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Figure 1. We propose Make-Your-Anchor, a diffusion-based 2D avatar generation framework, to map the animatable human 3D mesh
sequence into realistic human video. By combining with motion capturing or audio-to-motion methods, our framework could achieve
anchor video auto-generation with temporal and lifelike outcomes.

Abstract

Despite the remarkable process of talking-head-based
avatar-creating solutions, directly generating anchor-style
videos with full-body motions remains challenging. In this
study, we propose Make-Your-Anchor, a novel system ne-
cessitating only a one-minute video clip of an individual for
training, subsequently enabling the automatic generation of
anchor-style videos with precise torso and hand movements.
Specifically, we finetune a proposed structure-guided diffu-
sion model on input video to render 3D mesh conditions
into human appearances. We adopt a two-stage training
strategy for the diffusion model, effectively binding move-
ments with specific appearances. To produce arbitrary long
temporal video, we extend the 2D U-Net in the frame-wise
diffusion model to a 3D style without additional training
cost, and a simple yet effective batch-overlapped temporal
denoising module is proposed to bypass the constraints on
video length during inference. Finally, a novel identity-
specific face enhancement module is introduced to improve
the visual quality of facial regions in the output videos.
Comparative experiments demonstrate the effectiveness and

*Corresponding author: Juan Cao.

superiority of the system in terms of visual quality, temporal
coherence, and identity preservation, outperforming SOTA
diffusion/non-diffusion methods. Project page: https:
//github.com/ICTMCG/Make-Your-Anchor.

1. Introduction

Automatically generating 2D human videos with vivid
expressions, torsos, and gestures under various conditions
such as audio, text, or motion has wide applications in e-
commerce, online education/conferencing, VR, etc. While
AI-powered digital anchors offer certain benefits, such as
around-the-clock availability and the ability to generate new
content quickly, they also raise significant quality concerns.

A common practice in popular 2D avatar systems is
pronounced specifically as GAN-based talking face gener-
ation approaches [17, 19, 32, 36], where only the lip/facial
region has been edited. This type of methods relies on the
capability to modify faces based on GANs [11, 12, 29].
Despite the remarkable visual quality, these systems limit
the anchor’s degrees of freedom. Beyond regional editing,
researchers try to generate more natural digital avatars
with the help of motion transfer [25, 26, 33, 38] and co-
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speech generation [20, 40]. By learning the mapping from
motion/speech to a person’s appearance, these methods
could generate full-body talking videos while moving the
torso and hands. However, the GAN-based solution limits
the visual quality of the generated videos in case of fine
details or fast movement.

Recently, diffusion models [7] have been proven to
achieve promising generation quality on human image gen-
eration [23]. Compositing with pose or depth condition [16,
35], current text-to-image diffusion models, such as Stable
Diffusion [23], can synthesize human body with a specific
gesture, pose, and expression, and can keep identity by
personalized fine-tuning methods [3, 9, 14, 24]. However,
due to the randomness of the diffusion process, image
diffusion models cannot be directly applied to generate
temporal-consistent human videos.

Existing video diffusion models [8, 27], proven to gen-
erate temporal-consistent videos with simple motion and
nature scenes. DreamPose [10] modifies Stable Diffusion
to be controlled by input image and pose and animates
a still human image conditioned on a given motion se-
quence. DisCo [31], which also adopts an image as input,
applies pose and background ControlNet [35] to composite
different motions and scenes with a pretraining strategy
and achieves promising human dance generation results
on generalization. However, these existing diffusion-based
approaches still leave it challenging to synthesize facial
details, exact gestures, and temporal frames, which is
insufficient for making vivid digital anchors.

