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Abstract

Text-to-image customization, which aims to synthesize
text-driven images for the given subjects, has recently rev-
olutionized content creation. Existing works follow the
pseudo-word paradigm, i.e., represent the given subjects as
pseudo-words and then compose them with the given text.
However, the inherent entangled influence scope of pseudo-
words with the given text results in a dual-optimum para-
dox, i.e., the similarity of the given subjects and the con-
trollability of the given text could not be optimal simultane-
ously. We present RealCustom that, for the first time, dis-
entangles similarity from controllability by precisely lim-
iting subject influence to relevant parts only, achieved by
gradually narrowing real text word from its general conno-
tation to the specific subject and using its cross-attention
to distinguish relevance. Specifically, RealCustom intro-
duces a novel “train-inference” decoupled framework: (1)
during training, RealCustom learns general alignment be-
tween visual conditions to original textual conditions by
a novel adaptive scoring module to adaptively modulate
influence quantity; (2) during inference, a novel adaptive
mask guidance strategy is proposed to iteratively update
the influence scope and influence quantity of the given sub-
jects to gradually narrow the generation of the real text
word. Comprehensive experiments demonstrate the supe-
rior real-time customization ability of RealCustom in the
open domain, achieving both unprecedented similarity of
the given subjects and controllability of the given text for
the first time. The project page is https://corleone-
huang.github.io/realcustom/.

1. Introduction

Recent significant advances in the customization of pre-
trained large-scale text-to-image models [6, 24, 25, 28]
(i.e., text-to-image customization) has revolutionized con-
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Figure 1. Comparison between the existing paradigm and ours.
(a) The existing paradigm represents the given subject as pseudo-
words (e.g., S∗), which has entangled the same entire influence
scope with the given text, resulting in the dual-optimum paradox,
i.e., the similarity for the given subject and the controllability for
the given text could not achieve optimum simultaneously. (b) We
propose RealCustom, for the first time disentangles similarity from
controllability by precisely limiting the given subjects to influence
only the relevant parts while the rest parts are purely controlled by
the given text. This is achieved by iteratively updating the influ-
ence scope and influence quantity of the given subjects. (c) The
quantitative comparison shows that our paradigm achieves both
superior similarity and controllability to the existing paradigm.

tent creation. This task empowers pre-trained models with
the ability to generate imaginative text-driven scenes for
subjects specified by users, which is a foundation for AI-
generated content (AIGC) and real-world applications such
as personal image and video creation [7]. The primary goal
of customization is dual-faceted: (1) high-quality similar-
ity, i.e., the target subjects in the generated images should
closely mirror the given subjects; (2) high-quality control-
lability, i.e., the remaining subject-irrelevant parts should
consistently adhere to the control of the given text.

Existing literature follows the pseudo-word paradigm,
i.e., (1) learning pseudo-words (e.g., S∗ [10] or rare-tokens
[27]) to represent the given subjects; (2) composing these
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Figure 2. Generated customization results of our proposed novel
paradigm RealCustom. Given a single image representing the
given subject in the open domain (any subjects, portrait painting,
favorite toys, etc.), RealCustom could generate realistic images
that consistently adhere to the given text for the given subjects
in real-time (without any test-time optimization steps).

pseudo-words with the given text for the customized gener-
ation. Recent studies have focused on learning more com-
prehensive pseudo-words [1, 8, 22, 32, 38] to capture more
subject information, e.g., different pseudo-words for differ-
ent diffusion timesteps [1, 38] or layers [32]. Meanwhile,
others propose to speed up pseudo-word learning by train-
ing an encoder [11, 18, 30, 34] on object-datasets [17]. In
parallel, based on the learned pseudo-words, many works
further finetune the pre-trained models [16, 18, 27, 34] or
add additional adapters [30] for higher similarity. As more
information of the given subjects is introduced into pre-
trained models, the risk of overfitting increases, leading to
the degradation of controllability. Therefore, various regu-
larizations (e.g., l1 penalty [10, 16, 34], prior-preservation
loss [27]) are used to maintain controllability, which in
turn sacrifices similarity. Essentially, existing methods are
trapped in a dual-optimum paradox, i.e., the similarity and
controllability can not be optimal simultaneously.

