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Abstract

Many face anti-spoofing (FAS) methods have focused on
learning discriminative features from both live and spoof
training data to strengthen the security of face recognition
systems. However, since not every possible attack type is
available in the training stage, these FAS methods usually
fail to detect unseen attacks in the inference stage. In com-
parison, one-class FAS, where training data comprise only
live faces, aims to detect whether a test face image be-
longs to the live class or not. In this paper, we propose
a novel One-Class Spoof Cue Map estimation Network (OC-
SCMNet) to address the one-class FAS detection problem.
Our first goal is to learn to extract latent spoof features
from live images so that their estimated Spoof Cue Maps
(SCMs) should have zero responses. To avoid trapping
to a trivial solution, we devise a novel SCM-guided fea-
ture learning by combining many SCMs as pseudo ground-
truths to guide a conditional generator to create latent
spoof features for spoof data. Our second goal is to simu-
late the potential out-of-distribution spoof attacks approx-
imately. To this end, we propose using a memory bank
to dynamically preserve a set of sufficiently “independent”
latent spoof features to encourage the generator to probe
the latent spoof feature space. Extensive experiments con-
ducted on eight FAS benchmark datasets demonstrate that
the proposed OC-SCMNet not only outperforms previous
one-class FAS approaches but also achieves performance
comparable to the state-of-the-art two-class FAS methods.
The code is available at https://github.com/Pei-
KaiHuang/CVPR24_OC_SCMNet.

1. Introduction
Face recognition has been widely adopted in everyday sit-
uations to facilitate biometric authentication for unlocking
devices, making payments, and accessing sensitive data. To
prevent facial spoofing attacks by using photos (i.e., print
attacks), videos (i.e., replay attacks), or masks (i.e., 3D
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Figure 1. Illustration of the proposed SCM-guided feature learning
for one-class face anti-spoofing (FAS). First, under the assumption
that live images should yield no spoof cues, we focus on learning
to extract latent spoof features so that the estimated Spoof Cue
Maps (SCMs) from live images become 0. Next, to simulate the
absent spoof class, we incorporate nonzero pseudo SCMs in the
SCM-guided generative network to guide the feature learning.

mask attacks) of other authorized persons, many face anti-
spoofing (FAS) methods [2, 9–15, 17, 19, 24, 25, 34, 37]
have been developed to distinguish spoof attacks from live
images. Most FAS methods adopt the two-class classifica-
tion method to learn discriminative feature characteristics
from both live and spoof images. For example, the authors in
[18] decompose any facial image into a live-like image and
spoof noise, which are then used to differentiate between
live and spoof images. In [8], the authors propose using the
spoof cue map for FAS via estimating an all-zero spoof cue
map for live images and nonzero ones for spoof images.

Compared to two-class methods, one-class FAS methods
[2, 15, 20, 24] aim to train the model only from the live class.
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Since live faces are collected from real people, different face
images in the live class usually exhibit small distribution
discrepancies between the training and test domains [17].
Therefore, learning liveness information from the live class
alone would be more feasible to identify unseen spoof at-
tacks from the out-of-distribution (OOD) testing domain in
the inference stage. However, in the absence of spoof class,
the first challenge is how to learn discriminative features
from only the live class. Next, unlike other one-class clas-
sification problems (such as anomaly detection or novelty
detection), one-class FAS deals with highly similar visual
characteristics between live and spoof faces and relies heav-
ily on whether the extracted features can characterize the
intrinsic difference between the two classes. Finally, due to
the constant evolution and variation of new spoof attacks,
basic spoof models like those using additive noise from a
prior distribution are ineffective in identifying spoof attacks
that have not been encountered before.

This study focuses on addressing the above-mentioned
challenges in one-class FAS and propose a novel One-Class
Spoof Cue Map estimation Network (OC-SCMNet) to effec-
tively detect the out-of-distribution (OOD) occurrences of
spoof attacks in inference. Figure 1 illustrates our main idea.
First, under the widely acknowledged assumption [8, 18]
that live images should contain zero spoof noise or null spoof
cues, we propose a novel spoof cue map (SCM) estimation
focusing on learning the latent spoof feature representation,
which is able to re-produce zero SCMs from live images.
Next, to overcome the absence of spoof class, we propose
an SCM-guided generative feature learning by combining
many nonzero SCMs as pseudo ground-truths of spoof class
to guide a conditional generator to generate nontrivial la-
tent spoof features. Finally, to detect OOD occurrences of
unseen spoof attacks, we further force the latent feature gen-
eration process to continue evolving towards unexplored
latent space. In particular, we propose using a fixed-size of
sufficiently ’independent’ latent features to closely approxi-
mate the global latent feature space for probing unseen latent
spoof features. We conduct extensive experiments on eight
public face anti-spoofing databases to evaluate the effective-
ness of the proposed OC-SCMNet. Our experimental results
on intra-domain and cross-domain testing demonstrate that
the proposed OC-SCMNet not only surpasses existing one-
class FAS approaches but also delivers comparable results
to state-of-the-art two-class FAS methods.