In this study, we propose “Make-Your-Anchor”, a
diffusion-based 2D avatar generation system to create cus-
tomized digital avatars. Despite the impressive visual
quality of diffusion-based approaches, generating human
images/videos has been challenging, in terms of identity
preservation and motion consistency. To this end, we
learn to link human appearance with parametric human
representation. We replace the text clip inputs with image
appearances, and a ControlNet-style modulation network is
proposed to bind the human appearance to the pose control
sequence frame-by-frame. After pertaining on the existing
news anchor dataset [34], we finetune the diffusion model
on a specific person with a one-minute video. To generate
consistent temporal videos of any duration, we propose
batch-overlapped temporal denoising by calculating the
frame-wise latent noise in a cross-frame fashion during the
inference phase. Furthermore, special attention was paid
to the facial region by applying a novel inpainting-based
enhancement operation.

With the frame-wise training and batch-wise inference,
the proposed system can be performed within a practical
time cost on a single 40G A100 GPU. Powered by existing
technological solutions for generating corresponding 3D
human mesh with lips, gestures, and body motions condi-

tioned on music [39], audio [34] or motion capture [2], the
system could make AI-powered digital anchors with vivid
expressions, torsos, and gestures. Compared with popular
commercial software, which is accomplished by talking
face generation, our system achieves natural human video
generation with more flexibility. The main contributions are
as follows:
• We propose “Make-Your-Anchor”, a 2D avatar cus-

tomized system, to generate practical and applicable
digital anchors with vivid lips, expressions, gestures, and
body actions.

• We propose a frame-wise motion-to-appearance diffus-
ing to bind movements into appearance with a two-
stage training strategy, and batch-overlapped temporal de-
noising paradigm to generate temporal-consistent human
video with long duration.

• Qualitative and quantitative experiments on ten an-
chors validate the effectiveness of the proposed system
compared with SOTA GAN-based motion transfer and
diffusion-based human video generation approaches.

2. System Overview
Setting. Despite the impressive progress in talking
face [36] or fashion video generation [10], creating human
video from a single or few images limits the ability to
apply these methods in real-world applications. Talking
head videos are restricted to face regions, while DreamPose
could only output fashion videos with a limited movement
range. In this study, we formulate 2D avatar generation
as a learning paradigm from a video of one identity. The
setting is similar to the traditional talking head methods
or commercial services such as ZenVideo. However, these
methods only learn from facial regions and use body mo-
tions of the input video as “templates” which are looped in
the generated videos. The core of our system is to learn a
personalized diffusion model that could generate a human
video in the same scenario as the input video. To this end,
we tune the diffusion model to “bind” on the input video
with appearance conditioned on motion conditions. To the
best of our knowledge, the proposed system is the first to
generate 2D human avatar videos that could be given full-
body motions with high visual fidelity in terms of identity
preservation and temporal consistency.

Input. Based on the above setting, our system requires
an anchor-style source video S of one person for training.
The given video S for training could contain lip, body,
and gesture movements in anchor style, and the video
length should be longer than one minute. Unlike Dream-
Pose or ControlNet with OpenPose, we utilize human 3D
mesh rendered from SMPL-X parameters [18] as motion
conditions. The input pose condition’s smoothness and
accuracy influence the output video’s temporal consistency,
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and the 3D human mesh has more structural information
about the motion to generate smooth video, especially in
hand gestures. For inference, a sequence of pose P =
{p1, p2, ..., pn} is given to guide the 2D avatar learned by
diffusion models. Notably, our system can be effectively
combined with existing human motion sequence generation
methods such as audio-to-motion generation [34] or video-
guided motion transfer [2]. In this case, the input could be
a clip of audio or motion video reference. The final output
is human motion video frames X = {x1, x2, ..., xn} with
temporal appearance.

3. Methodology
Fig. 2 shows the network structure and the inference
pipeline of the proposed system. In this section, we start
by introducing the diffusion-based network architecture
to accomplish image-level appearance and body structure
control in Sec. 3.1. Then we move on to the design of batch-
overlapped temporal denoising in Sec. 3.2, which is pro-
posed to generate arbitrary long temporal consistent video
without additional training efforts. Finally, we propose an
enhancement-by-inpainting module to improve the visual
quality of facial regions in Sec. 3.3.

