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Abstract

In a recent, strongly emergent literature on few-shot
CLIP adaptation, Linear Probe (LP) has been often re-
ported as a weak baseline. This has motivated intensive
research building convoluted prompt learning or feature
adaptation strategies. In this work, we propose and exam-
ine from convex-optimization perspectives a generalization
of the standard LP baseline, in which the linear classifier
weights are learnable functions of the text embedding, with
class-wise multipliers blending image and text knowledge.
As our objective function depends on two types of variables,
i.e., the class visual prototypes and the learnable blending
parameters, we propose a computationally efficient block
coordinate Majorize-Minimize (MM) descent algorithm. In
our full-batch MM optimizer, which we coin LP++, step
sizes are implicit, unlike standard gradient descent prac-
tices where learning rates are intensively searched over val-
idation sets. By examining the mathematical properties of
our loss (e.g., Lipschitz gradient continuity), we build ma-
jorizing functions yielding data-driven learning rates and
derive approximations of the loss’s minima, which provide
data-informed initialization of the variables. Our image-
language objective function, along with these non-trivial
optimization insights and ingredients, yields, surprisingly,
highly competitive few-shot CLIP performances. Further-
more, LP++ operates in black-box, relaxes intensive vali-
dation searches for the optimization hyper-parameters, and
runs orders-of-magnitudes faster than state-of-the-art few-
shot CLIP adaptation methods. Our code is available
at: https://github.com/FereshteShakeri/
FewShot-CLIP-Strong-Baseline.git.

1. Introduction
Recently, there has been a growing popularity in mul-
timodal learning methods, which process and merge in-
formation from diverse modalities. In particular, large-
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Figure 1. Comparison of LP++ with state-of-the-art few-shot
CLIP methods in the 1-shot setting across 11 datasets. We com-
pute the mean accuracy and standard deviation using 10 random
tasks for each dataset. The error bars indicate the average stan-
dard deviation over all 11 datasets. The x-axis represents the run
time for one task, averaged over the 11 datasets. Tip-Adapter-F
and Tip-Adapter-F∗ are two re-implementations of Tip-Adapter-
F [28], with fixed and grid-search hyper-parameters, respectively
(implementation details provided in Sec. 3.2).

scale vision-language models (VLMs), such as CLIP [23]
and ALIGN [15], have attracted wide attention and made
substantial progress in computer vision, showing promis-
ing generalization capabilities in various downstream tasks.
Unlike conventional task-specific models that are trained
with a predetermined set of labels, these so-called foun-
dation models learn to align images with text, in an open-
vocabulary fashion. They train, via contrastive learning, vi-
sion and text embeddings jointly using a large-scale amount
of image-text pairs collected over the internet, thereby
leveraging the rich semantic knowledge inherent to lan-
guage (e.g., concept hierarchies). For a given downstream
image classification task, vision-language embeddings en-
able zero-shot predictions, without re-training, using tex-
tual descriptions of the classes (a.k.a prompts). For in-
stance, for a given class k, a textual description of the class,
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which we denote zk, could be “a photo of a [classk]”, where
[classk] is the class name. Thus, the zero-shot class predic-
tion for a query image x is obtained from the cosine sim-
ilarity between the l2-normalized vision-encoded embed-
dings, f = θv(x), and the text-encoded ones, tk = θt(zk):
k̂ = argmaxk f

ttk, where t denotes the transpose1.
Motivated by the observation that the choice of input

prompts zk may affect the zero-shot predictions, and fol-
lowing on from the strong recent emergence of prompt
learning research in the NLP community [14, 16, 24],
the popular work in [29] pioneered context optimization
(CoOp) for vision-language models. CoOp models input
text zk as learnable continuous vectors, e.g., in the form
zk = (z1

k, . . . ,z
M
k , [classk]), where (zl

k)1≤l≤M are learn-
able text tokens, [classk] is a fixed token corresponding to
the word embedding vector of the name of the kth class, and
M is a hyper-parameter. These learnable vectors are fine-
tuned as task-specific prompts using few-shot training ex-
amples and a standard supervised classification loss. More
specifically, in this few-shot setting, we assume access to a
set consisting of a few labeled samples for each target class,
often referred to as the support set. Let fi = θv(xi) de-
note the vision embedding of support image i, and yik its
one-hot encoded label, i.e., yik = 1 if image xi belongs to
class k and 0 otherwise. Expressing the text embeddings
as tk = θt(z

1
k, . . . ,z

M
k , [classk]), CoOp fine-tunes text

tokens (zl
k)1≤l≤M by minimizing the cross-entropy (CE)

loss, with N labeled support samples and K classes2:

− 1

N

N∑
i=1

K∑
k=1

yik ln pik (1)

where the softmax predictions pik and the logits (class
scores) lik are given by:

pik =
exp (lik)∑K
j=1 exp (lij)

; lik = f t
i tk

Although recent, the pioneering idea of CoOp has trig-
gered a quite abundant literature on prompt learning for
few-shot vision-language models, with numerous, more
convoluted extensions, e.g. [4, 27, 30], to list a few. For in-
stance, PLOT [4] followed up by learning multiple prompts,
to describe the characteristics of each class, via minimiz-
ing an optimal-transport distance. KgCoOp [27] improves
CoOp’s performance when dealing with unseen classes,
via minimizing the discrepancy between the text embed-
dings generated by the learned prompts and hand-crafted
ones. While CoOp directly updates the context vectors us-
ing the CE loss, ProGrad [30] aligns the few-shot down-

1For l2-normalized feature embeddings, the dot product corresponds to
the cosine similarity.

2The number of labeled support samples per class, S = N
K

, is small,
typically in {1, 2, 4, ..., 16}.

stream knowledge with the large-scale general knowledge,
thus mitigating the overfitting of the few-shot samples.

Prompt learning methods have brought significant im-
provements over zero-shot classification, but they come at
the price of heavy computational and memory load, as they
require gradient back-propagation through the entire text
encoder. Furthermore, they assume knowledge of the text
encoder. These aspects may impede their deployment in
low-resource and black-box, privacy-preserving scenarios,
which are of wide interest in practice. Indeed, in NLP,
there is currently an emerging literature on fast few-shot
adaptation of black-box models [6], strongly motivated by
the fact that large-scale foundation models (e.g., the GPT
family, Anthropic’s Claude or Google’s PaLM) are only
available through APIs and their pre-trained weights are
not shared. Finally, by evaluating prompt learning methods
over larger numbers of sampled support sets in our experi-
ments ( Fig. 1), we observed that they exhibit large variation
in performances. This could be explained by the fact that,
through the text encoder, they learn prompts that are ‘’too
specialized” for a given image support set.

While prompt learning alters the textual inputs, another
category of approaches, referred to as adapters, focused on
transforming the pre-training features of the visual or lan-
guage encoders, e.g., [9, 28]. These adapters are non-linear
transformations, for instance, in the form of multi-layer
modules, added to the encoder’s bottleneck. They learn ad-
ditional transformations, yielding logits of the form:

lik = θa(fi, tk) (2)

The adapter’s learnable parameters, θa, are fine-tuned over
a few-shot task by optimizing the cross-entropy loss, sim-
ilarly to (1) but with logits lik expressed as functions of
θa. For instance, the popular CLIP-Adapter [9] integrated a
multi-layered perceptron to modify the features, along with
residual connections, which enable blending with the orig-
inal pre-trained features. Tip-Adapter [28] added a non-
linear, quadratic-complexity module, which evaluates the
pairwise similarities between the features of the support
sets, and blends the ensuing class scores with the origi-
nal textual features. This category of approaches mitigates
some of the limitations of prompt-learning methods as they
result in few-shot adaptation that has significantly lower
computation and memory loads. However, as shown in Fig.
1 and in our experiments, their performances seem to de-
pend strongly on some key hyper-parameters that have to
be adjusted carefully on each downstream task, e.g. those
that control the blending between the vision and language
features. Therefore, to perform competitively, they incur an
additional computation overhead to the adaptation phase,
due to intensive (e.g., grid) search of the hyper-parameters
over task-dedicated validation sets.

In the above-mentioned, strongly emergent literature on
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few-shot CLIP adaptation, linear probe (LP) [23] has been
often reported as a very weak baseline. For instance,
in the 1-shot setting, it scores near 20% lower than the
zero-shot predictions averaged over 11 benchmarks (Ta-
ble 1). Initially evaluated in [23], LP is a linear classifier
on the vision-encoded features. Specifically, it optimizes
the CE loss (1) w.r.t the last-layer weights of the vision
encoder (i.e., the class prototypes), which we will denote
(wk)1≤k≤K in the rest of the paper, with the logits given
by: lik = f t

iwk. A clear deficiency in this standard LP
baseline is that it omits completely the language knowledge
of CLIP, i.e., (tk)1≤k≤K .