Our contributions are summarized as follows:

• We introduce a novel one-class face anti-spoof model
called OC-SCMNet, focusing on learning discriminative
latent spoof features so that their corresponding spoof
cue maps (SCMs) can effectively reflect zero and nonzero
responses for the live and spoof classes, respectively.

• Under the one-class constraint, we combine nonzero
SCMs as pseudo ground-truths for spoof class and propose
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Figure 2. The proposed OC-SCMNet consists of one latent feature
extractor F , one SCM estimator E, and one latent spoof feature
generator G. We train F and E to produce zero SCMs for the train-
ing live images. To avoid trivial solutions for E, we use sampled
Gaussian noise n and a pseudo SCM m̃ to guide the generator G
to learn nontrivial latent features zG with corresponding nonzero
SCMs. Furthermore, to explore the potential spoof attacks, we use
the fixed-size memory bank B to encourage G to keep generating
new latent spoof features towards the unexplored direction.

an SCM-guided generative feature learning to guide the
model on generating nontrivial latent spoof features.

• To explore potential spoof attacks, we propose using a
fixed-size memory bank to keep a set of representative
spoof latent features to approximate the global spoof latent
space for probing unseen latent spoof features.

• Our extensive experimental results have shown that OC-
SCMNet surpasses previous one-class FAS techniques and
attains performances comparable to those of the state-of-
the-art two-class FAS methods.

2. Related work

Two-class face anti-spoofing Many two-class FAS tech-
niques have been developed to learn discriminative and gen-
eralized characteristics in various scenarios, including do-
main generalization (DG) [9–13, 17, 19, 25–27, 29, 32, 35,
37, 42, 43, 45], domain adaptation (DA) [34], source-free
domain adaptation (SFDA) [23], test-time adaptation (TTA)
[14], and domain continual learning (DCL) [4]. To yield
discriminative features, the authors in [11, 12, 35, 42, 43]
propose integrating predefined or learnable descriptors into
vanilla convolution to capture gradient-level information to
improve the representation capability. Furthermore, the au-
thors in [10, 13, 33, 37] employ disentangled feature learning
to distinguish between liveness and domain information to
acquire generalized features and domain generalization.
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One-class defect detection/face anti-spoofing Defect de-
tection with one-class techniques entails training the model
exclusively on normal data. These approaches [16, 30] usu-
ally analyze distinct characteristics between different regions
of a sample to determine whether the sample is normal or
abnormal, assuming that abnormal data regions tend to dif-
fer from those of normal data. However, because of highly
similar visual characteristics between live and spoof faces,
the subtle facial differences are no longer discrimative.

In one-class FAS methods [15, 20], the authors propose
learning the liveness information through the facial image
reconstruction constraint. However, in the absence of spoof
faces, the model may simply learn to reconstruct live faces
through some general facial features rather than the genuine
liveness features. In addition, Gaussian Mixture Models
(GMMs) are adopted in [2, 24] to learn the distribution of
live images. Specifically, the authors in [24] consider the
features of Image Quality Measures introduced in [38] to
train the GMMs distribution of live images, and the method
in [2] mixes the noise sampled from a Gaussian distribu-
tion with live features to create pseudo spoof features for
distinguishing between live and spoof images. Alas, take
for example that the two approaches [24] and [2] applied
to protocol 1 of the dataset OULU-NPU [3] achieve ACER
[28] values (the lower the better) of 46.95% and 30.242%,
respectively. These results are deemed unsatisfactory and
less competitive compared to the two-class methods.

3. Our method

We tackle the problem of face anti-spoofing (FAS) under the
one-class constraint that all training samples in the given
dataset are limited to images of live faces. Thus, it is rea-
sonable to expect that the goodness of a learned model for
achieving the anti-spoofing task critically depends on how
well it can detect the out-of-distribution (OOD) occurrences
in inference. To this end, we propose a novel representation
learning, guided by the use of spoof cue maps (SCMs), to
facilitate the OOD detection for face anti-spoofing.

Our method results in a One-Class Spoof Cue Map es-
timation Network (OC-SCMNet) to predict whether a face
image is Live or Spoof. Figure 2 shows that OC-SCMNet
comprises two key convolutional network modules, denoted
as F and E, where the former is the feature extractor for the
latent feature representation, and the latter is the estimation
module for the corresponding spoof cue map. To overcome
the difficulty of training a classification model with respect
to one-class data, we also include a generative module G
to generate latent features with respect to pseudo spoof cue
maps. There are totally three sets of parameters, θF of F ,
θE of E and θG of G, to be optimized in the course of model
training. We next describe the details of our approach.

