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Abstract

Hallucination, posed as a pervasive challenge of multi-
modal large language models (MLLMs), has significantly
impeded their real-world usage that demands precise judg-
ment. Existing methods mitigate this issue with either
training with specific designed data or inferencing with ex-
ternal knowledge from other sources, incurring inevitable
additional costs. In this paper, we present OPERA, a
novel MLLM decoding method grounded in an Over-trust
Penalty and a Retrospection-Allocation strategy, serving as
a nearly free lunch to alleviate the hallucination issue with-
out additional data, knowledge, or training. Our approach
begins with an interesting observation that, most halluci-
nations are closely tied to the knowledge aggregation pat-
terns manifested in the self-attention matrix, i.e., MLLMs
tend to generate new tokens by focusing on a few summary
tokens, but not all the previous tokens. Such partial over-
trust inclination results in the neglecting of image tokens
and describes the image content with hallucination. Based
on the observation, OPERA introduces a penalty term on
the model logits during the beam-search decoding to miti-
gate the over-trust issue, along with a rollback strategy that
retrospects the presence of summary tokens in the previ-
ously generated tokens, and re-allocate the token selection
if necessary. With extensive experiments, OPERA shows
significant hallucination-mitigating performance on differ-
ent MLLMs and metrics, proving its effectiveness and gen-
erality. Our code is at: https://github.com/shikiw/OPERA.

1. Introduction
Recent advancements in multi-modal large language mod-
els (MLLMs) [1, 5, 9, 10, 30, 31, 44, 48] has greatly ele-
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Please describe this image in detail.

The image features a blue bowl filled with a 
delicious mixture of bananas, nuts, and oatmeal. 
The bowl is placed on a dining table, and a spoon 
is resting inside the bowl, ready to be used for 
enjoying the meal. In addition to the bowl of food, 
there are a few other items on the table. A bottle 
can be seen on the left side of the table, while a 
cup is positioned towards the top right corner. A 
book is also present on the right side of the table, 
adding to the cozy atmosphere of the scene.

The image features a blue bowl filled with a 
delicious mixture of bananas, nuts, and oatmeal. 
The bowl is placed on a dining table, and a spoon 
is resting inside the bowl, ready to be used. The 
bananas are scattered throughout the bowl, with 
some closer to the top and others near the bottom. 
The nuts and oatmeal complement the bananas, 
creating a visually appealing and appetizing dish.
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Figure 1. OPERA’s performance on reducing hallucinations.

vated general-purpose foundation models to unprecedented
levels. These models enable users to interact using images
as input, facilitating free-flowing communication based on
the content of these images. The impressive abilities of
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Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In the image, a young man is performing a 
skateboarding trick in a residential area. He 
is riding a skateboard and jumping over a 
tree trunk that is lying on the ... away from 
him. Additionally, there are two cars parked 
in the area, likely belonging to residents or 
visitors of the neighborhood.

InstructBLIP:

_away _from _him . _Additionally , _there _are _two _cars _park ed _in _the

Figure 2. A case of relationship between hallucinations and
knowledge aggregation patterns. Hallucinations are highlighted.

MLLM allows it to be adept at a variety of vision tasks
[2, 25, 45], meanwhile easily handling some complex con-
tent comprehension [23] or generation [4, 15].

Notwithstanding their remarkable versatility, MLLMs
also grapple with a significant challenge known as the
“hallucination” problem. Specifically, MLLMs often hal-
lucinate incorrect statements to the user-provided image
and prompts, e.g., producing irrelevant or nonsensical re-
sponses, indentifying inaccurate objects in terms of col-
ors, quantities and locations that do not exist in the image.
This flaw poses substantial risks for practical applications of
MLLMs to become a trustworthy assistant. For instance, in
model-assisted autonomous driving scenarios, such misin-
terpretations of road scene images may lead to wrong judg-
ments of system and serious traffic accidents.

Various approaches [29, 40, 42, 47] have been proposed
to reduce hallucinations in MLLMs. While these methods
incur substantial additional costs, including the annotation
budget for extra instruction data for training [29], the inte-
gration of external knowledge or models, etc.

