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Abstract

In this paper, we present an end-to-end 3D-building-
wireframe reconstruction method to regress edges directly
from aerial light-detection-and-ranging (LiDAR) point
clouds. Our method, named parametric-building-wireframe
reconstruction (PBWR), takes aerial LiDAR point clouds
and initial edge entities as input and fully uses the self-
attention mechanism of transformers to regress edge param-
eters without any intermediate steps such as corner predic-
tion. We propose an edge non-maximum suppression (E-
NMS) module based on edge similarity to remove redun-
dant edges. Additionally, a dedicated edge loss function
is utilized to guide the PBWR in regressing edges param-
eters when the simple use of the edge distance loss is not
suitable. In our experiments, our proposed method demon-
strated state-of-the-art results on the Building3D dataset,
achieving an improvement of approximately 36% in Entry-
level dataset edge accuracy and around a 42% improvement
in the Tallinn dataset.

1. Introduction

3D-building-wireframe reconstruction is an important
mid-level visual process [23]. 3D-wireframe models,
lightweight in nature, offer a comprehensive representation
of the shape and structural information of 3D objects. Fur-
ther, these models can be easily and efficiently converted
into 3D mesh models, including CAD models, that play a
crucial role in the metaverse, smart cities, and virtual reality
applications. Despite its practical and scientific importance,
3D-building-wireframe reconstruction remains an unsolved
problem in computer vision.

Generally, point clouds are considered as one of the sim-
plest and most flexible ways to represent 3D objects. It pos-
sesses innate ability to represent structure of objects with
remarkable fidelity, capturing intricate details with preci-
sion. Wireframe models, in contrast, are also specifically
designed to represent 3D objects. Unlike meshes, wire-

Figure 1. Pipeline Comparison. Top: The most popu-
lar wireframe-reconstruction methods based on point prediction
and edge classification modules, are optimized by LCorner and
LEdge, respectively. Bottom: Our proposed PBWR avoids the in-
termediate point classification process.

frames are a more simplified representation of 3D objects
and can be readily converted into CAD. Therefore, the ABC
[15] and Building3D [34] datasets recommend the use of
wireframe models for point cloud reconstruction. Existing
state-of-the-art deep learning methods [13, 18, 21, 43] have
demonstrated impressive performance in wireframe recon-
struction, but they are limited by the use of dense synthetic
point clouds. Additionally, they involve heuristic-guided
intermediate processing modules such as corner prediction
and edge classification [18, 21, 34], which lead to error ac-
cumulation and limit performance improvement and further
development.

In this paper, we propose a novel approach named
parametric-building-wireframe reconstruction (PBWR)
from aerial light-detection-and-ranging (LiDAR) point
clouds. The method directly regresses edges from point
clouds using transformers [32] and eliminates intermediate
steps such as corner prediction and edge classification.
Existing methods [18, 21, 34] predict N candidate corners
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that can generate C2
N edge proposals, where approximately

85% of the edges are considered useless. The PBWR is
proposed to directly regress the desired edges to mitigate
the generation of a large number of extraneous edges, as
described in the ablation study.

On the other hand, these methods [18,21,34] simply rely
on endpoint distances between edges for bipartite matching,
often resulting in significant matching errors. We propose
a novel edge-similarity method that incorporates the Haus-
dorff distance [7], edge length, and cosine similarity to en-
hance the bipartite matching, which significantly improves
the performance of edge regression. Furthermore, an edge
non-maximum suppression (E-NMS) module is designed to
eliminate redundant positive edges, and a dedicated edge-
loss function is proposed to guide the strategy of directly
regressing edges.

Contributions This paper makes the following three key
contributions to the field of wireframe reconstruction:

• We propose a novel method called PBWR, which di-
rectly regresses desired edges without any intermedi-
ate heuristic-guided process such as corner prediction
and edge classification, and it yields a substantial num-
ber of positive candidate edges;

• This work uniquely proposes edge-similarity (Eq. (4))
and dedicated edge-loss functions in point clouds, ef-
fectively guiding the reconstruction of wireframe mod-
els. An E-NMS method based on edge similarity is
proposed and applied to the wireframe-reconstruction
task;

• Extensive experiments demonstrated that PBWR
yielded a significant improvement in wireframe re-
construction compared with methods with interme-
diate heuristic steps. For example, the edge recall
rate showed a notable improvement in the Entry-level
dataset (from 46% to 82%) and Tallinn city dataset
(from 23% to 65%).