3.1. Frame-wise Motion-to-Appearance Diffusing

Preliminaries. Given an initial noise ϵ ∼ N (0, 1) and a
condition c, the training loss of vanilla frame-wise diffusion
models can be written as:

Esi,c,ϵ,t[wt||X̂θ(αtsi + σtϵ, t, c)− σ||22], (1)

where X̂θ is the diffusion model, si is the ith frame in input
source video S, αt, σt, wt are hyperparameters, and t is
the diffusion timestep. After training, the final output target
frame xi = s0i is denoised from an initial noise sTi with T
steps sampling. In this study, we follow latent diffusion [23]
and use pretrained VAE encoder E(·) to map the source
frame si into latent code zi and then conduct diffusing and
denoising process in the latent space. Finally, a pretrained
VAE Decoder D(·) maps the latent noise into pixel space.

Structure-Guided Diffusion Model. We propose a
structure-guided diffusion model (SGDM) to generate hu-
man videos under the control of 3D mesh conditions frame-
by-frame, as shown in Fig. 3. Different from Control-
Net [35], we embed the 3D mesh condition into the genera-
tion process to learn the corresponding mapping from pose
P to target video frames X. An extra condition branch to
the diffusion model’s U-Net is copied from U-Net’s encoder
and a zero-convolution layer is added between the input
condition image and encoder. The encoder’s layer-wise
feature maps are added on the U-Net’s up layers:

Fup = Fup +Wc × ControlN(pi), (2)

where Fup is the feature map of U-Net’s up layers,
ControlN(·) is the additional module, pi is the ith 3D
mesh in P and Wc is a hyperparameter to weight condition.

However, adding a motion-control branch may still lead
the diffusion model to lose control of the person’s identity.
To solve this problem, we inject the appearance information
of the same person by randomly choosing another source
frame sr from S and then replace the text CLIP [22] with
image CLIP feature csr of sr to the cross-attention module
of the latent diffusion’s U-Net as well as the motion-control
branch. Specifically, we utilize the CLIP feature map before
the global pooling layer, which provides more fine-grained
appearance information. After training, the generation of
the human image can be abbreviated as:

z0i = X̂θ(ControlN(pi), csr , z
T
i ), (3)

xi = D(z0i ). (4)

Two-Stage Training Strategy. We adopt the pretrained
text-to-image Stable Diffusion V1.5 [23] as a basic model
and build the proposed SGDM. The training goal of our
system is to bind the movement and appearance of the
target identity by an “binding” style approach. Therefore,
we propose a two-stage training strategy, pre-training on
multiple identities to enhance the models’ ability for motion
generation, and fine-tuning on a single identity to bind the
movements to the appearance. A publicly available anchor
video dataset [34] is used to train the new branch and
tune the basic diffusion model using multiple identity data.
Then, we fine-tune the whole network based on the given
one-shot videos of an arbitrary identity.

To eliminate the interference of background on learning
human information in the pre-training stage, we segment the
foreground human body from the target images. During the
fine-tuning stage on a single identity, we chose to fine-tune
the model on the background and foreground together. This
approach allows the model to quickly generalize to new in-
dividual identities while also remembering the background,
thereby generating harmonious anchor videos.

3.2. Batch-overlapped Temporal Denoising

Adopting the two-stage train strategy to the proposed
SGDM, our system could generate avatar videos frame-
by-frame faithful to motion sequence. However, due to
the inherent randomness in the diffusion model’s output,
discontinuity still exists between frames. Previous stud-
ies [13, 37] have already demonstrated that extending self-
attention in the image diffusion model to cross-frame at-
tention enhances the consistency of generated videos. This
study extends the 2D U-Net to a 3D U-Net to get a training-
free video diffusion model X̂V

θ . Specifically, we propose
an all-frame cross-attention module to replace the self-
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Figure 2. The inference pipeline of our system. An appearance condition and a 3D mesh sequence are inputted into the structure-guided
diffusion, incorporating Batch-overlapped Temporal Denoising to accomplish video-level inference. Following the generation of arbitrary-
length frame sequences, an inpainting-style module known as Identity-Specific Face Enhancement is utilized to enhance facial details.
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Figure 3. The network architecture of our proposed Structure-
Guided Diffusion Model (SGDM) and Face SGDM. Our network
achieves motion-to-appearance generation by embedding pose and
appearance conditions into the pretrained diffusion model.