In this work, we propose and examine from convex-
optimization perspectives a generalization of the standard
LP baseline. Specifically, we extend the logits in the CE
loss in (1), so that they become learnable functions of the
text embedding:

lik = f t
i (wk + αktk)

with (αk)1≤k≤K trainable class-wise parameters blending
image and text knowledge. As our objective function de-
pends on two types of variables, i.e., the visual class pro-
totypes (wk)1≤k≤K and blending parameters (αk)1≤k≤K ,
we propose a computationally efficient Block Majorize-
Minimize (BMM) procedure. In our full-batch MM op-
timizer, which we coin LP++, step sizes are implicit in
the definition of the majorizing functions, unlike standard
gradient descent practices where learning rates are inten-
sively searched over validation sets. Moreover, we exam-
ine the mathematical properties of our objective, i.e., (i)
Lipschitz gradient continuity and (ii) decomposition into
convex functions having closed-form optima. This enabled
us to build majorizing functions yielding data-driven learn-
ing rates, and to derive approximations of the objective-
function minima, which yield data-informed initializations
of the variables. Our image-language objective function,
along with these non-trivial optimization insights and in-
gredients, yield, surprisingly, highly competitive few-shot
CLIP performances (Fig. 1). Furthermore, LP++ oper-
ates in black-box, relaxes intensive validation searches for
the optimization of hyper-parameters, and runs orders-of-
magnitudes faster than state-of-the-art few-shot CLIP meth-
ods (Table 4). For instance, for 16-shot ImageNet adapta-
tion, it takes seconds on a single NVIDIA RTX A600 GPU.

2. Formulation of LP++
Following the notations introduced in the previous section,
we propose to minimize the following CE objective func-
tion w.r.t visual class prototypes w = (wk)1≤k≤K and
class-wise blending parameters α = (αk)1≤k≤K :

L(w,α) = − 1

N

N∑
i=1

K∑
k=1

yik ln pik(w,α) (3)

"A photo of a
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Figure 2. Visualization of LP++.

where softmax probability outputs pik are now given by:

pik(w,α) =
exp (f t

i (wk + αktk))∑K
j=1 exp (f

t
i (wj + αjtj))

(4)

and tk are the fixed pre-trained embeddings of the text tem-
plates used in zero-shot CLIP [23]. Clearly, the objec-
tive function defined by (3) and (4) could be viewed as
a generalization of the vision-encoder CE loss used in the
standard LP [23]. Indeed, the latter corresponds to setting
αk = 0∀k, i.e., no text knowledge. As we will see in
our experimental ablation over different objective functions
(Table 2), introducing the text knowledge (αk > 0∀k) has a
substantial effect on performances. Also, making αk learn-
able (rather than fixed) leads to a further significant impact.
Indeed, we hypothesize that the optimal blending of the text
and visual knowledge is task dependent, which motivates
learning it from the context of the support set.

2.1. Block coordinate Majorize-Minimize descent

Majorize-Minimize (MM) [18] is a very general optimiza-
tion principle, which includes different classes of standard
optimizers such as gradient descent, concave-convex proce-
dures and expectation-maximization. Let v = (w,α) ∈
RK(D+1) denote the overall vector of variables in our case,
with D being the dimension of the feature embeddings. At
each iteration, the MM procedure updates the variable as
the minimum of a majorizing function, i.e., an upper bound
on the original objective, which is tight at the current it-
eration j: L(v) ≤ M(v,vj) and L(vj) = M(vj ,vj).
Thus, update step vj+1 = minv M(v,vj) guarantees that
the original objective does not increase at each iteration3:
L(vj+1) ≤ M(vj+1,vj) ≤ M(vj ,vj) = L(vj). There-
fore, in MM algorithms, step sizes are implicit in the defini-
tion of the majorizing function, unlike standard gradient-
descent practices, in which the step sizes (a.k.a learning
rates) are intensively searched over validation sets, via run-
ning the optimizer several times.

In this work, we exploit the Lipschitz-gradient conti-
nuity of our convex objective in (3), i.e., bounds on the

3This assumes, of course, that minimizing M(v,vj) over v could be
solved to global optimality and is easier than the original problem.
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maximum eigen values of the Hessian matrices (Prop. 1),
thereby building majorizing functions with data-driven,
task-specific step sizes. This removes the need for vali-
dation searches for the optimization hyper-parameters, re-
ducing the computational load for fine-tuning (Table 2),
while yielding performances on par with the best learning
rates found with validation (Fig. 4). Also, interestingly, the
Lipschitz-based learning rates computed from our deriva-
tion in Prop. 1 are orders-of-magnitude larger than those
typically used in deep learning, yielding steeper decreases
towards the minimum. Before giving proper majorizing
functions for our convex, gradient-Lipschitz function in (3),
let us first point to the following results, well-known in
convex optimization [3]. While these results are text-book
knowledge in optimization, they enable to connect the gen-
eral MM principle to gradient descent, motivating the data-
driven, task-specific step sizes we derive in Prop. 1 and the
block-coordinate MM optimizer we propose in Alg. 1.