In this paper, we delve into the challenge of mitigating
MLLMs’ hallucination during inference, without introduc-
ing additional data, models, or knowledge. Our investi-
gation commences with a noteworthy ‘partial over-trust’
observation found while visualizing self-attention maps for
decoded sequences. As illustrated in Figure 2, we discern a
recurring pattern where the inception of many hallucinated
contents aligns with the subsequent tokens generated after
a columnar attention pattern. Notably, these columnar at-
tention patterns often manifest on tokens that lack substan-
tial informativeness, e.g., full stop or quotation marks. In-
tuitively, this peculiarity reveals a weird fact that, a token
exhibiting a columnar attention pattern typically possesses
limited information, yet exerts a pronounced influence on
the prediction of all subsequent tokens. Moreover, as shown
in Figure 3, we find that most of the subsequent contents
contain reasoning or hallucinations.
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Figure 3. Hallucinations often start within the first 10 tokens after
knowledge aggregation patterns.
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Figure 4. (a) The aggregation pattern is consistent with re-
cent ‘anchor token’ observation. (b), (c) show the increasing
CHAIR scores (more hallucinations) on 5,000 randomly selected
MSCOCO images when more anchor tokens appear in the context.

‘Aggregation pattern’ seems to be the nature of LLM.
We hypothesize that such tokens serve as summary tokens,
which aggregate the crucial knowledge from previous to-
kens in the sequence and guide the subsequent tokens gen-
eration. Our observation is consistent with the recent ‘an-
chor token’ [41] observation in the NLP area, which finds
the LLM tends to aggregate previous information on a few
anchor tokens at shallow layers and predict the next token
based on these anchors at the deep layer (Figure 4(a)).

‘Aggregation pattern’ leads to hallucination of cur-
rent MLLMs. Current MLLMs usually put the vision to-
kens at the beginning of the sequence, and they are expected
to focus on the vision tokens and provide an precise un-
derstanding. However, as the generated text goes longer, it
will be easier for vision information to be attenuated dur-
ing the transmission of information between summary to-
kens (a single summary token can not remember the dense
and rich information given by the whole context). In de-
tail, the subsequent tokens may ignore the forehead image
tokens and over-trust the closer summary tokens via their
stronger attention attended, leading to hallucinations raised
by the model bias, e.g., hallucinating “cars” based on the
“road” mentioned in the previous sentence. In other words,
the more summary tokens appear, the more easily MLLM
hallucinations are induced. To prove it, we split the long
responses of MLLMs based on the position of summary to-
kens, and calculate the CHAIR scores for different splits
separately. As shown in Figure 4(b)(c), the CHAIR score
shows a clear positive relation with the split number of the
generated text, i.e., more hallucinations are generated when
more summary tokens appear in the context, manifested as
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the co-occurrence of them.
To alleviate the partial over-trust issue, we present

OPERA, a novel MLLM decoding approach grounded in
an Over-trust Penalty and a Retrospection-Allocation strat-
egy. The over-trust penalty introduces a weighted score for
the candidate selection step in the Beam Search [3, 16, 37],
so that the candidate with an over-trust pattern will have
lower priority to be selected. Specifically, for each decod-
ing token, we investigate the local window segmented on
the self-attention map of the decoded sequence, and devise
a column-wise metric to calculate the intensity of knowl-
edge aggregation patterns. This metric produces a value that
indicates the over-trust degree between in-window tokens
and the summary tokens. It is naturally incorporated with
the model logits predicted for the next token in the Beam
Search and penalizes the appearance of over-trust patterns.
Further, considering the hysteresis of the appearance of the
knowledge aggregation pattern, the hallucination may exist
in all the candidates when it can be observed. We propose a
retrospection-reallocation strategy to help the decoding pro-
cess roll back to the position of the summary token and re-
select better candidates that can avoid such a pattern. Such
retrospection is triggered when the location overlap of the
maximum of in-window penalty scores reaches a threshold.

With extensive experiments on benchmarks and hallu-
cination metrics, along with GPT-4/GPT-4V assessments,
OPERA demonstrates the generalized hallucinations-
reducing performance on various MLLM models. Our con-
tributions can be summarized as follows:
• Our OPERA alleviates the MLLMs’ hallucination issue

during inference, without introducing any external data,
knowledge, or additional training.

• We reveals the appearance of hallucinations and over-
trust patterns, and propose a penalty-based decoding
method equipped with retrospection-reallocation strategy.

• Extensive evaluation including GPT assessments prove
the superior performance of OPERA, which serves as a
nearly free-lunch to mitigate hallucinations.