Figure 3. Examples of randomly sampled binary masks ϕi and the
randomly combined pseudo spoof cue maps m̃i.
3.1. SCM-guided feature learning

Given a one-class training dataset D = {x}, where each
x ∈ D is an image of live face (or simply referred to as a
live image). We denote the proposed FAS model by T . As
the model T is constructed with a feature extractor F and an
SCM estimator E, we express the resulting SCM of x by

m = T (x) = E(F (x)) = E(z) , (1)

where m is of the same spatial size as x, and z = F (x) is
the latent (unit) feature vector. To link the SCM output, m,
with the face antispoofing task, we set the ultimate goal of
model training to attain the following two useful properties.
• T (x) = 0, if x is a live image; 0 denotes the null SCM.
• ∥T (x)∥1 = ∥m∥1 > α > 0, if x is not a live image; α is

a scalar/margin to be specified in training. Note that we
adopt the entry-wise matrix 1-norm, ∥m∥1 =

∑
|mi,j |.

While the above two perspectives of consideration are reason-
able, it is indeed not directly applicable under the one-class
setting. In particular, learning T with only live images, the
optimization could easily lead to a null estimator E. On the
other hand, without assuming any prior knowledge about
spoofing attacks, it is hard to establish a general formula-
tion to generate instances of spoof samples accounting for
various scenarios. We instead develop an SCM-guided for-
mulation of generative feature learning to simultaneously
resolve the two aforementioned challenging issues.

Binary masks and SCMs To avoid trapping in a trivial
optimum of a null estimator E, we include an SCM-guided
generator network G in the OC-SCMNet training stage to
produce latent spoof features, denoted as zG. More impor-
tantly, the strategy empowers the resulting SCM estimator
E to detect the OOD occurrences for face anti-spoofing.

Recall that we aim to learn the model T that could output
an SCM response with ∥m∥1 > α, reflecting a margin-based
decision boundary from the null SCM, i.e., 0. To generate
such spoof cue maps, we randomly sample a collection of
binary masks, say, {ϕi} with ∥ϕi∥1 > α and ∪ϕi covering
the whole spatial region. For each training batch, we obtain
a set of NM pseudo spoof cue maps, denoted asM = {m̃}
where each m̃ is constructed as follows. We first decide
on the nonnegative fusion coefficient vector c = (ci) by
randomly assigning the number of nonzero elements and
their respective weights (sum to 1) and then apply the convex
combination to form a pseudo spoof cue map by

m̃ =
∑

i
ci · (1⊙ ϕi) (2)
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where 1 is the all-ones matrix and⊙ symbolizes the element-
wise multiplication. Figure 3 shows examples of using con-
vex polygons to generate binary masks {ϕi} and the resulting
pseudo SCMs {m̃i}.

Generative feature learning We are now in a position
to describe the proposed SCM-guided generative feature
learning with the conditional generator G. As shown in
Figure 2, the process of feature generation by G is condi-
tioned on a given pseudo SCM m̃ ∈M and triggered by the
noise n ∼ N (0, I), sampled from a unit Gaussian prior. We
express the generative process of latent spoof features by

zG ← G(n|m̃;θG) and ∥zG∥ = 1. (3)

With (3), the SCM-guided generative process adds the other
aspect of input, i.e., zG, to enhance the training of the FAS
model T = F ◦ E. Observe from Figure 2 that the SCM-
guided feature learning pipeline goes through the generator
G and the estimator E and thus involves the parameters θG
and θE . We adopt the strategy of alternating optimization to
learn the parameters θG of G by fixing the parameters θE of
E. Specifically, we consider minimizing the following loss:

LG(θG) =
∑

m̃∈M
∥E(G(n|m̃;θG))− m̃∥22

=
∑

m̃∈M
∥E(zG)− m̃∥22.

(4)

So far, we have established an SCM-guided feature learn-
ing formulation to generate latent spoof features {zG}. How-
ever, such feature generation is driven solely byM and may
not fully explore the whole latent feature space. To better
take account of this issue, our formulation keeps a fixed-size
memory bank B that evolves a corresponding latent subspace
to encourage globally probing of the feature generation pro-
cess. At each batch-wise training, a newly generated latent
feature zG by (3) will be added to the memory bank B, if it
satisfies the following criterion:

1

NB

∑NB

j=1
| cos(zG, zGj )| < δ, (5)

where {zGj }
NB
j=1 are the latent spoof feature vectors currently

stored in B, and δ is a small-value threshold. The inclusion
criterion in (5) will memorize a newly generated zG if it is
sufficiently “independent” to all current entries in B. When
B is fully stored, we adopt the First In First Out (FIFO)
scheme to update the memory bank. Since the members in
B define a latent subspace as Span(zG1 , . . . , z

G
NB

), the event
of updating B implicitly evolves its probing latent subspace.

Thus, to effectively explore the latent space of spoof fea-
tures in learning the generator G, we introduce an additional
regularization loss, namely,

LR(θG) =
∑

m̃∈M

∑NB

j=1
| cos(zG, zGj )|, (6)

where zG = G(n|m̃;θG). With the effect of LR, the model
training would drive G to generate latent features not close
to the latent subspace spanned by B and consequently to
more effectively probe the latent feature space. Finally, we
write out the complete optimization problem for learning the
parameters of G as

θ∗
G = argminθG

LG(θG) + λLR(θG). (7)

where λ is a parameter to adjust the regularization effect.