Lemma 2.1. ([3, p. 268]) Assume L(v) is a twice-
differentiable function, which has a Lipschitz continuous
gradient, i.e., there exists a strictly positive Lipschitz con-
stant γ such that ∇2L(v) ⪯ γI, with I the identity matrix.
Then, the following quadratic bound is a majorizing func-
tion for L at iteration j:

M(v,vj) = L(vj)+∇L(vj)t(v−vj)+
γ

2
∥v−vj∥2 (5)

Furthermore, a specific gradient step, with learning rate
1
γ minimizes M , i.e., vj+1 = vj − 1

γ∇L(vj) =

argminv M(v,vj), and guarantees that objective L de-
creases by at least 1

2γ ∥∇L(v)∥2:

L(vj+1) ≤ L(vj)− 1

2γ
∥∇L(v)∥2 (6)

Moreover, the following Theorem, which follows from
Lemma 2.1, establishes the sublinear convergence of the
MM procedure using bound (5), i.e., a convergence rate of
O(1/J), J being the total number of iterations.

Theorem 2.2. ([3, p. 267]) For convex, twice-
differentiable function L(v), which has a γ-Lipschitz gradi-
ent, performing J updates vj+1 = vj− 1

γ∇L(vj), starting
from initialization v0, will yield a solution that satisfies:

∥L(vJ)− L(v∗)∥ ≤ γ

2J
∥v0 − v∗∥ (7)

where L(v∗) is the optimal value.

For completeness, we provide the proofs of these well-
known results in the supplemental material. Clearly,
Lemma 2.1 and Theorem 2.2 prescribe a learning rate of
1
γ for a function that has a γ-Lipschitz gradient. One valid
Lipschitz constant would be the maximum eigen value of

the Hessian of our objective in (3), which provides a ma-
jorizing function of the form in Eq. (5) and data-driven
learning rates. However, a naive spectral decomposition of
the Hessian matrices (to obtain the maximum eigen value)
could be computationally intensive. For instance, for Ima-
geNet, the Hessian of our objective is of size K(D + 1) ×
K(D + 1) ≈ 1M × 1M , as D = 1024 and K = 1000.
In Prop. 1, we derive approximate global and block-wise
Lipschitz constants that can be computed efficiently (i.e.,
evaluating the maximum eigen value of a single D×D ma-
trix).

Block-coordinate updates Our procedure provided in
Alg. 1 belongs to the family of Block Majorize-Minimize
(BMM) methods, well studied in the optimization commu-
nity [13]. To minimize a multi-block objective, as in our
case where the blocks correspond to variables w and α, we
minimize one or many successive majorizing functions of
the objective in each block, with the other block fixed, in a
cyclic order:

L(wj ,α) +∇Lw(wj)t(w −wj) +
γw
2
∥w −wj∥2 (8)

L(w,αj) +∇Lα(α
j)t(α−αj) +

γα
2
∥α−αj∥2 (9)

where in (8), block α is fixed and, in (9), w is fixed. ∇Lw

and ∇Lα denote block-wise gradients, and (γw, γα) are
the block Lipschitz constants. Accommodating different
choices of the block-cycling strategies and majorizing func-
tions, BMM includes a breadth of optimizers as particular
cases, such the well-known block coordinate gradient de-
scent (BCGD) [1] and its projection-based variant. Indeed,
the so-called Gauss-Seidel cycling [13] alternates steps (8)
and (9), which corresponds to the BCGD method. One
could also performs many successive steps in one block,
as we do in Alg. 1, which corresponds to the so-called
Essentially-Cyclic4 strategy [13]. Importantly, for a fairly
large spectrum of choices of the cycling strategies, BMM
enjoys the same sublinear convergence property as MM for
convex objectives (with each block-wise update decreasing
the objective), provided that the majorizing functions are
strongly convex; see Theorem 3.1 in [13]. This is the case
for (8) and (9). In our experiments, we observed that this
block-wise variant performs better than a single-block MM;
see Table 2. This might be explained by the fact that each
block of variables has a dedicated step size. In the sup-
plemental material, we provide results for different block-
cycling strategies.

Global and block-coordinatewise Lipschitz constants
In the following, we derive approximate global and block-

4Essentially-Cyclic means that there is a period during which each
block is updated at least once.
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coordinatewise Lipschitz constants for our objective func-
tion in (3), which could be evaluated efficiently. We deploy
these in Alg. 1, to compute data-driven, block-wise learning
rates for updating visual prototypes w and blending param-
eters α.