We argue that the fundamental cause of this dual-
optimum paradox is rooted in the existing pseudo-word
paradigm, where the similarity component (i.e., the pseudo-
words) to generate the given subjects is intrinsically en-
tangled with the controllability component (i.e., the given
text) to generate subject-irrelevant parts, causing an over-
all conflict in the generation, as illustrated in Fig. 1(a).
Specifically, this entanglement is manifested in the same
entire influence scope of these two components. i.e., both
the pseudo-words and the given text affect all generation
regions. This is because each region is updated as a
weighted sum of all word features through built-in textual
cross-attention in pre-trained text-to-image diffusion mod-
els. Therefore, increasing the influence of the similarity
component will simultaneously strengthen the similarity in

the subject-relevant parts and weaken the influence of the
given text in other irrelevant ones, causing the degrada-
tion of controllability, and vice versa. Moreover, the nec-
essary correspondence between pseudo-words and subjects
confines existing methods to either lengthy test-time opti-
mization [10, 16, 27] or training [18, 34] on object-datasets
[17] that have limited categories. As a result, the existing
paradigm inherently has poor generalization capability for
real-time open-domain scenarios in the real world.

In this paper, we present RealCustom, a novel cus-
tomization paradigm that, for the first time, disentangles the
similarity component from the controllability component
by precisely limiting the given subjects to influence only
the relevant parts while maintaining other irreverent ones
purely controlled by the given texts, achieving both high-
quality similarity and controllability in a real-time open-
domain scenario, as shown in Fig. 2. The core idea of Real-
Custom is that, instead of representing subjects as pseudo-
words, we could progressively narrow down the real text
words (e.g., “toy”) from their initial general connotation
(e.g., various kinds o toys) to the specific subjects (e.g., the
unique sloth toy), wherein the superior text-image align-
ment in pre-trained models’ cross-attention can be lever-
aged to distinguish subject relevance, as illustrated in Fig.
1(b). Specifically, at each generation step, (1) the influence
scope of the given subject is identified by the target real
word’s cross-attention, with a higher attention score indi-
cating greater relevance; (2) this influence scope then de-
termines the influence quantity of the given subject at the
current step, i.e., the amount of subject information to be
infused into this scope; (3) this influence quantity, in turn,
shapes a more accurate influence scope for the next step,
as each step’s generation result is based on the output of the
previous. Through this iterative updating, the generation re-
sult of the real word is smoothly and accurately transformed
into the given subject, while other irrelevant parts are com-
pletely controlled by the given text.

Technically, RealCustom introduces an innovative
“train-inference” decoupled framework: (1) During train-
ing, RealCustom only learns the generalized alignment ca-
pabilities between visual conditions and pre-trained mod-
els’ original text conditions on large-scale text-image
datasets through a novel adaptive scoring module, which
modulates the influence quantity based on text and cur-
rently generated features. (2) During inference, real-time
customization is achieved by a novel adaptive mask guid-
ance strategy, which gradually narrows down a real text
word based on the learned alignment capabilities. Specif-
ically, (1) the adaptive scoring module first estimates the
visual features’ correlation scores with the text features and
currently generated features, respectively. Then a timestep-
aware schedule is applied to fuse these two scores. A subset
of key visual features, chosen based on the fused score, is
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incorporated into pre-trained diffusion models by extend-
ing its textual cross-attention with another visual cross-
attention. (2) The adaptive mask guidance strategy consists
of a text-to-image (T2I) branch (with the visual condition
set to 0) and a text&image-to-image (TI2I) branch (with the
visual condition set to the given subject). Firstly, all lay-
ers’ cross-attention maps of the target real word in the T2I
branch are aggregated into a single one, selecting only high-
attention regions as the influence scope. Secondly, in the
TI2I branch, the influence scope is multiplied by currently
generated features to produce the influence quantity and
concurrently multiplied by the outputs of the visual cross-
attention to avoid influencing subject-irrelevant parts.

Our contributions are summarized as follows:
Concepts. For the first time, we (1) point out the dual-

optimum paradox is rooted in the existing pseudo-word
paradigm’s entangled influence scope between the similar-
ity (i.e., pseudo-words representing the given subjects) and
controllability (i.e., the given texts); (2) present RealCus-
tom, a novel paradigm that achieves disentanglement by
gradually narrowing down real words into the given sub-
jects, wherein the given subjects’ influence scope is limited
based on the cross-attention of the real words.

Technology. The proposed RealCustom introduces a
novel “train-inference” decoupled framework: (1) during
training, learning generalized alignment between visual
conditions to original text conditions by the adaptive scor-
ing module to modulate influence quantity; (2) during in-
ference, the adaptive mask guidance strategy is proposed
to narrow down a real word by iterative updating the given
subject’s influence scope and quantity.