2. Related Work
2.1. Building Reconstruction

Many optimization-based algorithms [2, 5, 8, 10, 20, 25]
have been proposed for building reconstruction from point
clouds. Primitive-based building reconstruction [2, 5, 8,
25, 35, 42] is a popular method for generating polygo-
nal meshes. Other widely adopted building reconstruction
methods [8, 16, 19, 33] are based on the strong Manhat-
tan World assumption [3], which requires planes to follow
only three orthogonal directions to generate dense meshes.
City3D [12] combines the initial meshes generated by Poly-
Fit [25] with vertical walls from height maps to reconstruct
buildings from aerial LiDAR point clouds. Chen et al.

[2] identified rooftop boundaries from aerial LiDAR point
clouds and clustered them in terms of topological consis-
tency , and they directly generated vertical walls connecting
roofs. Similarly, 2.5D dual contouring [42], which extends
classic dual contouring to a 2.5D method [14], employs an
adaptive grid as a supporting data structure to infer the roofs
in each grid node. These traditional methods have demon-
strated effectiveness in practice, but they accumulate notice-
able errors during the inference process. In addition, their
sensitivity to parameters can lead to unstable results.

2.2. Wireframe Reconstruction

As deep learning in point cloud processing has flour-
ished [30,39,41], the exploration of its applications in wire-
frame reconstruction has also grown. Initially, some stud-
ies [9,38,40] have attempted to treat wireframe reconstruc-
tion as an edge-point classification task, where these edge
points, also known as contour points, can also represent the
geometric structure of objects. Specifically, EC-Net [38]
identifies object contours by reconstructing the distance dis-
tribution from each point to the edges. However, this repre-
sentation is impractical. To construct solid wireframe mod-
els, recently, researcher [13, 18, 21] first predicted the posi-
tions of corners and then regressed edges from many edge
proposal, as shown in Fig. 1. Some methods [1, 31] ad-
ditionally predict edge points to enhance the accuracy of
edge proposals. Specifically, PC2WF [21] initially refines
corner positions from generated-corner candidate patches.
NerVE [43] classifies contour voxels from voxelized point
clouds to infer edge parameters. However, obtaining accu-
rate corners or edge coordinates from complex scenes can
frequently be error-prone, limiting the performance of sub-
sequent edge regression. Therefore, the proposed PBWR
uses a powerful transformer to directly regress edges with-
out the need to predict corners or edge proposals. The re-
cently innovative method [22] reconstructs wireframe mod-
els from line clouds containing thousands of edge proposals
from multi-view images.

3. The Method

3.1. Motivation

When considering direct regression of an edge in 3D
space, a straightforward method is to predict two end-
points of an edge. However, existing methods [24, 28] have
demonstrated that directly regressing the precise positions
of points in 3D space is extremely challenging. An alter-
native method is to determine an edge by regressing its pa-
rameters. In this work, parameterized edges are formulated
as follows:
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Figure 2. PBWR Overview. Top: the illustration of PBWR pipeline. It takes a roof point cloud as input and uses Input Embedding and
Transformer Encoder modules to generate high-dimensional features for each point. Subsequently, point features and initial edge entities,
as query embeddings, are fed into the Transformer Decoder and Edge Regression modules to obtain edge regression results, then optimized
by the E-NMS to generate the wireframe model. Bottom: the reconstruction results are presented at different iterations during training.
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where Vi and Vj represent two endpoints of an edge, Pm