Proposition 1. Considering the blocks of variables w
and α, the gradient of our objective L in (3) is block-
coordinatewise Lipschitz continuous. For τ1 ≥ 2, it has the
following block Lipschitz constant for the set of variables in
w:

γw =
τ1
4N

λmax

(
N∑
i=1

(fif
t
i )

)
(10)

where λmax(A) denotes the maximum eigenvalue of matrix
A. Furthermore, for τ1 ≥ 1, the expression in Eq. (10)
provides a tighter but approximate block Lipschitz constant.
Similarly, for τ2 ≥ 1, we have following approximate block
Lipschitz constant for the variables in α:

γα = max
k

τ2
4N

N∑
i=1

(f t
i tk)

2 (11)

Finally, for τ ≥ 2, the following expression provides an
approximate global Lipschitz constant for objective (3), i.e.,
w.r.t all variables v = (w,α):

γ = τ max(γw, γα) (12)

Proof. The details are deferred to the supplemental mate-
rial. The main ingredients of the proof are based on the
Gershgorin circle theorem and the variational characteriza-
tion of the maximum eigenvalue, following the min-max
theorem, also referred to as the variational principle.

2.2. Initialization of the variables

In the following Prop. 2, we derive approximations of the
minima of our objective function (3), which yield a data-
informed initialization of the variables. Indeed, the expres-
sions we obtain in Eqs. (13) and (15) suggest initial guesses
for variables w and α. Interestingly, and as will be con-
firmed by our experiments (Table 3), such an initialization
yields substantially lower values of the minimized loss than
a random initialization. Furthermore, surprisingly, using
this initialization for a training-free prediction yields bet-
ter performances than the training-free version of the recent
Tip-Adapter-F approach [28]. The details of our training-
free version are provided in the supplemental material.

Proposition 2. The cross-entropy in Eq. (3) could be writ-
ten as the sum of two convex functions, i.e., L = g1 + g2,
such that, ∀k ∈ [1, . . . ,K], the minimum of g1 w.r.t wk is
co-linear to the hard mean vector of features within class k:

argmin
wk

g1 =
1

λN

N∑
i=1

yikfi ∝
∑N

i=1 yikfi∑N
i=1 yik

(13)

and the minimum of g2 w.r.t wk is co-linear to the soft mean
vector of features within class k:

argmin
wk

g2 =
1

λN

N∑
i=1

pikfi ∝
∑N

i=1 pikfi∑N
i=1 pik

(14)

where λ ≤ mink λmin(Ak), Ak = 1
N

∑N
i=1(pik−p2ik)fif

t
i

and λmin(A) denotes the smallest eigenvalue of matrix A.

Proof. We defer the details, including the full expressions
of convex functions g1 and g2, to the supplemental material.

Similarly to the development in Prop. 2, one could de-
compose (3) as the sum of two convex functions, i.e., L =
h1 + h2, such that, ∀k ∈ [1, . . . ,K], the minima of h1 and
h2 w.r.t αk could be written, up to a multiplicative positive
factor, as the hard and soft means of the cosine similarities
between the image and text embeddings:

argmin
αk

h1 =
1

βN

N∑
i=1

yikf
t
i tk (15)

argmin
αk

h2 =
1

βN

N∑
i=1

pikf
t
i tk (16)

Here, β = mink
1
N

∑N
i=1(pik − p2ik)(f

t
i tk)

2, and h1 (re-
spectively h2) has the same expression as g2 (respectively
g1), except that term λ

2

∑K
k=1 ∥wk∥2 is replaced by β

2 ∥α∥2;
see the supplemental material for the expressions of g1 and
g2.

Algorithm 1: Block coordinate MM (w, α)

iterw = 10; iterα = 1; τ1 = 1; τ2 = 16; λ = 1
N ;

β = 1
250K

Initialize w0,0 // Using (13) for each k

Initialize α0,0 // Using (15) for each k

for j = 0, 1, . . . do
for l1 = 0, 1, . . . , iterw do

wj,l1+1 = wj,l1 − 1
γw

∇Lw(wj,l1 ,αj,0)

// 1
γw

from Eq.(10)

wj+1,0 = wj,iterw

for l2 = 0, 1, . . . , iterα do
αj,l2+1 = αj,l2 − 1

γα
∇Lα(w

j+1,0,αj,l2)

// 1
γα

from Eq.(11)

αj+1,0 = αj,iterα
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Number of shots (S) 1 2 4 8 16

Zero-shot CLIP ICML’21[23] 58.89

Prompt-Learning

CoOp IJCV’22[29] 59.62 ± 3.11 63.80 ± 2.32 67.23 ± 1.64 71.30 ± 0.86 74.06 ± 0.55

PLOT ICLR’23[4] 61.51 ± 2.91 65.67 ± 2.06 68.39 ± 1.17 71.96 ± 0.70 74.35 ± 0.66

KgCoOp CVPR’23[27] 61.36 ± 3.04 63.23 ± 2.06 65.73 ± 1.15 67.50 ± 1.11 69.01 ± 0.79