Significance. For the first time, we achieve (1) superior
similarity and controllability simultaneously, as shown in
Fig. 1(c); (2) real-time open-domain customization ability.

2. Related Works

2.1. Text-to-Image Customization

Existing customization methods follow the pseudo-words
paradigm, i.e., representing the given subjects as pseudo-
words and then composing them with the given text for cus-
tomization. Since the necessary correspondence between
the pseudo-words and the given subjects, existing works
are confined to either cumbersome test-time optimization-
based [1, 8–10, 16, 22, 27, 32] or encoder-based [7, 11,
14, 18, 30, 34] that trained on object-datasets with limited
categories. For example, in the optimization-based stream,
DreamBooth [27] uses a rare-token as the pseudo-word and
further fine-tunes the entire pre-trained diffusion model for
better similarity. Custom Diffusion [16] instead finds a sub-
set of key parameters and only optimizes them. The main
drawback of this stream is that it requires lengthy optimiza-
tion times for each new subject. As for the encoder-based

stream, the recent ELITE [34] uses a local mapping net-
work to improve similarity, while BLIP-Diffusion [18] in-
troduces a multimodal encoder for better subject represen-
tation. These encoder-based works usually show less simi-
larity than optimization-based works and generalize poorly
to unseen categories in training. In summary, the entangled
influence scope of pseudo-words and the given text natu-
rally limits the current works from achieving both optimal
similarity and controllability, as well as hindering real-time
open-domain customization.

2.2. Cross-Attention in Diffusion Models

Text guidance in modern large-scale text-to-image diffusion
models [2, 6, 24, 25, 28] is generally performed using the
cross-attention mechanism. Therefore, many works pro-
pose to manipulate the cross-attention map for text-driven
editing [3, 12] on generated images or real images via inver-
sion [31], e.g., Prompt-to-Prompt [12] proposes to reassign
the cross-attention weight to edit the generated image. An-
other branch of work focuses on improving cross-attention
either by adding additional spatial control [20, 21] or post-
processing to improve semantic alignment [5, 19]. Mean-
while, a number of works [33, 35, 36] propose using cross-
attention in diffusion models for discriminative tasks such
as segmentation. However, different from the existing lit-
erature, the core idea of RealCustom is to gradually narrow
a real text word from its initial general connotation (e.g.,
whose cross-attention could represent any toy with various
types of shapes and details) to the unique given subject (e.g.,
whose cross-attention accurately represents the unique toy),
which is completely unexplored.

3. Methodology
In this study, we focus on the most general customization
scenario: with only a single image representing the given
subject, generating new high-quality images for that subject
from the given text. The generated subject may vary in loca-
tion, pose, style, etc., yet it should maintain high similarity
with the given one. The remaining parts should consistently
adhere to the given text, thus ensuring controllability.

We first briefly introduce the preliminaries in Sec. 3.1.
The training and inference paradigm of RealCustom will be
elaborated in detail in Sec. 3.2 and Sec. 3.3, respectively.

3.1. Preliminaries

Our paradigm is implemented over Stable Diffusion [25],
which consists of two components, i.e., an autoencoder and
a conditional UNet [26] denoiser. Firstly, given an image
x ∈ RH×W×3, the encoder E(·) of the autoencoder maps
it into a lower dimensional latent space as z = E(x) ∈
Rh×w×c, where f = H0

h = W0

w is the downsampling factor
and c stands for the latent channel dimension. The corre-
sponding decoder D(·) maps the latent vectors back to the
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Figure 3. Illustration of our proposed RealCustom, which employs a novel “train-inference” decoupled framework: (a) During training,
general alignment between visual and original text conditions is learned by the proposed adaptive scoring module, which accurately derives
visual conditions based on text and currently generated features. (b) During inference, progressively narrowing down a real word (e.g.,
“toy”) from its initial general connotation to the given subject (e.g., the unique brown sloth toy) by the proposed adaptive mask guidance
strategy, which consists of two branches, i.e., a text-to-image (T2I) branch where the visual condition is set to 0, and a text&image-to-image
(TI2I) branch where the visual condition is set to the given subject. The T2I branch aims to calculate the influence scope by aggregating
the target real word’s (e.g., “toy”) cross-attention, while the TI2I branch aims to inject the influence quantity into this scope.