3.2. Feature-enhanced SCM estimation

Having described the SCM-guided formulation for the gen-
erator G of the proposed OC-SCMNet, it remains to show
how the remaining parameters are to be optimized to yield
the resulting FAS model T = E ◦ F .

As stated previously, we have set our goal of model train-
ing to respect the property T (x) = 0 for any x ∈ D. Thus,
it is reasonable to treat the null SCM, 0, as the ground truth
of T (x) and consider the following loss function:

LT (θF ,θE) =
∑

x∈D
∥E(F (x;θF );θE)− 0∥22

=
∑

x∈D
∥E(z;θE)∥22 ,

(8)

Now, with the latent spoof features {zG} generated from G,
the concern of minimizing the above loss easily leading to
a null estimator E is no longer an issue. More specifically,
the estimator E is also required to predict, for each zG, the
corresponding SCM, m̃, as in (3). Thus, we have

LE(θE) =
∑

m̃∈M
∥E(zG;θE)− m̃∥22 , (9)

whereM is the set of generated SCMs in each batch-wise
training. That is, the number of zG considered in (9) equals
NM, the size of M. Analogous to (7), by freezing the
parameters θG of the generator G, the model training of
T = F ◦ E can be achieved with

θ∗
F ,θ

∗
E = argmin

θF ,θE

LT (θF ,θE) + LE(θE). (10)

3.3. Training and testing

Training We iteratively optimize the two coupled opti-
mization problems of (7) and (10) in an alternate manner. In
each iteration, we first update F and E by minimizing LT

in (8). Next, we fix F and E and train G by minimizing LG

and LR, with a regularization parameter λ, in (7). Finally,
we update E by minimizing LE in (9) in terms of zG.

Testing For inference, we apply the FAS model T = E◦F
to a test image x and calculate its response score by

s(x) =

∑D
d=1

∑H
h=1

∑W
w=1 |T (x)|

D ·H ·W
, (11)
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Figure 4. Examples of live faces (boxes in green), print attacks
(red), replay attacks (blue), and 3D mask attacks (magenta).

where D,H, and W refer to the channel number, height,
and width of the estimated spoof cue map, respectively. We
follow [37, 42] to adopt the Youden Index Calculation [40]
for obtaining the threshold of binary classification.

4. Experiments
4.1. Experiment settings

Datasets We conduct extensive experiments on the follow-
ing eight face anti-spoofing databases: (a) OULU-NPU [3]
(denoted by O), (b) CASIA-MFSD [44] (denoted by C), (c)
MSU-MFSD [38] (denoted by M), (d) Idiap Replay-Attack
[6] (denoted by I), (e) SiW [22] (denoted by S), (f) 3DMAD
(denoted by D)[7], (g) HKBU-MARs (denoted by H) [21],
and (h) CASIA-SURF [41] (denoted by U). Examples from
each dataset, (a)–(h), are shown in Figure 4.

Evaluation metrics For a fair comparison with previous
FAS methods, we report the results using the same evaluation
metrics, including APCER (%) ↓ [28], BPCER (%) ↓ [28],
ACER (%) ↓ [28], HTER (%) ↓ [1], and AUC (%) ↑.

Implementation details To train OC-SCMNet, we set a
constant learning rate of 5e−4 with Adam optimizer up to
20 epochs. We set the feature selection threshold δ = 0.2
and the memory bank size NB = 16 for all experiments.

4.2. Ablation study

On different loss terms In Table 1, we compare using
different loss terms to train the proposed OC-SCMNet on
the cross-domain protocols C→ I and I→ C. First, we use
the sampled Gaussian noise to replace zG in Figure 2 and
use only LT and LE to train the model T = F ◦ E as the
baseline. Although the baseline model learns to map live
images to a zero SCM, its efficacy is constrained since using
Gaussian noise alone is not enough to mimic the spoof latent
features. Next, we include LG to train G to generate latent
spoof features {zG} and use {zG} to enhance the training
of T . Because T already learns to estimate zero SCMs from
live images, the generator G guided by m̃ is able to generate

21.36 20.79

17.57
13.43

10.43
7.29 7.5 7.43

84.43
85.88

86.32
88.07

94.13
96.68 96.56 96.33

70

75

80

85

90

95

100

0

5

10

15

20

25

30

35

40

0 1 2 4 8 16 32 64

AU
C(

%
)

HT
ER

(%
)

Memory bank size 

HTER AUC

!ℬ
Figure 5. Ablation study on sizes NB of the memory bank B under
the protocol C → I.

Table 1. Ablation study on the cross-domain protocols C → I and
I → C, under different loss combinations.

Loss Terms C → I I → C
LT + LE LG LR HTER AUC HTER AUC

✓ 30.79 63.35 39.11 61.21
✓ ✓ 21.36 84.43 28.78 74.25
✓ ✓ ✓ 7.29 96.68 17.44 82.88

latent spoof features capable of producing nonzero SCMs to
improve the training of T . The performance improvement of
LT + LE + LG validates the effectiveness of the proposed
generative feature learning. Finally, when further including
LR, we achieve the best performance by continually probing
the latent feature space to counter unseen spoof attacks.