ProGrad ICCV’23[30] 62.46 ± 1.89 65.88 ± 1.46 68.52 ± 1.15 71.82 ± 0.11 73.95 ± 0.68

CLIP-based Adapters
CLIP-Adapter IJCV’23[9] 60.32 ± 0.80 61.93 ± 0.93 65.12 ± 0.80 69.20 ± 0.56 72.57 ± 0.54

Tip-Adapter-F ECCV’22[28] 61.29 ± 0.92 62.94 ± 0.75 66.02 ± 0.80 69.88 ± 0.51 73.82 ± 0.55

Tip-Adapter-F* ECCV’22[28] 63.06 ± 1.05 66.47 ± 0.65 68.71 ± 0.96 71.78 ± 1.00 74.37 ± 0.35

Linear-Probing
Standard LP ICML’21[23] 36.10 ± 1.43 46.99 ± 1.29 56.72 ± 1.20 64.66 ± 0.55 70.56 ± 0.44

LP++ 63.43 ± 0.90 66.20 ± 0.72 69.16 ± 0.79 72.04 ± 0.46 74.42 ± 0.45

Table 1. Comparison to state-of-the-art methods. Average classification accuracy (%) on 11 benchmarks, with standard derivation over
10 sampled support sets for each dataset. The best values are highlighted in bold.

3. Experiments
3.1. Datasets and Implementation details

Following the CLIP-based few-shot adaptation literature
[27, 28], we conduct the main experiments on 11 public
classification data sets: Caltech101 [8], ImageNet [7], DTD
[5], OxfordPets [22], Flowers102 [20], StandfordCars [17],
Food101 [2], FGVCAircraft [19], SUN397 [26], EuroSAT
[11] and UCF101 [25]. We follow standard practices [23]
and consider S = {1, 2, 4, 8, 16} shots for model adapta-
tion, which are randomly sampled for each data set.
Towards a fair validation set. Apparently, prior works on
this problem [28] have resorted to a large set of validation
samples to adjust their hyper-parameters. For the sake of
fairness, we tune the hyper-parameters across all the meth-
ods based on a small validation set, which contains as many
samples (i.e., shots) as the training set. Furthermore, to
avoid the potential overfitting on the few training samples,
we adopt an early stopping strategy on this validation set.
General Setting. While the existing works evaluate meth-
ods based on either a single or three random tasks (support
sets) [28, 29], we found that, for some datasets, the cho-
sen support samples may not be representative of the class,
leading to large standard deviations in low-shot scenarios
(see Fig. 1). To ensure fair comparisons, we evaluate all the
methods by averaging their classification accuracies over 10
randomly sampled tasks, for each dataset. In all the experi-
ments, we employ ResNet-50 [10] as the visual encoder for
the CLIP backbone. It is important to note that, for our
BMM procedure in Alg. 1, the optimizer hyper-parameters
remain fixed across all the datasets. We use the validation
set only to find the best model, via a single run of our BMM
procedure with a fixed number of variable updates, i.e., 300
gradient updates including all the blocks of variables.

3.2. Baselines

We benchmark the proposed LP++ against relevant state-of-
the-art methods in the few-shot adaptation of CLIP-based

models. We first resort to zero-shot CLIP as the standard
baseline, which only leverages the knowledge learned by
the pre-trained CLIP model. Also, we includes the standard
LP baseline, whose implementation is done following [23,
29]. More concretely, this baseline optimizes the standard
cross-entropy loss, which corresponds to αk > 0 ∀k in our
generalization in (3), using the L-BFGS [21] optimizer5. It
also includes an l2-regularizer, whose balancing weight is
set based on the validation set.
CLIP-based adapters. We benchmark LP++ against two
popular adapter-based few-shot approaches: CLIP-adapter
[9] and TIP-adapter [28]. As exposed earlier, several pop-
ular works follow unfair practices by resorting to a larger
validation set, or even to the entire test set, to adjust their
key hyperparameters –as well as their model selection cri-
teria (i.e., epochs)– for each task. For the sake of fairness,
we re-implement Tip-Adapter-F and report the results in 2
different settings. In the first setting (Tip-Adapter-F), we set
the two crucial hyper-parameters of this method to 1, keep-
ing them fixed during training, and adopt early stopping
based on the validation set. In the second setting, referred
to as Tip-Adapter-F∗, we perform intensive grid-search on
the validation set to find the best values for these hyperpa-
rameters at initialization, which incurs an additional time
complexity burden compared to Tip-Adapter-F.
Prompt learning. We further compare the proposed LP++
to relevant prompt-learning methods, including CoOp[29]
and more recent variants, such as PLOT[4], KgCoOp[27]
and ProGrad[30]. We also apply early stopping here based
on the performances on the validation set.