denotes the midpoint of the edge, and v⃗ denotes the di-
rectional vector equal to Vi − Vj . Additionally, u⃗ repre-
sents the symbolic matrix, I denotes an identity matrix, and
v′ = [|vi| , |vj | , |vz|] denotes the projected length of the
edge along the x-, y-, and z- axes. An essential parame-
ter of the parameterized edge is a known point on the edge.
Compared with other points on an edge, regressing the mid-
point (Pm) is a preferable choice to locate the position of
the edge. Other two crucial parameters are the directional
vector and length of the edge. The directional vector (v⃗)
can be deconstructed into directional information (u⃗) and
projected lengths (v′) of the edge. Directional information
(u⃗), also known as the symbolic matrix, essentially indicates
the quadrant toward which the edge is pointing. As edges
are directionless, u⃗ can be represented by four, rather than
eight, quadrants. PBWR regresses edges from roof point
clouds by predicting these seven parameters. We also pro-
pose PBWR-Corner, which directly regresses endpoints to
determine the edge, as a comparative approach.

3.2. Overall Network Architecture

In this work, PBWR takes roof point clouds as input and
predicts parameterized edges, which are then fed into the
E-NMS & Confidence module to reconstruct a wireframe
model, as shown in Fig. 2. For a given point cloud with
N points P ∈ RN×7 encompassing coordinates, RGB in-
formation, and reflection, it is initially directed to the input
embedding module, where a multi-layer perceptron (MLP)
is employed to aggregate the local structural information
of points. The resulting features (Fembed ∈ RN×Cembed )
are input to the Transformer Encoder module to obtain
Fen ∈ RN×Cen features. Subsequently, the initial edge en-
tities for edge queries and Fen are passed to the Transformer
Decoder module for learning edge representation. Finally,
the resulting edge features (Fedge) are parsed by the Edge
Regression module, and redundant edges are removed by E-
NMS. The results of edges at different iteration stages are
also presented in Fig. 2 (bottom).

3.3. Transformer Encoder and Decoder

In this work, the standard transformer with the self-
attention mechanism [32] is employed. The transformer
encoder and decoder modules, as shown in Fig. 2, do not
have any specific modifications to adapt to 3D data. Even
the sampling strategies, widely employed in 3D transformer
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mechanisms [6, 17, 41] to reduce computational overhead
and enhance performance, are not used in our approach. In
PBWR, the transformer decoder is designed to learn distin-
guishable edge features, along with input, which comprises
encoder features (Fen) and initial edges entities, where ini-
tialized entities are considered as object queries. Gener-
ally, object queries are often kept consistent with the input
encoder module, such as point-coordinate queries [17, 41]
and point-patch queries [26, 39]. Similarly, we choose M
query points, using the farthest-point sampling strategy as
object queries. The initial edge entities entail object queries
with an initial direction and length. The M query points
frequently don’t align with the midpoints of the edges. In-
spired by recent 3D object detection methods that predict
residual offsets from original candidate points to interest-
ing points [24,28], PBWR predicts the distance from query
points to the nearest midpoint of the edges. Specifically,
M query points are input to positional embedding [32] to
obtain query embeddings. The resulting query embeddings
(Fquery ∈ RM×Cquery ) and point features (Fen) are fed into
the transformer decoder to generate distinguishable edge
features (Fedge ∈ RM×Cedge ). In the edge regression mod-
ule, Fedge is parsed to obtain seven parameters for edges,
including residual offsets.

3.4. Edge Regression Module

The edge regression module is designed to parse the fea-
tures (Fedge) obtained from the transformer encoder and
decoder structures to generate parameterized edges. The
module employs three dedicated MLPs to regress distinct
parameters of the parameterized edges, specifically Pm, v′

and u⃗, as described in Eq. (1). The localization MLP pre-
dicts residual offsets from candidate points to midpoints of
edges, instead of predicting midpoints directly. The orien-
tation of the edge is collectively determined by the absolute
values (v′) of the components of the edge along the x-, y-,
and z- axes and u⃗ serves as the symbolic matrix. The sym-
bolic matrix can be regarded as a classification problem,
specifically determining which quadrant the vector points
toward, as described in Sec. 3.1. Therefore, a component
MLP is employed to predict three component values, while
a quadrant MLP is utilized to predict the probability of the
predicted edge vector pointing from various quadrants, sim-
ply called quadrant classes. Additionally, an extra MLP is
employed to obtain confidence scores for the edges.