On different sizes of memory bank In Figure 5, we com-
pare using different memory bank sizes NB (NB = 1, 2, 4,
8, 16, 32 and 64) in B on the protocol C→ I and show the
results in terms of HTER and AUC. In this experiment, we
set δ = 0.2. First, we find that the performance improves
steadily as NB increases from 1 to 16 and achieves the best
HTER at NB = 16 . These results demonstrate that larger
memory banks indeed better enable the generator to generate
additional unseen latent features for extending the dimen-
sion of the latent feature subspace. Next, we observe that the
performance does not improve as NB increases from 16 to
64. This performance plateau might indicate that the mem-
ory bank has reached a state of overcompleteness. Hence,
from this ablation study, we empirically set NB = 16 in
OC-SCMNet for subsequent experiments.

On different selection thresholds In Figure 6, we set the
memory bank size NB = 16 and compare using different
selection thresholds δ ∈ [0.1, 1] on the protocol C→ I. The
results show that using δ ranging from 0.1 to 0.9 all yields
better performance than using δ = 1, which means no fea-
ture selection. This ablation study verifies that the proposed
feature selection mechanism indeed facilitates the genera-
tor to generate more unseen latent features to explore the
latent space and further enhances the training of E. Figure 6
also shows that the performances significantly decline as δ
increases from 0.5 to 1. This outcome indicates that using
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Figure 7. Trend of cosine similarity from the generated latent
spoof features under the protocol C → I.

smaller δ (i.e., selecting highly dissimilar latent features) can
better facilitate G to expand the feature space for enhancing
the SCM estimation. Moreover, among all the other settings
of δ < 0.5, using δ = 0.2 achieves the best performance
with the lowest ACER and the highest AUC. We suspect that
G can no longer generate a sufficient number of latent spoof
features with similarity lower than 0.1 and thus hinders the
improvement of SCM estimation. As shown in Figure 7,
although the cosine similarities of the generated features de-
crease gradually as the training epochs progress, the cosine
similarities of the generated features are scarcely lower than
0.1. Therefore, from this ablation study, we empirically set
δ = 0.2 in OC-SCMNet for all the following experiments.

4.3. Intra-domain and cross-domain testing

Intra-domain testing Table 2 shows the intra-domain test-
ing results on OULU-NPU [3]. In this experiment, the
proposed OC-SCMNet significantly outperforms all the one-
class FAS methods [2, 15, 20, 24] with averagely improved
31.02% in ACER. Note that, under intra-domain testing,
because spoof attacks exhibit highly similar characteristics
between training and test data, two-class FAS methods can
better learn live/spoof distinguishing features from two-class
data and substantially outperform all the one-class methods.

Cross-domain testing We perform cross-domain experi-
ments to evaluate the generalizability of the OC-SCMNet
model and report the results in Tables 3, 4, and 5. To begin

Table 2. Intra-domain testing on OULU-NPU.

Training Data Method P. APCER BPCER ACER

Live + Spoof

CDCN [42] (CVPR 20)

1

0.4 1.7 1.0
CIFL [5] (TIFS 21) 3.8 2.9 3.4

PatchNet [32] (CVPR 22) 0.0 0.0 0.0
LDCN [11] (BMVC 22) 0.0 0.0 0.0
TTN-S [36] (TIFS 22) 0.4 0.0 0.2

LDCformer [12] (ICIP 23) 0.0 0.0 0.0

Live

IQM-GMM [24] (ICB 18) 75.35 18.56 46.95
Baweja et al. [2] (IJCB 20) 38.63 21.85 30.24
Lim et al. [20] (Access 20) 43.54 36.5 40.02

AAE [15] (CCBR 21) 47.13 26.67 36.9
OC-SCMNet (Ours) 20.83 26.15 23.49

Live +
1-Shot Spoof OC-SCMNet (Ours) 20.20 10.83 15.52

Live + Spoof

CDCN [42] (CVPR 20)

2

1.5 1.4 1.5
CIFL [5] (TIFS 21) 3.6 1.2 2.4

PatchNet [32] (CVPR 22) 0.8 1.0 0.9
LDCN [11] (BMVC 22) 0.8 1.0 0.9
TTN-S [36] (TIFS 22) 0.4 0.8 0.6

LDCformer [12] (ICIP 23) 0.0 0.0 0.0

Live

IQM-GMM [24] (ICB 18) 41.56 27.78 34.67
Baweja et al. [2] (IJCB 20) 51.81 19.83 35.82
Lim et al. [20] (Access 20) 72.19 18.5 45.35

AAE [15] (CCBR 21) 37.28 39.0 38.14
OC-SCMNet (Ours) 22.05 28.81 25.43

Live +
1-Shot Spoof OC-SCMNet (Ours) 24.13 21.44 22.79

Live + Spoof

CDCN [42] (CVPR 20)