3.3. Results

Comparison to the state-of-the-art In Table 1, we
present the quantitative results obtained by LP++ (Alg. 1)

5L-BFGS (Limited-memory BFGS) aims to find the minimum of ob-
jective function using the second order method. It estimates the Hessian
matrix based on recent gradients only, enabling it to determine the steep-
est direction for achieving the optimal solution. Additionally, it is imple-
mented with line searches to automatically determine the optimal step size.
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Figure 3. Quantitative performance of different adaptation methods on the 11 benchmarks (mean), as well as in two other datasets, averaged
over 10 tasks (additional figures on the remaining 9 datasets can be found in Appendix, Sec. 16).

and the relevant literature in the task of efficient adapta-
tion of VLMs. We report the average classification accu-
racy and standard deviation, across 11 classification bench-
marks. From these results, one can make several observa-
tions. First, while the standard LP baseline largely under-
performs the existing adaptation methods, our improved
version, LP++, brings significant performance gains, par-
ticularly in the low-labeled data regimes. It is impor-
tant to stress that the standard LP baseline integrates only
the visual features extracted from CLIP, disregarding the
text-encoder knowledge. This contrasts with the existing
adapters, which leverage both image and text information.
Therefore, these results evidence that the potential of LP
has been severely underestimated in the existing liter-
ature. Second, when the model selection process is per-
formed fairly, i.e., using a small validation set, their perfor-
mances fall behind the proposed method (from 1% to 5%),
despite being arguably more complex approaches. In partic-
ular, among the adapter-based strategies, only Tip-Adapter-
F* yields performances on par with LP++, but at the cost
of increasing computational load, due to an additional in-
tensive grid-search over its hyper-parameters. If we look
at prompt-learning methods, ProGrad and PLOT might be
considered as competitors of LP++, particularly as the num-
ber of shots increases. Nevertheless, as already discussed,
these methods are computationally inefficient compared to
adapters, and do not enable black-box adaptation. The over-
all performance across all the methods is depicted in Fig. 3
for the average over the 11 benchmarks, as well as in two
datasets, showing that LP++ typically outperforms existing
methods under different few-shot scenarios. A more de-
tailed analysis is deferred to the Appendix, Sec. 16.
Ablation on the loss functions and different optimiza-
tion strategies. Table 2 reports the test accuracy and run
time for different optimizers and loss functions, including
the standard CE loss (αk = 0∀k) and our loss with learn-
able blending parameters. Additionally, for LP++, we eval-
uate our loss with fixed blending parameters (αk = 1 ∀k).
Independently of the optimizer used, the main takeway from
Table 2 is that introducing the text knowledge and making

αk learnable (rather than fixed) have a substantial impact
on accuracy. As for evaluating the optimizers, and for a fair
comparison, we use a fixed budget for the number of vari-
able updates for all the optimizers (i.e., 300 updates). In the
case of LP++, this corresponds to the total number of up-
dates for all the blocks. Also, for all optimizers, we initial-
ize w and α following Eqs. (13) and (15). We first consider
two popular optimizers, i.e., GD and ADAM, and deploy
them in two different settings. First, we run each optimizer
7 times, with each run corresponding to a learning rate in
the range [10−4, 102]. Then, we record the best perfor-
mances obtained on the validation set; see GD (optimum)
and ADAM (optimum) in Table 2. This follows the stan-
dard practices in deep learning, i.e., searching for the learn-
ing rates over validation sets, which incurs additional com-
putation overhead; see the time column in Table 2. Second,
we run GD and ADAM with our data-driven learning rate,
as prescribed by the approximate Lipschitz constant we de-
rived in Eq. (12), with τ = 1; see GD (our Lipschitz cst)
and ADAM (our Lipschitz cst) in Table 2. Note that, in this
case, GD corresponds to LP++ with a single block. Further-
more, we include the L-BFGS in these comparisons, with
its initial learning rate set to 1. For L-BFGS, implement-
ing a line search for the optimal step size also introduces an
additional computational overhead. As highlighted by Ta-
ble 2, our method removes the need for validation searches
for the optimization hyper-parameters, thanks to its data-
driven, task-specific step sizes, thereby reducing the com-
putational load for fine-tuning. In the meanwhile, it yields
performances on par with those obtained with the best learn-
ing rates found with the validation set. In Fig. 4, we plot the
performances of single-block GD vs. the learning rates in
the range [10−4, 102], for three datasets. We observe that
our Lipschitz-based, task-specific step sizes match the opti-
mal ones found on the validation set, although these vary
among the datasets. Also, interestingly, these Lipschitz-
based step sizes are orders-of-magnitude larger than those
used in deep learning, which are, typically, within interval
[10−4, 10−2]; see [28], for instance.
How to initialize the classifier? To justify empirically the
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Figure 4. Single-block GD performance as a function of different values of the learning rates. The dotted vertical line shows the Lipschitz-
based, data-driven learning rate.