3.5. Bipartite Edge Matching and E-NMS

Effective bipartite matching between prediction and the
ground truth is crucial in deep learning. Current methods
[18,21,34] match prediction with the ground truth by mini-
mizing the distance between predicted corners and ground-
truth corners, which naturally extends to matching edges.
However, this approach is not applicable to the proposed

(a) (b)

Figure 3. (a) Edge distance d quantified by corner distance, and
(b) edge distance d quantified by midpoint distance.

PBWR, which circumvents the intermediate step of predict-
ing corners. Hence, a specialized bipartite edge matching
strategy is proposed to address the wireframe reconstruction
problem. It is evident that distance, direction, and length
can be employed to quantify similarity between edges. Dis-
tance: The Fig. 3a illustrates that the use of corner distance
results in the same distances from blue and green to black
edges. The midpoint distance also yields the same distance
in the example shown in Fig. 3b. However, the blue edge
is a more suitable match when considering the black edge.
Therefore, the Hausdorff distance, defining the distance be-
tween two point sets, is employed to quantify edge distance
for optimal bipartite edge matching:

Hd (ei, ej) = max (hd (ei, ej) , hd (ej , ei))

hd (ei, ej) = max
pei

∈ei

{
min

pej
∈ej

∥∥pei − pej
∥∥}

hd (ej , ei) = max
pej

∈ej

{
min
pei

∈ei

∥∥pej − pei
∥∥}

(2)

where pei and pej represent points sampled uniformly from
edges ei and ej , respectively. Hd (ei, ej) denotes the quan-
tified distance between edges ei and ej . Direction: Co-
sine similarity is utilized to evaluate the similarity in edge.
Length: Length similarity is quantified based on the ratio
of the lengths between edges. They can be formulated as
follows:

Dirsim (ei, ej) = 1− |ei · ej |
∥ei∥ × ∥ej∥

Lensim (ei, ej) = 1− min(∥ei∥ , ∥ej∥)
max(∥ei∥ , ∥ej∥)

(3)

Hence, the edge similarity can be represented as follows:

Edgesim (ei, ej) = αHd (ei, ej) + βDirsim (ei, ej)

+ γLensim (ei, ej)
(4)

where α, β, and γ denote the balancing coefficients. This
indicates that when the Edgesim (ei, ej) value is close to 0,
edges ei and ej are similar. The Hausdorff distance also im-
plicitly considers the edge length and directional informa-
tion, as evidenced by Eq. (2) and the selection of the better-
matching blue edge in Fig. 3 based on the Hausdorff dis-
tance. However, a reasonable combination of all three fac-
tors contributes to improved performance, as demonstrated
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in the ablation study. The E-NMS algorithm takes both edge
similarity and predicted-confidence scores as inputs to re-
move redundant edges. Details of the E-NMS pseudocode
can be found in the Supplementary materials.

3.6. Loss Function

Edgesim (Pedge, Gedge) can be utilized to calculate the
edge similarity between the predicted edge set (Pedge) and
the ground truth edge set (Gedge). The resulting edge simi-
larity is fed into the Hungarian algorithm to perform bipar-
tite edge matching between Npos positive predictions and
the ground truth edge set.
Midpoint and Component length loss: The ℓ1 distance
loss is employed for both the midpoint positions and pre-
dicted lengths of components v′ in the x-, y-, and z- axis.
The midpoint loss (Lmid) is formulated as:

Lmid =
1

Npos

∑
i,j∈Npos

(
pimid − gjmid

)
(5)

where p and g represent elements within the sets of edges,
Pedge and Gedge, respectively. The component length loss
(Lcomp) is similar to the midpoint loss.
Confidence and Quadrant classification loss: The ℓCE

cross-entropy loss is used to optimize predicted confidence
scores and quadrant classes as follows:

Lcon = ℓCE (pcon, gcon)

gcon =

{
1− Edgesim if Edgesim < 1

0 otherwise

Lquad =
1

Npos
ℓCE

i,j∈Npos

(
piquad, g

j
quad

) (6)

When simply setting the confidence scores of positive pre-
dictions to 1 and negative predictions to 0, the extreme class
imbalance leads to the network failing to converge, regard-
less of whether cross-entropy or focal loss is used. There-
fore, the confidence scores of the ground truth are redefined
based on edge similarity (Edgesim).
Edge similarity loss Lsim is directly computed as the av-
erage edge-similarity scores for Npos positive predictions.
Thus, the final loss (L) is formulated as:

L = λmidLmid + λcompLcomp + λconLcon

+ λquadLquad + λsimLsim

(7)

where λ∗ is employed as a coefficient to balance various
loss terms.