attention in a data batch B, which can be written as:

AttentionB := Softmax(
QBK

T
B√

d
) · VB, (5)

QB = WQ · Zt, (6)

KB = WK · Zt, (7)

VB = WV · Zt, (8)

where Zt = {zt1, zt2, ...ztN} is the input latent frames
on diffusion timestep t and WQ, WK , WV are learnable
weights for attention modules.

Furthermore, we propose an overlapped temporal de-
noising algorithm to generate an arbitrary length of anchor
video as illustrated in Algorithm 1. Unlike existing methods

that optimise the objective function between multiple batch
noise [30] or use window attention [21], we propose an
effective and simple algorithm operated on multi-batch
noise to achieve this goal. We partition a long motion
sequence input into multiple overlapped windows. In each
denoising step, the windows are fed one by one into our
video diffusion model. Once all windows are handled,
we normalize the overlapped noises between windows to
ensure coherence, and then all video frames are denoised
by the smoothing noises. After all denoising steps are
executed, the final results present a long temporal video.
We observe that this simple approach effectively extends the
video diffusion model to generate videos of arbitrary length
while keeping temporal consistency.

3.3. Identity-Specific Face Enhancement

Generating a satisfied face from a holistic human generation
is challenging. From our perspective, this phenomenon
arises due to the relatively diminutive size of the facial
region within the entire image. With the training loss on
holistic human image, the model encounters difficulty in
fitting the small facial area. We believe that a feasible
solution is adapting the model to the key information of
the face. To address this issue, we opted for an inpainting-
based approach with crop-and-blend operations to revising
the facial region from the holistic generated body. In detail,
we modify the proposed SGDM to Face SGDM, as shown
in the right part of Fig. 3. The ready-to-revise face is
cropped from the body generation, and the inpainting region
is segmented via a facial mask M . We replace the input
for SGDM’s U-Net with a concatenation of facial mask
M , masked face latent zM , and the original input latent

7000



Algorithm 1: Overlapped Temporal Denoising

Input: Video Diffusion Model X̂V
θ , Timestep t,

Latent sequence Zt = {zt1, zt2, ..., ztN}, Pose
sequence P = {p1, p2, ..., pN}, Window size
ws, Overlap size os, Scheduler.

Result: Denoised latent sequence
Zt−1 = {zt−1

1 , zt−1
2 , ..., zt−1

N }
1 count← {0, 0, ..., 0} ;
2 Noise← {0, 0, ..., 0} ;
3 for i = 0, ..., N/(ws− os) do
4 wb← i ∗ (ws− os) ;
5 we← i ∗ (ws− os) + ws ;
6 Zt

wd ← Zt[wb : we] ;
7 Pwd ← P [wb : we] ;
8 N t

wd ← X̂V
θ (Zt

wd, t, Pwd) ;
9 Noise[wb : we]← Noise[wb : we] +N t

win ;
10 count[wb : we]← count[wb : we] + 1 ;
11 end
12 # Normalize overlapped noises
13 Noise← Noise/count ;
14 Zt−1 ← Scheduler(Noise, t, Zt) ;

zTf . The input appearance and motion condition are aligned
with the corresponding reference and 3D mesh image. The
generation process can be abbreviated as:

z0f = X̂f
θ (ControlN(pf ), cfsr , z

T
f ,M, zM ), (9)

where X̂f
θ is the face SGDM, z0f is output, and zTf is

input latent. The inpainting-style enhancement prevents the
requirements of paired data and trains on only ground-truth.