3

2.4±1.3 2.2±2.0 2.3±1.4
CIFL [5] (TIFS 21) 3.8±1.3 1.1±1.1 2.5±0.8

PatchNet [32] (CVPR 22) 1.8±1.47 0.56±1.24 1.18±1.26
LDCN [11] (BMVC 22) 4.55±4.55 0.58±0.91 2.57±2.67
TTN-S [36] (TIFS 22) 1.0±1.1 0.8±1.3 0.9±0.7

LDCformer [12] (ICIP 23) 2.35±2.05 0.28±0.68 1.31±1.03

Live

IQM-GMM [24] (ICB 18) 57.17±16.79 16.5±6.95 36.83±5.35
Baweja et al. [2] (IJCB 20) 45.39±12.82 18.28±16.21 31.83±6.99
Lim et al. [20] (Access 20) 38.51±13.08 39.52±11.13 39.02±2.16

AAE [15] (CCBR 21) 26.62±13.67 52.93±16.09 39.77±3.74
OC-SCMNet (Ours) 27.10±12.57 20.55±11.12 23.83±3.14

Live +
1-Shot Spoof OC-SCMNet (Ours) 23.02±12.16 11.88±10.8 17.45±3.07

Live + Spoof

CDCN [42] (CVPR 20)

4

4.6±4.6 9.2±8.0 6.9±2.9
CIFL [5] (TIFS 21) 5.9±3.3 6.3±4.7 6.1±4.1

PatchNet [32] (CVPR 22) 2.5±3.81 3.33±3.73 2.90±3.00
LDCN [11] (BMVC 22) 4.50±1.48 3.17±3.49 3.83±2.12
TTN-S [36] (TIFS 22) 3.3±2.8 2.5±2.0 2.9±1.4

LDCformer [12] (ICIP 23) 1.08±1.28 1.17±1.94 1.13±1.02

Live

IQM-GMM [24] (ICB 18) 53.42±14.08 16.67±8.38 35.04±3.95
Baweja et al. [2] (IJCB 20) 60.25±16.49 10.67±10.37 35.46±5.43
Lim et al. [20] (Access 20) 36.91±10.24 20.5±8.01 28.07±5.32

AAE [15] (CCBR 21) 26.33±18.5 40.17±29.04 33.12±8.9
OC-SCMNet (Ours) 16.41±14.00 11.66±9.42 14.04±4.90

Live +
1-Shot Spoof OC-SCMNet (Ours) 4.91±7.45 10.0±5.47 7.45±3.58

with, we follow [25] to conduct cross-domain evaluations
on the protocols [M, I] → C and [M, I] → O for coun-
tering print and replay attacks. As mentioned in [25],
because the datasets M and I exhibit considerable domain
variations, we thus train on these two collections and test
on the remaining ones, i.e., C and O. The results in Ta-
ble 3 show that OC-SCMNet significantly outperforms all
one-class FAS methods, achieving a 22.19% reduction in
HTER and an 8.63% increase in AUC. Moreover, we ob-
serve that OC-SCMNet attains comparable outcomes with
the two-class FAS methods. Our results indicate that due to
the cross-domain shift in spoofing characteristics between
training and testing data, two-class FAS methods tend to
overfit the training data and exhibit significantly reduced
performance when applied to unseen domains. In compari-
son, the proposed OC-SCMNet, without assuming any prior
knowledge about the spoof class, demonstrates improved do-
main generalization ability in detecting unseen spoof attacks
for the cross-domain scenario.
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Table 3. Cross-domain testing on [M, I] → C and [M, I] → O.

Training Data Method [M,I] → C [M,I] → O
HTER AUC HTER AUC

Live + Spoof

MADDG [25] (CVPR 19) 41.02 64.33 39.35 65.10
SSDG-M [17] (CVPR 20) 31.89 71.29 36.01 66.88

SDA [34] (AAAI 21) 32.17 72.79 28.90 73.33
SSAN-M [37] (CVPR 22) 30.00 76.20 29.44 76.62
LDCN [11] (BMVC 22) 22.22 82.87 21.54 86.06

DiVT-M [19] (WACV 23) 20.11 86.71 23.61 85.73
DFANet [13] (ICME 23) 20.67 84.87 18.61 89.52
IADG [45] (CVPR 23) 24.07 85.13 18.47 90.49

Live

IQM-GMM [24] (ICB 18) 45.81 39.74 35.0 37.01
Baweja et al. [2] (IJCB 20) 27.33 78.50 32.01 72.19
Lim et al. [20] (Access 20) 43.56 53.6 39.19 64.11

AAE [15] (CCBR 21) 46.67 47.28 48.52 47.99
OC-SCMNet (Ours) 21.67 85.30 22.03 84.28

Live +
1-Shot Spoof OC-SCMNet (Ours) 7.56 97.29 9.86 94.09

Table 4. Cross-domain testing on C → I and I → C.

