0|y)). (2)

In the texture stage, the texture of 3D objects is optimized
through Eq. (1).

3.2. Bottleneck of Diffusion-guided 3D Generation

The bottleneck of the diffusion-guided 3D generation lies
in the T2I (text-to-image) diffusion model, which confines
itself to parameterize the probability distribution of natural
RGB images, denoted as p(x0|y). Therefore, current T2I
diffusion models lack the understanding of both view direc-
tion and geometry. Consequently, 3D generation directly
guided by the T2I diffusion model (Eq. (1)) leads to Janus
artifacts and low-quality geometry as shown in Fig. 3 (c-d).
Although Fantasia3D disentangles geometry and texture, it
still encounters issues originating from the T2I diffusion
model in both geometry and texture stages. In the geometry
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Figure 4. Overview of HumanNorm. Our method is designed for high-quality and realistic 3D human generation from given prompts.
The whole framework consists of geometry and texture generation. We first propose the normal-adapted and depth-adapted diffusion model
for the geometry generation. These two models can guide the rendered normal and depth maps to approach the learned distribution of high-
fidelity normal and depth maps through the SDS loss, thereby achieving high-quality geometry generation. In terms of texture generation,
we introduce the normal-aligned diffusion model. The normal-aligned diffusion model leverages normal maps as guiding cues to ensure
the alignment of the generated texture with geometry. We first exclusively employ the SDS loss and then incorporate the multi-step SDS
and perceptual loss to achieve realistic texture generation.

stage, directly aligning the rendered normal maps distribu-
tion qθg (zn0 |y) with the natural images distribution p(x0|y)
is inappropriate since normal maps significantly differ from
RGB images. This alignment results in geometry distor-
tions and artifacts, as depicted in Fig. 3 (a). In the tex-
ture stage, minimizing the divergence between the appear-
ance distribution qθc(x0|y) and the natural image distribu-
tion p(x0|y) may lead to fake 3D details due to the absence
of geometric guidance, as presented in Fig. 3 (b).

4. Method
We propose HumanNorm to achieve high-quality and real-
istic 3D human generation. The whole generation frame-
work has a geometry stage and a texture stage, as shown in
Fig. 4. In this section, we first introduce our normal diffu-
sion model, which consists of a normal-adapted diffusion
model and a normal-aligned diffusion model ( Sec. 4.1).
Then in the geometry stage, based on the normal-adapted
diffusion model, we utilize the DMTET [37] as the 3D rep-
resentation and propose a progressive generation strategy to
achieve high-quality geometry generation ( Sec. 4.2). In the
texture stage, building upon the normal-aligned diffusion
model, we propose the multi-step SDS loss for high-fidelity
and realistic appearance generation ( Sec. 4.3).

4.1. Normal Diffusion Model

In the pursuit of generating a high-quality and realistic
3D human from a given text target y, the first challenge
lies in achieving precise geometry generation. This en-
tails aligning the distributions of rendered normal maps
qθg (zn0 |c, y) from multiple viewpoints c with an ideal nor-
mal maps distribution p̂(zn0 |c, y). The next challenge is to
generate the realistic texture θc while ensuring its coherence
with the established geometry θg . Therefore, minimizing

the divergence between the distribution of rendered images
qθc(x0|c, y) and an ideal geometry-aligned images distribu-
tion p̂(x0|c, θg, y) becomes essential. The ideal optimiza-
tion objective is formulated as follows:

min
θg,θc

DKL(q
θg (zn0 |c, y) ∥ p̂(zn0 |c, y))︸ ︷︷ ︸

geometry generation objective

+DKL(q
θc(x0|c, y) ∥ p̂(x0|c, θg, y))︸ ︷︷ ︸

texture generation objective

.
(3)