4. Experiments
4.1. Dataset and Evaluation Metric

The Building3D [34] dataset was employed to evaluate
our model. Specifically, the Entry-level dataset of Build-

ing3D consists of 5,698 training point clouds and 583 test-
ing point clouds, while the Tallinn city dataset includes
32,618 training point clouds and 3,472 testing point clouds.
All the benchmark samples were extracted from sparse
aerial point clouds. During training stages, data augmen-
tation was implemented to enhance the network with de-
sirable robustness and invariance. Specifically, we added
an augment of horizontal flips along the YZ or XZ plane,
along with random rotations along the z-axis (-5°∼ 5°), to
increase the input shape diversity.

The same evaluation metric [34] was employed to eval-
uate the proposed PBWR as shown in Tab. 1. The Average
Corner Offset (ACO) metric was used to evaluate the av-
erage offsets between predicted and ground truth corners.
Corner Precision (CP) and Edge Precision (EP) represent
the precision of corner prediction and edge prediction, re-
spectively. The Corner Recall (CR) and Edge Recall (ER)
denote the recall of corners and edges, respectively. Corner
F1 score (CF1) and Edge F1 score (EF1) represent corre-
sponding F1 scores.

4.2. Implementation

The number of points (N ) within a batch was set to
2560, which is approximately equal to the average num-
ber of points per sample in the dataset. The point features
P ∈ RN×7 were fed into the input embedding module to
obtain embedding features with Cembed = 256 channels.
The output of the encoder was features with Cen = 256
channels; then, these features, along with M = 128 query
points and Cquery = 64 query embeddings, were both fed
into the decoder to obtain Fedge with Cedge = 256 chan-
nels. Note that 128 query points was a reasonable setting,
as demonstrated in the ablation study. The detailed parame-
ter settings for the network, E-NMS, and other modules are
provided in the Supplementary materials.

4.3. Results and Comparisons

Through our best efforts, we present a summary of the
quantitative comparison between PBWR and existing wire-
frame reconstruction methods is presented in Tab. 1 and
Tab. 2. Specifically, Tab. 1 shows the results on the Entry-
level dataset, while Tab. 2 represents the results on the
Tallinn City dataset from Building3D dataset. Experimental
results demonstrate that proposed PBWR exhibited a sig-
nificant margin of improvement in performance compared
with the baseline provided by Building3D, With the CR
and ER increasing by 19% and 36%, respectively, with
corresponding F1 scores showing an improvement of 15%
and 25%, respectively, on the Entry-level dataset. On the
Tallinn City dataset, CR and ER increased by 15% and
42%, respectively, with corresponding F1 scores showing
an improvement of 14% and 40%, respectively. Further-
more, the ACO distance significantly decreased. These re-
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Method Distance (m) Accuracy
ACO CP CR CF1 EP ER EF1

PointNet* [29] 0.36 0.71 0.50 0.59 0.81 0.26 0.39
PointNet++* [30] 0.34 0.79 0.52 0.63 0.84 0.33 0.47

RandLA-Net* [11] 0.35 0.70 0.60 0.65 0.67 0.16 0.25
DGCNN* [27] 0.32 0.73 0.58 0.65 0.81 0.30 0.44
PAConv* [37] 0.33 0.75 0.57 0.65 0.85 0.31 0.45

Stratified Transformer* [17] 0.38 0.72 0.51 0.62 0.75 0.22 0.34
Point2Roof [18] 0.30 0.66 0.48 0.56 0.71 0.26 0.38

Building3D-supervised [34] 0.26 0.89 0.66 0.76 0.91 0.46 0.61
PC2WF [21] 0.45 0.24 0.13 0.16 0.02 0.14 0.04

PBWR 0.22 0.97 0.85 0.91 0.91 0.82 0.86
PBWR-Tallinn 0.18 0.99 0.87 0.93 0.96 0.84 0.90

Table 1. Performance comparisons were conducted on the Entry-level data from the Building3D dataset. * indicates that this method serves
as the feature extractor in the wireframe-reconstruction network. PBWR-Tallinn represents training on Tallinn city data, while evaluating
on Entry-level dataset.