Training Data Method C → I I → C
HTER HTER

Live + Spoof

Auxiliary[22] (CVPR 18) 27.6 28.4
STASN [39] (CVPR 19) 31.5 30.9
CDCN [42] (CVPR 20) 15.5 32.6

CIFL [5] (TIFS 21) 17.6 -
AENet [9] (ACPR 21) 24.7 30.9

PatchNet [32] (CVPR 22) 9.9 26.2

Live

IQM-GMM [24] (ICB 18) 37.77 48.44
Baweja et al. [2] (IJCB 20) 46.29 29.44
Lim et al. [20] (Access 20) 37.36 39.78

AAE [15] (CCBR 21) 20.0 26.9
OC-SCMNet (Ours) 7.29 17.44

Live +
1-Shot Spoof OC-SCMNet (Ours) 2.14 1.11

Table 5. Cross-domain testing on [O, S] → [D, H, U].

Training Data Method [O,S] → D [O,S] → H [O,S] → U
HTER AUC HTER AUC HTER AUC

Live + Spoof
Auxiliary [22] (CVPR 18) 0.29 99.04 14.64 88.32 37.28 53.14

NAS [41] (TPAMI 20) 0.22 99.31 15.13 88.91 37.68 72.83
LDCN [11] (BMVC 22) 1.49 99.91 8.75 95.60 33.54 60.44

Live

IQM-GMM [24] (ICB 18) 43.83 43.43 19.14 80.53 38.18 66.18
Baweja et al. [2] (IJCB 20) 37.86 45.8 35.65 68.90 41.74 49.85
Lim et al. [20] (Access 20) 27.69 75.47 35.19 62.98 37.34 64.24

AAE [15] (CCBR 21) 22.48 78.62 31.22 73.77 45.24 53.48
OC-SCMNet (Ours) 1.47 99.87 7.08 86.84 10.61 90.75

Live +
1-Shot Spoof OC-SCMNet (Ours) 1.19 99.77 0.0 100.0 8.43 92.66

In Table 4, we follow [22] to perform the single cross-
domain testing and assess the outcomes using the datasets C
and I. The dataset C comprises both high- and low-resolution
images, while I consists of low-resolution ones. Hence, the
protocol I→C poses a greater challenge than C→ I because
a model trained solely on low-resolution data often struggles
with high-resolution samples. Even though the protocol I→
C remains a significant challenge in two-class FAS methods,
the results in Table 4 show that OC-SCMNet considerably
improves detection performance and outperforms the other
one-class/two-class FAS methods under comparison.

Furthermore, in Table 5, we adopt the settings of [41] to
conduct cross-domain testing on 3D-mask attacks by using
the live images from O and S for training and then testing on
D, H, and U. Given that the training data for two-class FAS

Table 6. New protocols by leave-one-attack-out strategy.

P. Unseen attack type Training subset Testing subset
1 3D mask OM(replay + print + live) DHU (3D mask + live)2 OMCI (replay + print + live)
3 print OM (replay) D (3D mask + live) OMCI (print + live)4 OMCI (replay) DHU (3D mask + live)
5 replay OM (print) D (3D mask + live) OMCI (replay+ live)6 OMCI (print) DHU (3D mask + live)

Table 7. Experimental comparisons on new protocols.

Training Method P. 1 P. 2 P. 3
Data HTER AUC HTER AUC HTER AUC
Live+ IADG [45] (CVPR 23) 32.89 72.15 36.50 69.49 43.98 56.47
Spoof SAFAS [29] (CVPR 23) 38.22 63.75 34.48 65.33 30.85 75.00

Live

IQM-GMM [24] (ICB 18) 43.58 46.99 43.82 47.18 40.25 62.02
Baweja et al. [2] (IJCB 20) 39.35 61.86 42.19 57.47 41.59 61.56
Lim et al. [20] (Access 20) 41.74 56.43 41.64 55.11 46.17 53.45

AAE [15] (CCBR 21) 42.85 55.97 41.07 55.35 48.50 40.94
OC-SCMNet (Ours) 24.14 74.81 20.85 85.40 37.44 63.23

Training Method P. 4 P. 5 P. 6
Data HTER AUC HTER AUC HTER AUC
Live+ IADG [45] (CVPR 23) 38.56 62.14 43.85 55.75 40.04 64.13
Spoof SAFAS [29] (CVPR 23) 40.09 63.16 39.12 64.99 38.45 66.69

Live

IQM-GMM [24] (ICB 18) 47.56 41.68 37.61 64.66 48.78 41.85
Baweja et al. [2] (IJCB 20) 40.41 63.83 48.06 42.45 46.87 41.26
Lim et al. [20] (Access 20) 48.29 50.30 41.32 59.08 46.45 53.71

AAE [15] (CCBR 21) 42.69 57.21 46.70 53.94 37.60 64.68
OC-SCMNet (Ours) 28.99 72.21 36.41 63.56 29.61 74.99

methods only include live images and print and replay
attacks, these methods exhibit limited ability to adapt to new
types of attacks, such as 3D-mask attacks, on the protocol
[O, S]→ U. In contrast, OC-SCMNet surpasses other one-
class/two-class FAS methods in terms of performance on
the [O, S] → U and [O, S] → H protocols, and delivers
competitive outcomes on the [O, S]→ D protocol.