However, as discussed in Sec. 3.1, the existing T2I (text-
to-image) diffusion model is limited to parameterize the dis-
tribution of natural RGB images, denoted as p(x0|y), which
deviates significantly from the ideal distributions p̂(zn0 |c, y)
and p̂(x0|c, θg, y). To bridge this gap, we propose the incor-
poration of normal maps, representing the 2D perception of
human geometry, into the T2I diffusion model to approxi-
mate p̂(zn0 |c, y) and p̂(x0|c, θg, y). For the geometry com-
ponent, we propose to fine-tune the diffusion model, adapt-
ing it to generate the distribution of normal map p(zn0 |y).
In the context of texturing, we utilize normal maps zn0 as
conditions to guide the diffusion model p(x0|zn0 , y) in gen-
erating normal-aligned images, which ensures that the gen-
erated texture aligns with the geometry. In addition, we fur-
ther introduce view-dependent text yv (e.g. “front view”)
and body-aware text yb (e.g. “upper body”), serving as an
additional condition for the diffusion model. This strategy
ensures that the generated images align with the view direc-
tion and enables body part generation, as depicted in Fig. 2.
The final optimization objective is:

min
θg,θc

DKL(q
θg (zn0 |c, y) ∥ p(zn0 |yv,yb, y))+

DKL(q
θc(x0|c, y) ∥ p(x0|zn0 ,yv,yb, y)).

(4)

Next, we will introduce our 3D human generation frame-
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work and construction of the normal-adapted diffusion
model and normal-aligned diffusion model used to parame-
terize p(zn0 |yv,yb, y) and p(x0|zn0 ,yv,yb, y) for geometry
and texture generation.

4.2. Geometry Generation

4.2.1 Normal-adapted Diffusion Model

Constructing the normal-adapted diffusion model for high-
quality geometry generation faces several challenges. First,
existing 3D human datasets are scarce, leading to a limited
number of normal maps for training. Therefore, we em-
ploy a fine-tuning strategy to adapt a text-to-image diffu-
sion model into a text-to-normal diffusion model. Then we
find the rendered normal maps undergo dramatic changes
with variations in viewing angles, which results in poten-
tial overfitting or underfitting issues. To mitigate this effect
and encourage the diffusion model to focus on perceiving
the details of geometry, we transform the normal maps zn0
from the world coordinate to camera coordinates by the ro-
tation R of the camera parameters. The transformed normal
maps z̃n0 are used for training the normal-adapted diffusion
model. As discussed in Sec. 4.1, we add the view-dependent
text yv and body-aware text yb as addition conditions. The
fine-tuning process employs this optimization objective:

min
ϕg

Ec,t,ϵ

[
∥ϵϕg

(αtz̃
n
0 + σt,y

v,yb, y, t)− ϵ∥22
]
, (5)

where c is a camera pose, t is a timestep, ϵ denotes noise and
y is a prompt. σt and αt are the parameters of the diffusion
scheduler. ϵϕg (·) is the normal-adapted diffusion model.

SDS loss [28] is widely employed in various diffusion-
guided 3D generation frameworks. It translates the opti-
mization objective in Eq. (1) into the optimization of the
divergence between two distributions with diffusion noise,
thereby achieving 3D generation. Our geometry is opti-
mized by the normal SDS loss based on the trained normal-
adapted diffusion model:

∇LSDS(θg) =

Ec,t,ϵ

[
ω(t)(ϵϕg

(z̃nt ,y
v,yb, y, t)− ϵ)

∂g(θg, c)

∂θg

]
.

(6)

where z̃nt corresponds to the rendered normal map z̃n0 with
the noise ϵ at timestep t. ω(t) is the parameters of the dif-
fusion scheduler. g(θg, c) denotes render the normal map
at camera pose c from geometry θg . In addition to normal
SDS loss, we also fine-tune a depth-adapted diffusion model
by simply changing normal maps to depth maps to calculate
depth SDS loss. We found that depth SDS loss can reduce
geometry distortion and artifacts in geometry generation, as
shown in Fig. 8.