4. Experiments
4.1. Experimental Settings

Dataset. For pretraining, we follow [4, 34] to utilize 27
hours of video with SMPL-X annotation on four identities.
We apply robust video matting [15] on the pretraining
videos to remove the background. For one-shot video fine-
tuning, we collect a dataset with ten identities from diverse
sources, each with a one to five-minute video. To validate
the proposed method in various scenes, the ten identities are
collected in three ways: four videos of the identities used
for pertaining; three web videos of celebrities (Luo Xiang,
Guo Degang, and one video from the YouTube channel Sci-
enceOfPeople ); three footages of invited individuals using
a green screen. Videos are split into video clips, where each
is 300 frames, 30 fps, and 10 seconds long, surpassing the
processing capability of existing video diffusion models.
We additionally collected some video clips for each identity
to serve as their test motion samples.

https://www.youtube.com/@ScienceOfPeople

Comparison Methods. We compare our method with
four state-of-the-art approaches: Pose2Img [20], TPS [38],
DreamPose [10] and DisCo [31]. Pose2Img is part of the
co-speech work SpeechDrivesTemplates [20], is a modified
version of [1] and achieves person-specific human video
generation conditioned on human landmarks, which is the
most relevant GAN-based method to ours. TPS [38] is
a generic motion-transfer method modeling motion via
thin plate spline transformation. DreamPose [10] and
DisCo [31] are diffusion-based human video generation
systems. We train Pose2Img from scratch and fine-tune
DreampPose and DisCo with our data while keeping the
TPS’s generic weight.

Implementation Details. We manually crop the body
region into 512×512 pixels, while face enhancement is
256×256. The pre-training stage with body generation
lasted for 300K training steps with batch size 4, learning
rate 1e-5, which took about seven days. Fine-tuning on
one identity takes about one day, with 50K training steps
for body generation and 80K steps for face enhancement.
All experiments are operated on one Nvidia 40G A100
GPU. For inference, CFG [6] is set as 7.5. We found
higher ControlNet condition scale Wc benefits preserving
the structure of 3D mesh and hand gestures, and we set
Wc as 2. SMPL-X annotations are produced by the tools
from [34]. For face enhancement, FFHQ [11] preprocess
method is utilized to align and crop the face images, and
the inpainting mask is extracted by a facial segment model.
For overlapped temporal denoising, the window size ws is
set to 16, and the overlap size os is four. The number of
denoising inference steps is set to 20.

Metrics. We use FID [5] to measure image quality,
FVD [28] to measure temporal consistency. Landmark
Mean Distances (LMD) are performed to calculate the
preservation of body structure between the video frame
and input 3D mesh. We compute the LMD on the face,
body, and hands using OpenPose [2]. For the inaccuracy
of landmarks prediction on hands, the outliers are ignored
during computing LMD.

4.2. Main Results

We utilize the data mentioned above as our experiment
dataset, where 10 identities from different sources are split
into 9:1 as train and test data. Our experiment is set with
30 video clips as a test, as each identity takes 3 test data.
Audio-driven results are further provided in supplementary
materials, where we generate motions by TalkSHOW [34].

Quantitative Results. Quantitative results are presented
in Table 1. Our approach achieves the best results on
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Ours
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Pose2Img

Appearance

Motion   
Control

Appearance

Motion   
Control

Figure 4. Qualitative results compared with other methods. Our methods achieve accurate gestures and high-quality generation with facial
details. More results are provided in supplementary materials.

FID and FVD, representing the image quality and video
temporal consistency. Ours get the highest results on face
and hand, while comparable to other methods. Pose2Img
It is worth noting that hand landmarks are not accurate
for complex gestures, which is not sufficient to reflect the
performance. Besides, the landmarks used to compute
LMD are also used for Pose2Img and DisCo inference,
which causes their results to be somewhat biased. We con-
ducted a user study in supplementary materials to provide
complementary quantitative results.