2. Related Work

2.1. Multi-Modal Large Foundation Models

Recent progresses of computational resources has greatly
facilitated the research into large-scale foundational models
incorporated with multi-modal learning. Powered by open-
sourcing large language models such as LLaMA [38, 39]
and Vicuna [7], MLLMs [1, 6, 9, 18–20, 31, 48] understand
and generate diverse content in a more comprehensive way
by integrating information from different modalities, such
as text, images, and audio. The series of CLIP and BLIP
well aligns the text features and image features. LLaVA
[31], InstructBLIP [9] and MiniGPT-4 [48] take a step for-
ward in this field, allowing users to interact with these in-

telligence with images and texts as prompts. All of them
share the same two training phases, i.e., pre-trained feature
alignment and instruction fine-tuning, to help the model to
comprehend the format of instruction input. Shikra [5] in-
corporates grounding data and teaches the model to under-
stand the grounding knowledge in the given images. All
of aforementioned MLLM models suffer from severe hal-
lucination problems. Consequently, we mainly conduct the
experiments on these four models in our paper.

2.2. Hallucination in Large Foundation Models

The hallucination [21, 43] refers to the generation of text
that is either irrelevant, factually incorrect, or nonsensical
in the given context, which is quite severe in current large
foundation models. This issue can arise due to overfitting
to specific patterns in the training data, lack of understand-
ing of real-world facts, or an inability to effectively con-
textualize the given input. The primary concern regard-
ing hallucination in LLMs is the factual accuracy of gener-
ated content, i.e., conflicting with world knowledge or com-
mon sense. In MLLMs, the primary worry centers around
faithfulness, i.e., assessing whether the generated answers
conflict with user-provided images. Researches on miti-
gating current LLMs’ hallucination issues often focuses on
several aspects, including refining the training process, us-
ing larger and more diverse datasets [24], or implementing
post-training evaluation [11] and correction mechanisms
[33, 34]. While for MLLMs, relevant researches are still
quite few [29, 42, 47]. However, most of these countermea-
sures have a large drawback that, they either introduce large
quantities of extra data, or resort to more powerful external
models or knowledge. Compared with them, our OPERA
serves as nearly free lunch for alleviating the hallucination
issue, without incurring extra training, data, or knowledge.

2.3. Decoding Strategy in Language Models

Decoding strategies in language models are crucial for de-
termining how these models generate text. They play a piv-
otal role in shaping the output’s quality, relevance, and co-
herence. Greedy Decoding simply selects the most likely
next word at each step. While fast and computationally ef-
ficient, greedy decoding often leads to repetitive and less
varied text. Beam Search [3, 16, 37] is a more sophisticated
approach, beam search keeps track of a predefined num-
ber of hypotheses at each step, expanding on them to find a
more optimal sequence. Top-k Sampling [12] adds random-
ness to the generation process by randomly selecting from
the top-k likely next words, introducing diversity in the out-
put but can sometimes produce less coherent results. Top-p
(Nucleus) Sampling [17] is an evolution of Top-k, Nucleus
sampling considers a dynamic number of words that cumu-
latively reach the probability p. This method provides a bal-
ance between randomness and relevance, often leading to
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more coherent and interesting outputs than Top-k sampling.
DoLa [8] decoding is a recently proposed decoding method
that aims to mitigate the hallucinations in MLLMs, which
contrasts the logits of mature layer and pre-mature layers
and rescale the increments as the output. In this paper, we
compare our proposed OPERA with these common decod-
ing strategies, focusing on the performance on the halluci-
nation issues of MLLMs.

3. Method
In the following, we first formulate the generation pro-
cedure of the MLLMs for the easy understanding of our
OPERA, then introduce the calculation of the proposed
Over-Trust Logit Penalty and Retrospection-Allocation
Strategy respectively.

3.1. Formulation of MLLMs Generation

The generation procedure of LLMs could be parsed into
three parts: input formulation, model forward, decoding.
Input Formulation. The input of MLLMs contains both
image and text. Putting aside the specific architecture dif-
ference, the MLLMs commonly use a vision encoder to ex-
tract visual tokens from the raw images, and map them into
the LLMs’ input space with a cross-modality mapping mod-
ule. The mapped visual tokens are used as part of the LLM
input, along with the text input. We denote the visual tokens
as xv = {x0, x1, . . . , xN−1}. Here N is the length of the
visual tokens and it is a fixed number in most cases. Cor-
respondingly, the input text is tokenized with the tokenizer
and we denote it as xp = {xN , xN+1, . . . , xM+N−1}. The
image and text tokens are concatenated as the final input
sequence and we denote it as {xi}T−1

t=0 that T = N +M .
Model Forward. The MLLM is trained in an auto-
regressive manner with a causal attention mask, each token
predicts its next token based on previous tokens, formally:

h = MLLM(xi)

h = {h0, h1, . . . , hT−1}
(1)

where h is the output hidden states of MLLM’s last layer.
Next, MLLMs use a vocabulary head H to project the

hidden states h and get the logits (or probabilities) for the
next token prediction, formally:

p(xt|x<t) = SoftMax[H(ht)]xt , xt ∈ X , (2)

where we use x<t to simplify the sequence {xi}t−1
i=0 and X

means the whole vocabulary set.
Decoding. Based on the logits p(xt|x<t), there are several
decoding strategy developed, including Greedy Decoding,
Beam Search, DoLa, etc. The decoded token is concate-
nated to the last of the original input text for the next-round
generation, until the generation is ended.