4.2.2 Progressive Geometry Generation

DMTET [37] is used as our 3D representation. To augment
the robustness of 3D human generation, we initialize it with
a neutral body mesh. We propose a progressive strategy
including progressive positional encoding and progressive
SDF loss to mitigate geometric noise and enhance the over-
all quality of geometry generation.

Positional encoding [22, 24] maps each component of
input vectors to a higher-dimensional space, thereby en-
hancing the 3D representation’s ability to capture high-
frequency details. However, we found that the high fre-
quency of positional encoding can also lead to noisy sur-
faces. This is due to the DMTET prioritizing coarse ge-
ometry during the initial optimization stage, resulting in
the failure to translate high-frequency input into geomet-
ric details. To solve this, we employ a mask to suppress
high-frequency components of positional encoding for SDF
function in DMTET during the initial stage. This allows the
network to focus on low-frequency components of geome-
try and improve the training stability in the beginning. As
training progresses, we gradually reduce the mask for high-
frequency components. Thereby enhancing the details such
as clothes wrinkle.

In addition, the progressive SDF loss is introduced to fur-
ther improve the quality of geometry generation. We first
record the SDF functions of DMTET before reducing the
high-frequency mask, denoted as s(x). Then as training
progresses, we add the SDF loss to mitigate strange geom-
etry deformations:

LSDF (θg) =
∑
x∈P

∥s̃θg (x)− s(x)∥22, (7)

where s̃θg (x) is the SDF function in DMTET and P is the
set of random sampling points. This strategy can effectively
avoid unreasonable body proportions.

4.3. Texture Generation

4.3.1 Normal-aligned Diffusion Model

In texture generation, we fix the geometry parameters θg
and introduce the normal-aligned diffusion model as guid-
ance. The normal-aligned diffusion model can translate
physical geometry details into a realistic appearance and
ensure the generated texture is aligned with the geometry.
Specifically, we employ the strategy of ControlNet [50] to
incorporate transformed normal maps z̃n0 as the guided con-
dition of the T2I diffusion model. The training objective of
the normal-aligned diffusion model is as follows:

min
ϕc

Ec,t,ϵ

[
∥ϵϕc

(αtx0 + σt, z̃
n
0 ,y

v,yb, y, t)− ϵ∥22
]

(8)

After training, we propose a multi-step SDS loss based on
the normal-aligned diffusion model for texture generation.
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Figure 5. Examples of 3D humans generated by HumanNorm. The front view and normal map are rendered for visualization.

4.3.2 Multi-step SDS Loss

We generate texture in two stages. In the initial stage, we
employ the vanilla SDS loss of the normal-aligned diffusion
model ϵϕc

for texture generation:

∇LSDS(θc) =

Ec,t,ϵ

[
ω(t)(ϵϕc(xt, z̃

n
0 ,y

v,yb, y, t)− ϵ)
∂g(θc, c)

∂θc

]
.

(9)

While SDS loss can lead to over-saturated styles and appear
less natural as shown in Fig. 7 (c), it efficiently optimizes
a reasonable texture as an initial value. We subsequently
refine the texture through multi-step SDS and perceptual
loss. Different from SDS loss, multi-step SDS loss needs
multiple diffusion steps to recover the distribution of RGB
images, which promotes stability during optimization and
avoids getting trapped in local optima. As a result, the gen-
erated images appear more natural. To further prevent over-
saturation effects, perceptual loss is also applied to keep the
natural style of the rendering images consistent with the im-
ages generated by the normal-aligned diffusion model. The
loss is defined as:

∇LMSDS(θc) ≈

Ec,t,ϵ

[
ω(t)(h(xt, z̃

n
0 ,y

v,yb, y, t)− x0)
∂g(θc, c)

∂θ

]
+ λpEc,t,ϵ[(

V (h(xt, z̃
n
0 ,y

v,yb, y, t))− V (x0)
) ∂V (x0)

∂x0

∂g(θc, c)

∂θc

]
,

(10)

where V is the first k layers of the VGG network [39].
h(xt, z̃

n
0 ,y

v,yb, y, t) denotes the multi-step image genera-
tion function of the normal-aligned diffusion model. Specif-
ically, a view, rendered from the 3D human, initially has t
steps of noise added and is subsequently denoised to a clear
view. λp is the weight of perceptual loss.