image as D(E(x)) ≈ x. Secondly, the conditional denoiser
ϵθ(·) is trained on this latent space to generate latent vectors
based on the text condition y. The pre-trained CLIP text en-
coder [23] τtext(·) is used to encode the text condition y into
text features fct = τtext(y). Then, the denoiser is trained
with mean-squared loss:

L := Ez∼E(x),fy,ϵ∼N (0,I),t

[
∥ϵ− ϵθ (zt, t,fct)∥22

]
, (1)

where ϵ denotes for the unscaled noise and t is the timestep.
zt is the latent vector that noised according to t:

zt =
√
α̂tz0 +

√
1− α̂tϵ, (2)

where α̂t ∈ [0, 1] is the hyper-parameter that modulates the
quantity of noise added. Larger t means smaller α̂t and

thereby a more noised latent vector zt. During inference, a
random Gaussian noise zT is iteratively denoised to z0, and
the final generated image is obtained through x

′
= D(z0).

The incorporation of text condition in Stable Diffusion is
implemented as textual cross-attention:

Attention(Q,K,V ) = Softmax(
QK⊤
√
d

)V , (3)

where the query Q = WQ · fi, key K = WK · fct and
value V = WV · fct. WQ,WK ,WV are weight param-
eters of query, key and value projection layers. fi,fct are
the latent image features and text features, and d is the chan-
nel dimension of key and query features. The latent image
feature is then updated with the attention block output.
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3.2. Training Paradigm

As depicted in Fig. 3(a), the text y and image x are first
encoded into text features fct ∈ Rnt×ct and image fea-
tures fci ∈ Rni×ci by the pre-trained CLIP text/image en-
coders [23] respectively. Here, nt, ct, ni, ci are text feature
number/dimension and image feature number/dimension,
respectively. Afterward, the adaptive scoring module takes
the text features fct, currently generated features zt ∈
Rh×w×c, and timestep t as inputs to estimate the score for
each features in fci, selecting a subset of key ones as the
visual condition f̂ci ∈ Rn̂i×ci , where n̂i < ni is the se-
lected image feature number. Next, we extend textual cross-
attention with another visual cross-attention to incorporate
the visual condition f̂yi. Specifically, Eq. 3 is rewritten as:

Attention(Q,K,V ,Ki,Vi) =

Softmax(
QK⊤
√
d

)V + Softmax(
QKi

⊤
√
d

)Vi, (4)

where the new key Ki = WKi · f̂ci, value Vi = WV i · f̂ci

are added. WKi and WV i are weight parameters. Dur-
ing training, only the adaptive scoring module and projec-
tion layers WKi,WV i in each attention block are trainable,
while other pre-trained models’ weight remains frozen.

Adaptive Scoring Module. Unlike the training stage,
where the same images as the visual conditions and inputs
to the denoiser ϵθ, the given subjects, and the inference gen-
eration results should maintain similarity only in the subject
part. Therefore, utilizing all image features as visual condi-
tions results in a “train-inference” gap, which will degrade
both similarity and controllability at inference.

The above rationale motivates the adaptive scoring mod-
ule, which provides smooth and accurate visual conditions
for customization. As illustrated in Fig. 4, the text fct ∈
Rnt×ct and currently generated features zt ∈ Rh×w×c =
Rnz×c are first aggregated into the textual context Ctextual
and visual context Cvisual through weighted pooling:

Atextual = Softmax(fctW
t
a) ∈ Rnt×1 (5)

Avisual = Softmax(ztW
v
a ) ∈ Rnz×1 (6)

Ctextual = A⊤
textualfct ∈ R1×ct ,Cvisual = A⊤

visualzt ∈ R1×c, (7)

where W t
a ∈ Rct×1,W v

a ∈ Rc×1 are weight parameters,
and “Softmax” is operated in the number dimension. These
contexts are then spatially replicated and concatenated with
image features fci ∈ Rni×ci to estimate the textual score
Stextual ∈ Rni×1 and visual score Svisual ∈ Rni×1 respec-
tively. These two scores are predicted by two lightweight
score-net, which are implemented as two-layer MLPs.