Last-Layer Attention
(Max in multi heads)

Local Window Attention Scaled Attention Weights

Column-Wise Scores

multiply

max

Maximum ScoreOver-trust Penalty

Figure 5. The scheme of calculating the proposed over-trust
penalty term. We first cut out a local window on the self-attention
map, then we scale up the values and conduct the column-wise
multiplication to get a score vector, finally we choose the maxi-
mum score as the penalty term.

Our OPERA is based on the Beam Search [3, 16, 37],
which is a accumulated-score-based decoding strategy.
Briefly, With a given beam size Nbeam, the Beam Search
keeps Nbeam candidate sequences, where each candidate
is a decoded sequence xNbeam with a beam score. When
decoding token xt, each candidate hypothesis will select
Nbeam candidate tokens based on the Top-Nbeam probabil-
ities in the logits. And finally, the decoding procedure will
output the hypothesis wins the best beam score.

3.2. Over-Trust Logit Penalty

As we analyzed in Sec.1, there exists a high-probability
co-currence between the hallucination and the knowledge
aggregation patterns. However, such pattern has a signif-
icant hysteresis, i.e., the patterns can not be immediately
observed when the corresponding token is decoded, but af-
ter several subsequent tokens been decoded, and the hallu-
cination may already occurred. In response to the hystere-
sis, we propose ‘Over-Trust Logit Penalty’, an accumula-
tive penalty weighted in the beam score, which influences
the selection of both the current token and the candidate
sequence. A candidate sequence accumulated with a large
penalty will have a lower priority to be selected so that the
output with hallucinations will be possibly omitted.

In practice, we investigate a local window on the self-
attention weights and leverage column-wise product to cal-
culate the metric values. Denote the current generated se-
quence as {xi}t−1

i=0 and their casual self-attention weights
{ωt−1,j}t−1

j=0 paid on the next token prediction, in which
the weights can be depicted by softmax result as ω =

SoftMax(QK⊤
√
D

) and Q, K, D denote query feature, key fea-
ture, feature dimension respectively. We consider to gather
all of previous self-attention weights in a local window for
characterizing the knowledge pattern, i.e., the local window
attention is defined as

Wk
t−1 = {wi}t−1

i=t−k, s.t. wi = {ωi,j}ij=t−k, (3)
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where k denotes the size of local window we cropped on the
attention map, ωi,j means the attention weight assigned by
the jth token to the ith token. There are two points should
be clarified: 1) our window does not involve the attention
weights of image tokens or prompt tokens because we only
concentrate on the knowledge aggregation patterns on gen-
erated tokens, i.e., t− k ≥ N +M . 2) we select the maxi-
mum weight in attention heads since it usually indicates the
strong confidence of models ,and re-normalize the values .

With the local window attention weights Wk
t−1, we can

calculate upon a simple metric to describe the size of the
knowledge aggregation pattern. Specifically, we first do
some preprocess on Wk

t−1, including filling the upper tri-
angle of the matrix with zeros and scaling up the attention
values as the values are usually too small, i.e.,

Wk
t−1 ≜ {wi}t−1

i=t−k, s.t. wi = {σωi,j}t−1
j=t−k, (4)

where {ωi,j}t−1
j=i+1 are zeros and σ is a configurable scaling

factor.
As illustrated in Figure 5, we then conduct the column-

wise multiplication on the lower triangle of the attention
matrix and obtain a vector of column-wise scores. Intu-
itively, the larger score indicates the stronger pattern that ex-
ists at the corresponding location. Thus, we select the max-
imum value of the column-wise score vector as the charac-
teristic of knowledge aggregation patterns. Formally,

ϕ(ω<t) =

t−1∏
i=c

σωi,c, s.t. c = argmax
t−k≤j≤t−1

t−1∏
i=j

σωi,j . (5)

Until now, we have an salient metric to detect the oc-
curring of knowledge aggregation patterns within the local
window. With the concern of calculation efficiency and the
penalty should not bias the model to unreasonable output,
we choose the top-Ncan in the logit of each beam to consist
a candidate set Y , where |Y| = Ncan ∗ Nbeam and Nbeam

is the number of beams. In this way, we limit the prediction
within the candidate set and incorporate ϕ(w≤t) with the
model logits to predict the next token, i.e.,

p(xt|x<t) = Softmax[H(ht)− αϕ(w≤t)]xt , s.t. xt ∈ Y,
(6)

where w≤t simplifies all of attention weights obtained by
feeding forward the sequence {x0, x1, . . . , xt}.