Method Distance (m) Accuracy (%)
ACO CP CR CF1 EP ER EF1

PointMAE* [29] 0.33 0.75 0.47 0.58 0.52 0.12 0.20
PointM2AE* [30] 0.32 0.79 0.58 0.67 0.50 0.07 0.12
Point2Roof [11] 0.39 0.65 0.30 0.41 0.66 0.08 0.14

Building3D-Linear self-supervised [27] 0.35 0.70 0.60 0.65 0.67 0.16 0.25
Building3D-supervised [34] 0.29 0.90 0.53 0.66 0.88 0.23 0.36

PC2WF [21] 0.52 0.18 0.67 0.28 0.02 0.15 0.01
PBWR-Tallinn 0.22 0.96 0.68 0.80 0.91 0.65 0.76

Table 2. Performance comparisons were conducted on the Tallinn city data from the Building3D dataset. * indicates that this method
serves as the feature extractor in the wireframe-reconstruction network.

markable improvements are a result of PBWR’s avoidance
of the intermediate corner prediction step, leading to re-
duced error accumulation and fewer constraints on the edge
regression performance.

Method Dis. Accuracy
ACO CP CR EP ER

Corner Matching 0.24 0.97 0.39 0.93 0.30
Midpoint Matching 0.25 0.96 0.85 0.87 0.81

PBWR-Corner 0.44 0.90 0.10 0.06 0.12
PBWR 0.22 0.97 0.85 0.91 0.82

Table 3. Effect of different bipartite edge matching strategies and
regression methods

Some methods have been proposed recently for extract-
ing edge points, which can be further processed for gener-
ating wireframe models. We present a visual comparison
with respect to these methods [21,36,38,43] and some pop-
ular traditional methods, as shown in Fig. 4. We display
extracted edges in black, some extracted corners in red, and

the ground truth wireframe model in gray to improve the
visualization, especially as when some compared methods
could only extract incomplete edges. The primary reason
that these methods [21, 36, 38, 43] failed is that their de-
signed models are based on complete 3D point clouds, mak-
ing them unsuitable for the sparsity of aerial LiDAR point
clouds, as well as the presence of missing data and noise
in the point clouds. The quantitative comparison, includ-
ing RMSE, 3D IOU, and face number between PBWR and
traditional methods is detailed in the Supplementary mate-
rials. Fig. 5 visualizes the results of a large-scale scene
reconstruction.

5. Ablation Study
Edge Generation It is not advisable to use the strategy
of directly regressing two endpoints of an edge (PBWR-
Corner), as it results in poor performance, as described in
Tab. 3. Compared with these methods that are based on
heuristic corner strategy, PBWR predicted more positive
edges, as shown in Fig. 6. As the number of these edges in
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[42]

Topology
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PIE-
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Figure 4. Qualitative evaluation of traditional and deep learning methods. Traditional methods provide mesh results, and deep learning
methods provide wireframe results. To enhance visualization clarity, we incorporated the nonbolded ground-truth data as a background for
better observation of the visualization results from EC-Net to PC2WF.

Figure 5. Visualization of Tallinn City Data Reconstruction Results. The wireframe-reconstruction results of buildings in a 1000 m x
2000 m area in central Tallinn city transformed into roof mesh and corresponding facade mesh

a wireframe model increased, PBWR showed a rising ratio
of predicted positive edges. However, the methods based
on the heuristic corner strategy, such as PC2WF [21] and
PointRoof [18], represent a continual declining trend. This
significantly contributed to the substantial improvement of
the performance demonstrated by our method.

Bipartite Edge Matching The experimental results in
Tab. 3 demonstrate that the matching strategy that mini-
mizes the Hausdorff distances significantly outperformed

strategies that match corresponding corners and midpoints.
Furthermore, the subtle performance differences using the
combination of the Hausdorff distance, length, and angle
similarities are also shown in Fig. 7.