Qualitative Results. The qualitative results of our exper-
iment are shown in Fig. 4. In this figures, the blue boxes
indicate distorted hand structures, and arrows label appear-
ance artifacts. Our methods accomplish the best image
quality and appearance preservation, and simultaneously
faithfully reflect mouth movements and hand gestures.
DisCo achieves high-quality generation through diffusion
methods, yet it lacks focus on generating intricate details
for hands and faces, resulting in noticeable imperfections

Method FID↓ FVD↓ LMD (Face)↓ LMD (Body)↓ LMD (Hand)↓

Pose2Img 51.92 328.18 3.73 4.78 6.96
TPS 136.02 884.97 5.22 8.37 18.72
DreamPose 83.47 868.20 4.21 5.92 13.85
DisCo 60.95 390.77 4.15 5.11 11.21
Ours 40.33 139.82 1.44 4.88 5.41

w/o TD 48.84 344.85 1.45 4.74 5.61
w/o FE 40.84 124.10 1.56 - -
w/o Two-Stage Setting I 55.87 278.73 4.38 6.92 7.25
w/o Two-Stage Setting II 53.99 178.79 1.56 4.96 6.01
SMPL perturbation 39.56 136.21 1.40 4.33 5.25

Table 1. Quantitative results of our method compared with SOTAs
and ablation studies. Our method achieves better performance on
image quality, temporal consistency, and structure preservation.

within our specific context. DreamPose focuses on gener-
ating videos within simple scenes, such as fashion-related
contexts. In our scenario, it faces notable challenges in gen-
erating backgrounds and handling complex actions. TPS
is a general warping-based method where, in unfamiliar
domains, its generated poses are challenging to surpass
beyond the given reference image’s pose. As for a person-
specific method, Pose2Img achieves better results compared
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to another comparison, while the artifacts are apparent in
hands and lips because of the limitation of warping-based
methods. Our approach learns the mapping from motion
to appearance via a diffusion model, complemented by a
temporal scheme, enabling the generation of sufficiently
high-quality human videos.

More results. We further provide cross-person motion
and full-body results. The cross-person motion-driven
results are shown in Fig. 5. When the driven motion is
in a similar style as the target person (a standing man to a
standing man), the generated results are also in good visual
quality. Full-body results are provided in Fig. 6. Although
the full-body talking style differs from our training set, the
results are still of good quality.

Figure 5. Cross-person motion results. For each image, left is
pose, and right is output.

Figure 6. Full-body results. Video result is provided on the project
page.

4.3. Ablation Study

Validation of Batch-overlapped Temporal Denoising.
To verify the effectiveness of Batch-overlapped Temporal
Denoising (TD), we conduct analyses from multiple as-
pects. The numerical results of ablation are displayed in
Table 1, where without TD, our method’s performance de-
creases significantly. We still get better results on temporal
measures compared with DisCo because of the detailed
pose condition and performs slightly worse compared to
warping-based methods that leverage inter-frame advan-
tages. The LMDs are not influenced much, as the generated
structure is more influenced by SGDM.

Besides, we analyse the hyperparameters of TD, the
window size wd and overlapped size os. The default setting
is ws = 16, os = 4. we vary them as ws = 8, os = 2
and ws = 32, os = 8. The numerical results are displayed
in Table 2, where temporal-related measures, FVD improve
with an increase in settings. We select ws = 16, os = 4 as

the inference cost of the all-frame cross-attention module is
increased as O(ws2).

Another analysis is the qualitative results, as shown
in Fig. 7. We observed that without TD, the generated
videos may exhibit temporal artifacts such as flickering
and ghosting. This could be because the image model
during training hasn’t accurately captured the distribution
of human bodies within the dataset, leading to some un-
foreseen patterns. Introducing contextual information by
Batch-Overlapped Temporal Denoising could better elim-
inate these unintended artifacts.

Frame1 Frame2 Frame3 Frame4

(a) W/o batch-overlapped temporal denoising

(b) With batch-overlapped temporal denoising

Figure 7. Ablation analysis of temporal denoising. The first row is
the result without batch-overlapped temporal denoising, whereas
the second row employed it. Without temporal denoising, the
generated videos may exhibit discontinuities such as flickering and
ghosting as the artifacts around the neck region on the first row.