3.3. Retrospection-Allocation Strategy

With the over-trust logit penalty, we can successfully detect
the occurrence of patterns after several subsequent tokens
are generated. Normally, the penalty term is able to penalize
the candidates which have knowledge aggregation patterns,
and encourage other candidates to be predicted. While there
still exists a few cases that all of the candidates get penal-
ized and the hallucination already occurred.

∙∙∙

∙∙∙

location

location

location
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Figure 6. The scheme of the proposed Retrospection strategy. We
compute the maximum value coordinates of the past several to-
ken’s column-wise scores and check if the overlap time is larger
than r. If yes, we retrospect the decoding procedure and reselect
the next token xs+1.

This case motivates us to rethink the origin of such ag-
gregation patterns: it is caused by the first few subsequent
tokens over-trusting the summary token, and the penalty
failed to correct them. So an intuitive while aggressive idea
is that the pattern will be greatly weakened if we could ex-
clude the tokens that lead to hallucination and re-choose the
proper first few tokens after the summary token.

To this end, we propose the Retrospection-Allocation
strategy. Specifically, when the decoding procedure en-
counters the knowledge aggregation pattern and the halluci-
nation is inevitable, it rolls back to the summary token and
selects other candidates for the next token prediction except
for the candidates selected before. Empirically, the condi-
tion of decoding retrospection is designed as the location
overlap of the maximum value in column-wise scores that
corresponds to several consecutive tokens, where we man-
ually set the threshold counts as r. Rather than the max-
imum value that varies between different models, location
counting is a much more robust and general metric for the
decision.

The whole retrospection process is illustrated in Fig-
ure 6. Based on Sec. 3.2, we can easily derive the loca-
tion coordinate c of the maximum score via Eq. (5). Conse-
quently, we can obtain the location coordinate set of several
recently decoded tokens xt−l, . . . , xt−1, i.e.,

C = {c|c = argmax
t−k≤j≤z

z∏
i=j

σωi,j , z ∈ [t− l, t− 1]}, (7)

where l > r should be specified. We set l = k by default.

13422



Given a sequence {x0, x1, . . . , xt−1} and its recent lo-
cation coordinate set C, we can easily check whether the
coordinates are consistent. Formally, the overlap times can
be calculated by

Noverlap =
∑
c∈C

1c=s, s.t. s = Mode(C), (8)

where 1 is an indicative function that returns 1 for the con-
dition is true and returns 0 for the condition is false, Mode
is the function to get the mode of a set of values.

If Noverlap ≥ r, we consider to implement retrospection,
regarding s = Mode(C) as the location of the summary to-
ken. Suppose the sequence {x0, x1, . . . , xs, . . . , xt−1} that
has presented knowledge aggregation pattern at the sum-
mary token xs, we intend to roll the decoding procedure
back to the sequence {x0, x1, . . . , xs} and select the new
next token in the complementary set Y/{xs+1}. Since the
subsequent rollback will be further forward than previous
ones, we manually specify that the rollback location s must
be monotonically not decreasing. Additionally, we config-
ure a maximum time β for rollback and consider to roll back
to {x0, x1, . . . , xs−1} if xs has already reached the maxi-
mum rollback times.

4. Experiment
4.1. Setup

Models. We select four of the most representative
MLLM models for evaluation, including InstructBLIP [9],
MiniGPT-4 [48], LLaVA-1.5 [30] and Shikra [5]. These
MLLM models can be roughly divided into two categories:
Both InstructBLIP and MiniGPT-4 adopt Q-former [26] to
bridge the features between vision and text modality, using
just 32 tokens to efficiently depict image representations.
While LLaVA-1.5 and Shikra simply leverage linear pro-
jection layers to align the features of two modalities, with
256 or even 576 image tokens as MLLM input. All of these
MLLM models apply a well-pretrained model as their vi-
sion encoder, such as CLIP [35] and EVA [13], as well as a
pretrained language model like LLaMA [38] or Vicuna [7].
Note that all of models used in our paper are 7B models.
Baselines. Since our work targets on the decoding ap-
proaches of MLLMs, we choose four decoding methods
as the baseline methods, including three common strategies
greedy decoding, Nucleus sampling, Beam search decoding
and one method DoLa that is designed for mitigating LLMs’
hallucination issues. Greedy decoding selects tokens step
by step, greedily choosing the one with the highest prob-
ability in the language model logits. Improved on greedy
decoding, Beam search decoding [3, 16, 37] maintains a
set of beams to enlarge the candidate range and select the
best on in beams finally. Different from the aforementioned
two methods, nucleus sampling [17] concentrates concen-