E-NMS The performance of the E-NMS module is demon-
strated in Tab. 4. The experimental results indicate that an
excessive number of redundant positive sample edges, if not
removed, resulted in a rapid decline in precision (-36% on
CP, and -22% on EP) and also affect the recall.
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Figure 6. Ratio of positive sample edges Points represent the
original data. The curve is fitted given the point set. Heuristic
corner represents the popular method based on intermediate corner
prediction.

Hard Soft Lsim E-NMS Accuracy
Labels Labels CP CR EP ER

✓ ✓ 0.62 0.42 0.56 0.35
✓ ✓ ✓ 0.98 0.50 0.78 0.41

✓ ✓ 0.97 0.84 0.89 0.80
✓ ✓ ✓ 0.97 0.85 0.91 0.82

Table 4. Effectiveness of modules. Ablation study of different
loss label strategies in the Lcon loss and E-NMS module.

Loss Module Previous bipartite edge-matching results be-
tween prediction and ground truth can be utilized to assign
ground-truth labels to the prediction. Employing hard la-
bels, commonly depicted as 0 and 1, is a prevalent prac-
tice. However, in doing so, the positive-to-negative sam-
ple ratio would be approximately 1:10. In the confidence-
score loss, the extreme sample imbalance limited the perfor-
mance of the network, even when the focal loss was applied
to hard labels, as shown in Tab. 4. Hence, edge similarity
was utilized as soft labels, as described in Eq. (6), to alle-
viate the sample imbalance. In contrast to edge-confidence
scores, which necessitated clearly discriminative scores for
positive and negative samples, other outputs only required
the optimization of the obtained positive samples. Conse-
quently, hard labels were employed to supervise these out-
puts. Tab. 4 also demonstrates the significance of edge sim-
ilarity loss (Lsim).
Number of Queries Fig. 7 depicts the influence of varying
quantities of query points on performance. An insufficient
number of points made it impractical to generate enough
predicted edges corresponding to the ground truth. Con-
versely, an excess of points resulted in an abundance of re-
dundant edges, thereby increasing the network burden.
Wireframe Model Generation During evaluation, the
confidence-score threshold was set to 0.7, effectively elim-
inating unexpected edges from the original network output,

Figure 7. Left: Comparison of different combinations of matching
strategies. Right: comparison of impact of four different query
points on performance.

Figure 8. Visualization of model generation.: Left to right: point
clouds, network output, confidence processing, E-NMS, and wire-
frame generation

as shown in Fig. 8. The E-NMS algorithm was subsequently
employed to eliminate remaining redundant edges. To ob-
tain a seamlessly connected wireframe model, we use the
DBSCAN algorithm [4] is utilized to merge corners, using
centroids of the clusters as new corners. All accuracy eval-
uation were based on the resultant wireframe models. Note
that the DBSCAN algorithm, with a distance threshold of
0.05 and a minimum point count of 2, was not used to gen-
erate any new edges.

6. Conclusion
In this paper, we proposed PBWR, an end-to-end wire-

frame reconstruction model that directly regresses edges,
bypassing intermediate heuristic modules for corner or
edge prediction. The resultant parameterized edges un-
dergo bipartite edge matching using the proposed Hausdorff
distance-based similarity algorithm. E-NMS leverages edge
similarity as a crucial parameter to eliminate redundant pos-
itive sample edges. Additionally, a loss function specifically
designed for edge optimization is proposed to guide the net-
work optimization and model generation. In experiments,
PBWR achieveed performance far beyond that of existing
baselines.
Limitations and Future Work One limitation of this work
is that the edges generated by PBWR are not a continuously
connected edge set, as shown in Fig. 8. Fortunately, corners
of the obtained edge sets are closely located. Therefore, the
DBSCAN algorithm [4] with a small distance threshold of
0.05 m is employed to aggregate endpoints. In our opinion,
this strategy might not be prudent, as it will result in unfore-
seen errors. In our upcoming research, our emphasis will be
on eliminating the need for DBSCAN processing, instead of
directly generating a continuously connected set of edges.
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