Validation of Identity-Specific Face Enhancement. We
take an analysis of the Identity-Specific Face Enhancement
(FE) module. The quantitative results of the ablation study
on this module are shown in Table 1. LMD (Face) is
improved by our face enhancement results, which reveals
the capability of FE to generate facial detail. Besides,
FVD result is slightly lower down due to that we utilize FE
without temporal denoising. The qualitative results of FE
are shown in Fig. 8. We can distinctly observe that similar
to other diffusion-based methods explicitly shown in Fig. 4,
our approach sometimes struggles to directly generate high-
quality facial features. FE can significantly improve facial
details.

Validation of Two-Stage Training. Without two-stage
training, there are two alternative approaches. Setting I:
directly training our model with videos of the target subject;
Setting II: training target with all other subject data. As
shown in Fig. 9 (a) and Table 1, the result of Setting I lacks
enough training data for pose-control ability. As shown in
Fig. 9 (b) and Table 1, the appearance and identity may mix
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Appearance W/o face enh. With face enh.

Figure 8. Ablations of identity-specific face enhancement. Di-
rectly training models to generate entire human body images
often leads to the creation of facial features with poor realism.
Our identity-specific face enhancement significantly improves the
quality of generated content in the face region.

Method FID↓ FVD↓ LMD (Face)↓ LMD (Body)↓ LMD (Hand)↓

ws = 8, os = 2 39.64 140.29 1.45 4.86 5.46
ws = 16, os = 4 40.33 139.82 1.44 4.88 5.41
ws = 32, os = 8 41.01 138.48 1.44 4.89 5.33

Table 2. Analysis of varying the hyperparameters of batch-
overlapped temporal denoising, window size ws and overlapped
size os. The default setting of our method is ws = 16, os = 4.

(a) Setting I. (b) Setting II.
Figure 9. Validation of two-stage training.

with other subjects for Setting II. Meanwhile, it is hard to
extend to a new subject for such a strategy. With two-stage
training, our model can control the pose and preserve the
appearance of the target subject.

Validation of SMPL-X Parameters. Estimating SMPL
inevitably comes with errors. We preprocess the extracted
SMPL following TalkShow [34], optimizing SMPL through
multiple estimations to reduce errors. We further explore
imperfect SMPL by perturbing the SMPL parameters dur-
ing training. Table 1 and Fig. 10 show that our method can
still obey the input pose. The better statistics indicate that
SMPL perturbing, serving as a kind of data augmentation,
could further improve the performance.

5. Conclusion
In this paper, we propose “Make-Your-Anchor”, a
diffusion-based 2D avatar generation framework to produce
realistic and high-quality anchor-style human videos. In this
framework, frame-wise motion-to-appearance diffusing is

Figure 10. Trained with SMPL perturbation. The video result is
provided on the project page.

proposed to train a structure-guided diffusion model with a
two-stage training strategy and accomplish binding specific
appearance with movements via a binding style approach.
To generate temporal consistent human video, we propose a
training-free strategy to extend the image diffusion model
into a video diffusion model with an all-frame cross-
attention module and design a batch-overlapped temporal
denoising algorithm to overcome the limitation on the
generated video length. Identity-specific face enhancement
is introduced from the observation that face details are
difficult to reconstruct during holistic human generation.
An inpainting-style enhancement module is applied to the
human image to solve this problem. Through the amal-
gamation of our entire system approach, our framework
successfully generates high-quality, structure-preserving,
and temporal coherence anchor-style human videos, which
may offer some reference value for the widely applicable
technology of 2D digital avatars.

Limitation and further work. Despite the capability of
our method to produce high-quality videos, if the human
body orientation for inference significantly differs from
what has been observed in the fine-tuning videos, there may
be issues with preserving the appearance. This occurs due
to the binding style training. From the other perspective, an
increase in the quantity of pre-training and fine-tuning data
may handle the generation of more complex movements and
orientations. Another limitation is that our method does not
model foregrounds with occlusions, potentially resulting in
the ghosting of occluded elements. One possible solution
could be segmenting occluded elements as a reference to
enable the model to preserve the occlusions.
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