Optimization Method Standard loss (αk = 0) Our loss Time

1 shot 16 shot 1 shot 16 shot

LP++ (αk is learnt) 35.55 69.75 63.43 74.42 0.78s
LP++ (αk = 1) - - 46.37 69.41 0.72s
GD (our Lipschitz cst) 35.55 69.75 63.04 74.28 0.86s
GD (optimum) 35.64 69.67 62.93 74.55 6.02s
ADAM (our Lipschitz cst) 26.22 64.53 25.44 64.62 0.98s
ADAM (optimum) 35.90 69.73 63.07 74.23 6.89s
L-BFGS [21] 34.54 67.44 62.09 72.82 6.73s

Table 2. Accuracy and run time for different optimizers and loss
functions (average over 11 datasets). The running time is recorded
for our loss (16 shots), and is averaged over 11 datasets. The best
result is marked in bold, and the second best is underlined.

advantages brought by initializing the classifier weights fol-
lowing Eq. (13), and the blending parameters in Eq. (15),
we evaluate objective (3) at the beginning of the training,
as well as the training-free test accuracy of three methods:
random initialization, and the training-free version of both
the Tip-adapter-F method [28] (i.e., Tip-adapter) and our
method (we provide more details on training-free LP++ in
the appendix). The results in Table 3 confirm empirically
the technical observations in Eqs. (13) and (15), which pre-
scribe initial guesses for our problem’s variables.

Number of shots (S) 1 2 4 8 16

Models Initial Loss (L0)
Random Initialization 21.45 21.42 21.31 21.27 21.32
Proposed Initialization 1.60 1.54 1.47 1.35 1.21

Models Initial test accuracy (Acc0)
Random Initialization 17.79 17.92 18.03 18.10 18.22

Tip-adapter[28] 59.28 59.72 60.55 62.09 64.29
Proposed Initialization 59.70 60.66 62.04 64.16 66.20

Table 3. Comparison of the initial loss and test accuracy in the
training-free scenario: random initialization, Tip-adapter and the
proposed initialization. The results are averaged over 11 datasets.

Computational overhead. As the literature on adapting
VLMs is gaining popularity, it is essential to evaluate the
extent to which novel methods are efficient. To do this, we
report the overall computational overhead of the approaches

studied in this work, which includes the time required for
training and for finding the hyper-parameters, when ap-
plicable. We also indicate whether these methods enable
black-box adaptation which, in our perspective, is a critical
aspect in novel strategies aiming to address practical, real-
world demands. The numerical values in Table 4 show that,
in addition to yielding state-of-the-art performance (shown
in previous sections), LP++ is the most efficient method (by
several orders of magnitude), and does not require to access
the internal representations of the pre-trained models.

Methods Overall Time BlackBox # Parameters

CoOp[29] ∼ 17h ✗ K ×M ×D
PLOT−2[4] ∼ 10h ✗ P ×K ×M ×D
KgCoOp[27] ∼ 4h ✗ K ×M ×D
ProGrad[30] ∼ 20h ✗ K ×M ×D

Clip-Adapter[9] ∼ 40min ✓ 2(D1 ×D)
Tip-adapter-F[28] ∼ 6min ✓ K × S ×D
Tip-adapter-F*[28] ∼ 50min ✓ K × S ×D

Standard LP[23] 3min ✓ K ×D
LP++ ∼ 2s ✓ K(D + 1)

Table 4. Run time and suitability to black-box scenarios for dif-
ferent methods on 16-shot ImageNet. All the experiments are
performed on a single NVIDIA RTX A6000 GPU, except for
PLOT−2, which is evaluated on two A6000 GPUs. D1 = 256,
and D = 1024. The number of context tokens M is set to 16. For
PLOT, P = 4 is the number of prompts.

4. Conclusion
We introduced LP++, a strong linear probe for few-shot
CLIP adaptation. A specific modeling of the classifier
weights, blending visual prototypes and text embeddings
via learnable multipliers, along with convex-optimization
ingredients, often overlooked in deep learning practices, led
to the surprising results. While the findings of this work do
not invalidate the promise of prompt learning and adapta-
tion research, we believe LP++ could be used as a baseline
to measure progress in these strongly emergent areas.
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