Finally, we include additional results to highlight the ef-
fectiveness of our method against one specific unseen attack
type and investigate the impact of varying the number of
training datasets. We consider the seven face anti-spoofing
datasets O, M, C, I, D, H, and U, where the former four
(OMCI) include print and replay attacks and the latter
three (DHU) comprise only 3D mask attack. As listed in
Table 6, we adopt the leave-one-attack-out strategy to form
six protocols: P1-P2, P3-P4, P5-P6, each pair of which re-
spectively adopts 3D mask, print, and replay as the
unseen attack type for two different combinations of train-
ing sets. Table 7 shows that OC-SCMNet significantly out-
performs the one-class FAS methods [2, 15, 20, 24] and
achieves comparable performances to the two-class FAS
methods [29, 45] in detecting new attack types. While these
outcomes are consistent with the cross-domain testing re-
sults in Table 3, they further indicate that two-class FAS
methods may overfit the characteristics of seen attack types
and exhibit degraded performance when facing unseen at-
tacks. Without assuming a specific form of spoof attack, our
method learns the one-class representation of live images by
discriminating their null spoof cue maps from those by the
generated latent spoof features, which turns out to be general
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Figure 8. t-SNE visualizations on the protocols (a) C → I, where
C and I include both print and replay attacks, and (b) [O, S]
→ D, where O, S and D include 3D mask attacks only.

in handling unseen attack types. By comparing the results of
experimenting with P1-P2, P3-P4, and P5-P6, it can be seen
that the proposed OC-SCMNet model indeed benefits from
using more training datasets.

One-shot testing The proposed OC-SCMNet is also ef-
fective in dealing with the one-shot scenario. Once a single
spoof image is available in the training stage, we propose
using this one-shot image to guide the generator G to gen-
erate latent spoof features as close to the features extracted
from this spoof image as possible. To conduct this experi-
ment, we randomly select one spoof image from the training
dataset and additionally include a loss term to maximize the
similarity between the generated latent spoof features and
the extracted latent spoof feature of this spoof image. The
experimental results of one-shot testing are shown in Tables
2, 3, 4, and 5. These results show that OC-SCMNet indeed
benefits from the generated spoof-like features and achieves
improved performance over the one-class setting.

4.4. Visualization

t-SNE visualization In Figure 8, we use t-SNE [31] to
visualize the latent spoof features extracted from (a) print
and replay attacks, and (b) 3D mask attacks, on the pro-
tocols C → I and [O, S] → D. The visualization results
in Figure 8 show that the generated latent spoof features
(marked by blue dots) do not simply cluster around those
of the live images (marked by green dots) but also largely
scatter across the whole latent feature space. Because we use
nonzero pseudo SCMs to guide G in generating latent spoof
features that do not belong to live images, the generated
latent spoof features successfully extend outward from the
live training domain and strongly support the model T to
generalize to unseen attacks.

Spoof Cue Map visualization In Figure 9, we use differ-
ent examples to demonstrate the effectiveness of the pro-
posed SCM estimation under different types of images: (a)
live images, (b) print attacks, (c) replay attacks, and

(a) (b)

(c) (d)

Figure 9. The estimated spoof cue maps on (a) live images, (b)
print attacks, (c) replay attacks, and (d) 3D-mask attacks.

(d) 3D-mask attacks. Note that, a lower intensity in the
estimated SCM implies a higher probability that the image is
a live image. The visualization results in Figure 9 (a) clearly
show that the estimated SCMs of live images exhibit almost
no spoof cues in contrast to the estimated SCMs from various
attacks, as shown in (b) - (d). Next, we see that the estimated
SCMs of different attacks exhibit distinct characteristics. In
particular, all the SCMs estimated from (b) print attacks,
(c) replay attacks, and (d) 3D-mask attacks have higher
but diversely different responses. In addition, in the case of
(c) replay attacks, the stronger responses in the estimated
SCM highly correspond to the high levels of reflection. As
to the case of (d) 3D-mask attacks, because 3D-masks are
designed to closely mimic the topographical and textural in-
tricacies of genuine faces, the estimated SCMs in (d) usually
exhibit much subdued responses.

5. Conclusion
We have introduced a novel One-Class Spoof Cue Map es-
timation Network (OC-SCMNet) to address the one-class
FAS problem. In OC-SCMNet, we first propose learning
the zero spoof cue maps (SCM) estimation from live images
by enforcing the latent spoof features to have zero SCM.
Next, to avoid trapping in a trivial solution, we propose an
SCM-guided feature learning to generate latent spoof fea-
tures that are distinct from the latent spoof features of zero
SCMs. Furthermore, we propose using a memory bank to
encourage globally probing of the feature generation pro-
cess to facilitate SCM estimation. Extensive experiments
demonstrate that OC-SCMNet outperforms previous one-
class FAS methods and achieves competitive performance
with state-of-the-art two-class FAS method.
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