trates on the predominant probability mass at each time
step, maintaining a small subset of the vocabulary, typically
ranging between one and a thousand candidates. DoLa [8],
designed for hallucination reduction in LLMs, contrasts the
logits of the mature layer with those of pre-mature layers,
using the increment as the final output logits. We adopt the
default settings of all of these baseline methods, where we
unify Nbeam = 5 for both Beam search and our OPERA,
and set p = 0.9 for nucleus sampling. For DoLa, we use
“0,2,4,6,8,10,12,14” as the indexes of candidate pre-mature
layers and “32” as the index of the mature layer for DoLa.
Implementation details. Basically, OPERA is established
on Beam search where Nbeam = 5 by default. We empir-
ically select σ = 50 as the scaling factor in Eq. (5), to en-
sure the attention values on knowledge aggregation patterns
could be larger than 1 while the values on weaker atten-
tion areas could be smaller than 1. It aims to get the larger
multiplication result on knowledge aggregation pattern. For
the number Ncan of candidates, it is a configurable hyper-
parameter like Ncan and we set Ncan = 5 by default. Too
large Ncan will consume lots of time during decoding. Be-
sides, we unify α = 1, β = 5 and r = 15 for all of MLLMs.

4.2. Quantitative Results

In this section, we evaluate OPERA’s performance of mit-
igating hallucinations on both long descriptions, simplified
VQA answers and popular MLLM benchmarks.
CHAIR evaluation on hallucinations. The Caption Hal-
lucination Assessment with Image Relevance (CHAIR) [36]
metric is a specifically crafted evaluation tool designed to
assess object hallucination issues in image captioning task.
More precisely, CHAIR quantifies the degree of object hal-
lucination in a given image description by calculating the
ratio of all objects mentioned in the description that are not
present in the ground-truth label set. It comprises two dis-
tinct assessment dimensions, including CHAIRS that cal-
culates on sentence-level and CHAIRI that calculates on
image-level. Denoted as CS and CI , these two variants can
be formulated as the average results of

CS =
|{hallucinated objects}|
|{all mentioned objects}|

, CI =
|{captions w/ hallucinated objects}|

|{all captions}|
,

where the integration of CHAIRS and CHAIRI enables a
thorough and detailed analysis of object hallucination issues
in image captioning.

We conduct CHAIR evaluation on MSCOCO dataset
[28], which contains more than 300,000 images and 80 ob-
jects with annotations. Specifically, we randomly select 500
images in the validate set of COCO 2014 and query differ-
ent MLLM models with the prompt “Please describe
this image in detail.” to get their descriptions.
Considering the length of sequences can greatly affect the

13423



SPI

WPI

HSPI

HWPI

HSR

HWR

2.09

3.18

4.27

5.36

15.55
51.09

86.64
122.18

3.39
2.98

2.58
2.17

86.52

73.05

59.58

46.1

0.65
0.59

0.54
0.48

0.74
0.66

0.59
0.51

InstructBLIP

SPI

WPI

HSPI

HWPI

HSR

HWR

1.42

2.84

4.25

5.67

7.62
35.25

62.88
90.5

2.88
2.55

2.22
1.9

48.22

43.45

38.67

33.9

0.57
0.54

0.5
0.46

0.61
0.56

0.52
0.48

MiniGPT-4

SPI

WPI

HSPI

HWPI

HSR

HWR

3.5

4.0

4.51

5.01

52.83
65.66

78.5
91.33

2.5
2.31

2.12
1.92

48.87

44.74

40.6

36.47

0.51
0.47

0.43
0.39

0.53
0.49

0.46
0.42

LLaVA-1.5

SPI

WPI

HSPI

HWPI

HSR

HWR

3.65

4.0

4.35

4.7

66.54
73.08

79.61
86.15

3.42
2.85

2.28
1.7

64.35

53.7

43.04

32.39

0.53
0.49

0.45
0.41

0.53
0.5

0.46
0.43

Shikra

OPERA (Ours) DoLa Beam Search Nucleus Sampling Greedy

Figure 7. GPT-4 assisted hallucination evaluation [46] results on VG-100K dataset. Six aspects of values are analyzed, including the
number of sentences per image (SPI), the number of words per image (WPI), the number of hallucinated sentences per image (HSPI), the
number of hallucinated words per image (HWPI), the ratio of hallucinated sentences (HSR), and the ratio of hallucinated words (HWR).
Note that larger SPI and WPI, smaller HSPI, HWPI, HSR and HWR are better. Larger radar indicates better performance.