5. Experiment

5.1. Implementation Details

For each prompt, our method needs 15K iterations for ge-
ometry generation and 10K iterations for texture genera-
tion. The entire generation process takes about 2 hours
on a single NVIDIA RTX 3090 GPU with 24 GB memory.
The final rendered images and videos have a resolution of
1024× 1024. Additional details, including dataset, training
settings, and more, can be found in our supplementary.

5.2. Qualitative Evaluation

The examples of 3D humans generated by HumanNorm is
shown in Fig. 5. Furthermore, we present qualitative com-
parisons with text-to-3D content methods including Dream-
Fusion [28], LatentNeRF [21], TEXTure [32], and Fanta-
sia3D [5], as well as text-to-3D human methods including
DreamHuman [17] and TADA [18].
Comparison with text-to-3D content methods. As illus-
trated in Fig. 6, the results produced by text-to-3D content
methods present some challenges. The proportions of the
generated 3D humans tend to be distorted, and the texture
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Figure 6. Comparisons with text-to-3D content methods and text-to-3D human methods. The results of DreamFusion are generated
by unofficial code. The results of DreamHuman are taken from its original paper and project page.

Method FID ↓ CLIP Score ↑

DreamFusion 145.2 28.65
LatentNeRF 152.6 27.42
TEXTure 142.8 27.08
Fantasia3D 120.6 28.47

DreamHuman 111.3 30.15
TADA 120.0 30.65

HumanNorm (Ours) 92.5 31.70

Table 1. Quantitative comparisons with text-to-3D content and
text-to-3D human methods.

appears to be over-saturated and noisy. DreamFusion strug-
gles to generate full-body humans, often missing the feet,
even given a prompt like “the full body of...”. In contrast,
our method delivers superior results with more accurate ge-
ometry and realistic textures.
Comparison with text-to-3D human methods. As shown
in Fig. 6, text-to-3D human methods yield outcomes with
enhanced geometry due to the integration of SMPL-X and
imGHUM human body models. In contrast, HumanNorm
can create 3D humans with a higher level of geometric de-
tail, such as wrinkles in clothing and distinct facial features.
Furthermore, text-to-3D human methods also encounter is-
sues with over-saturation, while our method can generate
more lifelike appearances thanks to the multi-step SDS loss.

5.3. Quantitative Evaluation

Evaluating the quality of generated 3D models quantita-
tively can be challenging. However, we attempt to assess

HumanNorm using two specific metrics. Firstly, we com-
pute the Fréchet Inception Distance (FID) [9], a measure
that compares the distribution of two image datasets. In our
case, we calculate the FID between the views rendered from
the generated 3D humans and the images produced by Sta-
ble Diffusion V1.5 [33]. In total, 30 prompts are used and
120 images are rendered or generated for each prompt. Sec-
ondly, we utilize the CLIP score [8] to measure the compat-
ibility between the prompts with the rendered views of 3D
humans. The results are detailed in Tab. 1. As can be ob-
served, HumanNorm achieves a lower FID score. This sug-
gests that the views rendered from our 3D humans are more
closely aligned with the high-quality 2D images generated
by the stable diffusion model. Furthermore, the superior
CLIP score of HumanNorm indicates our enhanced capa-
bility to generate humans that are more accurately aligned
with the prompts. Finally, we also conduct a user study to
evaluate HumanNorm. The details of this study are pro-
vided in our supplementary.

5.4. Ablation Studies

Effectiveness of normal-adapted and depth-adapted dif-
fusion models. In Fig. 7 (a), we show the geometry gen-
erated by a text-to-image diffusion model instead of our
normal-adapted and depth-adapted diffusion models. One
can see that the method struggles to generate facial geom-
etry, and holes appear on the ears. Additionally, the results
display smoother clothing wrinkles. The results validate
that our normal-adapted and depth-adapted diffusion mod-
els are beneficial in generating high-quality geometry.
Effectiveness of normal-aligned diffusion model. In
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Figure 7. Ablation studies. (a) Without normal-adapted and
depth-adapted diffusion. (b) Without normal-aligned diffusion
model. (c) Without multi-step SDS loss. (d) The full method.

Figure 8. Importance of depth SDS.

Fig. 7 (b), we experiment with the removal of the normal-
aligned diffusion model, opting instead for a text-to-image
diffusion model for texture generation. The generated tex-
ture is somewhat blurry and fails to accurately display ge-
ometric details. This is because the text-to-image diffu-
sion model struggles to align the generated texture with
geometry. However, using the normal-aligned diffusion
model, our method manages to overcome these limitations.
It achieves more precise and intricate details, leading to a
significant enhancement in the appearance of 3D humans.
Effectiveness of multi-step SDS loss. In Fig. 7 (c), we
present the result generated when only the SDS loss is used
in the texture generation. The generated model is noticeably
over-saturated. However, as shown in Fig. 7 (d), the texture
generated through multi-step SDS loss exhibits a more real-
istic and natural color, which underscores the effectiveness
of the multi-step SDS loss.
Effectiveness of depth SDS. Since normal maps lack depth
information, optimizing geometry by only calculating nor-
mal SDS loss may lead to failed geometry in some regions.
As shown in Fig. 8 (a), the ear exhibits artifacts when only
using normal SDS loss. This is because the normal of the
artifacts is similar to the normal of the head, making it non-
salient for the normal diffusion model. In contrast, we can
see the artifacts in the depth map. In Fig. 8 (b), it’s ev-
ident that the artifacts are reduced when adding the addi-
tional depth SDS loss based on our depth-adapted diffusion
model, which indicates the impact of depth SDS.

5.5. Applications

Text-based Editing. HumanNorm offers the capability to
edit both the texture and geometry of the generated 3D hu-

Figure 9. Applications of HumanNorm.

mans by adjusting the input prompt. As demonstrated in
Fig. 9 (a), we modify the color and style of Messi’s cloth-
ing, as well as his hairstyle.
Pose Editing. HumanNorm also provides the ability to edit
the pose of generated 3D humans by adjusting the pose of
the mesh used for initialization and modifying the prompts.
The results of pose editing are displayed in Fig. 9 (b).
3D Animation. HumanNorm enables the creation of life-
like human mesh featuring about 400K distinct faces and
an intricate 2K-resolution texture map. Based on the high-
quality models, we can animate them using full-body mo-
tion sequences. Results are presented in Fig. 9 (c-d)

6. Conclusion
We presented HumanNorm, a novel method for high-quality
and realistic 3D human generation. By learning the normal
diffusion model, we improved the capabilities of 2D diffu-
sion models for 3D human generation. Utilizing the trained
normal diffusion model, we introduced a diffusion-guided
3D generation framework. Additionally, we devised the
progressive strategy for geometry generation and the multi-
step SDS loss to address the over-saturation problem. We
demonstrated that HumanNorm can generate 3D humans
with intricate geometric details and realistic appearances.
Limitations and future work. HumanNorm primarily fo-
cuses on addressing the geometric and textural challenges
present in existing methods. As a result, 3D humans gen-
erated by HumanNorm necessitate a rigged human skeleton
for 3D animation. In our future work, we plan to incorpo-
rate SMPL-X to directly animate 3D humans and improve
the quality of body details such as fingers. Additionally, our
generated texture may exhibit undesired shading. To ad-
dress this, we are considering the use of Physically-Based
Rendering (PBR) for material estimation and relighting.
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