Method InstructBLIP MiniGPT-4 LLaVA-1.5 Shikra

CS CI CS CI CS CI CS CI

Greedy 58.8 23.7 31.8 9.9 45.0 14.7 55.8 15.4
Nucleus 54.6 24.8 32.6 10.7 48.8 14.2 55.6 15.4
Beam Search 55.6 15.8 30.6 9.5 48.8 13.9 50.4 13.3
DoLa 48.4 15.9 32.2 10.0 47.8 13.8 55.8 15.1
OPERA 46.4 14.2 26.2 9.5 44.6 12.8 36.2 12.1

Table 1. CHAIR hallucination evaluation results on four MLLM
models (max new tokens is 512). Denote CHAIRS as CS and
CHAIRI as CI . Smaller values corresponds to less hallucinations.

values of CHAIR [27], we restrict two types of max new
tokens to generate descriptions for fair evaluation.

As shown in Table 1 and Table 2, our OPERA obviously
surpasses all of baselines decoding methods in both terms
of CS and CI . Especially on Shikra, our method achieves
∼35% improvement on DoLa. The superior performances
of OPERA are consistent between long description genera-
tion and short description generation.
GPT-4 assisted evaluation. CHAIR is a strong metric to
evaluate the object-existence-level hallucination, while it
fails to identify other kinds of hallucination, such as the at-
tribute, location, and relation hallucination of objects. Hal-
luBench [46] is an advanced benchmark, which use the
detailed object-level description in the VG dataset [22] as
ground-truth, and relay on the advanced GPT-4 to judge
the hallucination in the description. In practice, the de-
tailed objects-level description are gathered as a disordered
comprehensive description about the image, and the GPT-
4 is carefully prompted to judge the hallucination in the
MLLM generated descriptions, sentence by sentence. Simi-
lar to Section 4.2, the MLLMs are prompted with “Please
describe this image in detail.” and the max
new tokens is set to 512.

From Figure 7, we observe that our OPERA generally

Method InstructBLIP MiniGPT-4 LLaVA-1.5 Shikra

CS CI CS CI CS CI CS CI

Greedy 30.0 14.5 24.2 8.2 20.6 6.2 22.0 7.0
Nucleus 30.4 15.7 23.6 8.3 26.2 8.5 22.6 7.6
Beam Search 21.4 7.2 23.6 7.8 18.8 5.9 20.2 6.4
DoLa 22.2 7.1 24.2 8.2 20.4 6.3 20.2 6.3
OPERA 16.6 6.8 22.6 8.2 14.2 5.2 14.2 5.9

Table 2. CHAIR hallucination evaluation results on four MLLM
models (max new tokens is 64). Denote CHAIRS as CS and
CHAIRI as CI . Smaller values corresponds to less hallucinations.

achieves much less hallucinated sentences or words for de-
scribing each image, e.g., ∼30.4% surpassing greedy de-
coding on the ratio of hallucinated sentences (HSR), and
∼15.4% surpassing DoLa at the ratio of hallucinated words
(HWR). It indicates that OPERA does help the model par-
tially overcome the hallucination issue caused by its bias or
over-trusting problems. We also notice that OPERA some-
how slightly reduce the length of MLLM’s output sequence,
it is probably attributed by the reducing of those additional
hallucinated contents.
GPT-4V assisted evaluation. We further resort to GPT-
4Vision, a strong multi-modal assistant that can easily han-
dle the input from vision, language, and voice modal-
ity. Typically, we randomly sample 500 images from
MSCOCO’s validate set and ask different MLLM models
to describe these images. For fair comparison, we follow-
ing [42] and compare the answers obtained from two de-
coding methods at the same time, i.e., providing the image
and both the answers to GPT-4V and prompting it to give
a judgement from 0-10 respectively. The prompt empha-
sizes mitigating the impact of the sequential order fed to
GPT-4V and, additionally, paying special attention to the
objects mentioned in answers but not appear in the image.
It includes instances where the objects are represented in an
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Method InstructBLIP MiniGPT-4 LLaVA-1.5 Shikra

C D C D C D C D

Beam Search 5.52 5.26 5.29 5.06 5.53 5.15 5.25 5.08
OPERA 6.26 5.27 6.87 5.08 6.32 5.16 6.29 5.26

Table 3. GPT-4V assisted hallucination evaluation results on
MSCOCO. Two aspects are verified, i.e., correctness (C) and de-
tailedness (D). Higher correctness indicates less hallucinations.

Method InstructBLIP MiniGPT-4 LLaVA-1.5 Shikra

Greedy 80.0 58.5 82.2 81.1
Nucleus 80.1 57.8 82.5 81.2
Beam Search 84.4 70.3 84.9 82.5
DoLa 83.4 72.8 83.2 82.1
OPERA 84.8 73.3 85.4 82.7

Table 4. POPE hallucination evaluation results on four MLLM
models. We report the average F1-score computed on random,
popular, and adversarial splits of POPE.

incorrect form of colors, positions, or relationships.
As showcased in Table 3, our OPERA achieves up to

27.5% improvements compared with Beam search decod-
ing, while keeping the detailedness of answers. Since GPT-
4V’s abilities of perception and reasoning are very closed
to human beings, the GPT-4V evaluation results somehow
reflect the strong performance of reducing hallucinations
from the perspective of human’s feeling.
POPE evaluation on hallucinations. The Polling-based
Object Probing Evaluation (POPE) [27] is a recently in-
troduced method designed to assess hallucination issues in
MLLMs. Similar to CHAIR, POPE focuses on evaluat-
ing object hallucination, utilizing an essay question format
to prompt the model like “Is There a <object> in
the image?”, to determine whether the model can con-
figure out the given image corresponds to a specific ob-
ject. The complete POPE test comprises three splits: In
the“random” split, the evaluation randomly selects objects
from the whole dataset. In the “popular” split, the evalu-
ation assesses the presence of objects that most frequently
appear in the dataset. In the “adversarial” split, it evaluates
the MLLM’s ability to identify objects highly relevant to
those present in the image.

We verify POPE on four MLLM models and report
the average F1 scores in Table 4. Compared with base-
line methods, we can observe our OPERA also attains the
highest performance among these decoding strategies, al-
beit with marginal gains. It is essential to clarify that our
approach excels specifically in alleviating hallucinations
within lengthy sequences. In the context of POPE answers,
where responses typically start with Yes or No and con-
clude as quite brief sequences like “Yes, there is a
<object> in the image.”, the knowledge aggrega-
tion patterns, a crucial hypothesis of our method, may not
manifest as prominently.

PPL1↓ PPL2↓ Grammar↑ Fluency↑ Natural↑

Greedy 12.72 10.27 9.58 9.01 8.52
Nucleus 17.17 13.78 8.51 8.53 7.95
Beam Search 11.11 8.89 9.54 8.95 8.55
DoLa 12.89 10.40 9.31 8.89 8.46
OPERA 11.67 9.31 9.54 8.93 8.53

Table 5. The evaluation results for the quality of generated text.
We calculate PPL1 and PPL2 with gpt2 and gpt2-medium in the
huggingface model zoo respectively. The ratings of grammer, flu-
ency, and naturalness is given by GPT-4.

Greedy Nucleus Beam DoLa OPERA

MMBench 64.3 64.0 64.4 63.8 64.4
MME 1510.7 1471.9 1504.3 1480.1 1515.4

Table 6. OPERA generally improves the MLLM’s performance on
popular MLLM benchmark.

Text quality evaluation. To assess the overall quality of
generated text comprehensively, we adopt PPL (Perplexity,
a classical metric in NLP without using reference text), and
resort to GPT-4 to assess the grammar, fluency, and natural-
ness of generated text. We randomly select 1,000 images in
MSCOCO and verify on LLaVA-1.5 7B model. The aver-
age results are listed above, where PPL1 and PPL2 are cal-
culated by pretrained gpt2 and gpt2-medium respectively.

From the results in Table 5, we discover that OPERA
can generally keep the quality of generated text from var-
ious aspects. Besides, we test OPERA on two popular
MLLM benchmark, i.e., MME [14] and MMBench [32],
using LLaVA-1.5 7B model. Table 6 shows that OPERA
can maintain and even improve MLLM’s performance on
both MLLM benchmarks.

5. Conclusion

We introduce OPERA, a novel MLLM decoding method
that mitigates hallucination without requiring additional
data, knowledge, or training costs. It is grounded in an
Over-trust Penalty and a Retrospection-Allocation strategy,
with the key observation that hallucinations are closely tied
to knowledge aggregation patterns in the self-attention ma-
trix, where MLLMs tend to focus on summary tokens, ne-
glecting image tokens and resulting in content hallucina-
tion. Experiments show our superiority in reducing halluci-
nation on various MLLMs and metrics.
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