Considering that the textual features are roughly accurate
and the generated features are gradually refined, a timestep-

Figure 4. Illustration of adaptive scoring module. Text features
and currently generated features are first aggregated into the tex-
tual and visual context, which are then spatially concatenated with
image features to predict textual and visual scores. These scores
are then fused based on the current timestep. Ultimately, only a
subset of the key features is selected based on the fused score.

aware schedule is proposed to fuse these two scores:

S = (1−
√

α̂t)Stextual +
√

α̂tSvisual, (8)

where
√
α̂t is the hyperparameter of pre-trained diffusion

models that modulate the amount of noise added to gener-
ated features. Then a softmax activation is applied to the
fused score since our focus is on highlighting the compar-
ative significance of each image feature vis-à-vis its coun-
terparts: S = Softmax(S). The fused scores are multiplied
with the image features to enable the learning of score-nets:

fci = fci ◦ (1 + S), (9)

where ◦ denotes the element-wise multiply. Finally, given a
Top-K ratio γnum ∈ [0, 1], a sub-set of key features with
highest scores are selected as the output f̂yi ∈ Rn̂i×ci ,
where n̂i = γnumni. To enable flexible inference with dif-
ferent γnum without performance degradation, we propose
to use a uniformly random ratio during training:

γnum = uniform[γlow
num, γ

high
num ], (10)

where γlow
num, γ

high
num are set to 0.3, 1.0, respectively.

3.3. Inference Paradigm

The inference paradigm of RealCustom consists of two
branches, i.e., a text-to-image (T2I) branch where the visual
input is set to 0 and a text&image-to-image (TI2I) branch
where the visual input is set to given subjects, as illustrated
in Fig. 3(b). These two branches are connected by our pro-
posed adaptive mask guidance strategy. Specifically, given
previous step’s output zt, a pure text conditional denois-
ing process is performed in T2I branch to get the output
zT
t−1, where all layers cross-attention map of the target real

word (e.g., “toy”) is extracted and resized to the same res-
olution (the same as the largest map size, i.e., 64 × 64 in
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Methods controllability similarity efficiency

CLIP-T ↑ ImageReward ↑ CLIP-I ↑ DINO-I ↑ test-time optimize steps

Textual Inversion [10] 0.2546 -0.9168 0.7603 0.5956 5000
DreamBooth [27] 0.2783 0.2393 0.8466 0.7851 800

Custom Diffusion [16] 0.2884 0.2558 0.8257 0.7093 500
ELITE [34] 0.2920 0.2690 0.8022 0.6489 0 (real-time)

BLIP-Diffusion [18] 0.2967 0.2172 0.8145 0.6486 0 (real-time)
RealCustom(ours) 0.3204 0.8703 0.8552 0.7865 0 (real-time)

Table 1. Quantitative comparisons. Left: Our proposed RealCustom outperforms existing methods in all metrics. Right: We plot the
“CLIP-T verse DINO”, showing that the existing methods are trapped into the dual-optimum paradox, while RealCustom get rid of it and
achieve both high-quality similarity and controllability. The same conclusion in “CLIP-T verse CLIP-I” can be found in Fig. 1(c).

Stable Diffusion). The aggregated attention map is denoted
as M ∈ R64×64. Next, a Top-K selection is applied, i.e.,
given the target ratio γscope ∈ [0, 1], only γscope × 64 × 64
regions with the highest cross-attention score will remain,
while the rest will be set to 0. The selected cross-attention
map M̄ is normalized by its maximum value as:

M̂ =
M̄

max(M̄)
, (11)

where max(·) represents the maximum value. The rationale
behind this is that even in these selected parts, the subject
relevance of different regions is also different.

In the TI2I branch, the influence scope M̂ is first multi-
plied by currently generated feature zt to provide accurate
visual conditions for current generation step. The reason
is that only subject-relevant parts should be considered for
the calculation of influence quantity. Secondly, M̂ is mul-
tiplied by the visual cross-attention results to prevent nega-
tive impacts on the controllability of the given texts in other
subject-irrelevant parts. Specifically, Eq. 4 is rewritten as:

Attention(Q,K,V ,Ki,Vi) =

Softmax(
QK⊤
√
d

)V + (Softmax(
QKi

⊤
√
d

)Vi)M̂ , (12)

where the necessary resize operation is applied to match
the size of M̂ with the resolution of each cross-attention
block. The denoised output of TI2I branch is denoted as
zTI
t−1. The classifer-free guidance [13] is extended to pro-

duce next step’s denoised latent feature zt−1 as:

zt−1 = ϵθ(∅)+ωt(z
T
t−1−ϵθ(∅))+ωi(z

TI
t−1−zT

t−1), (13)

where ϵθ(∅) is the unconditional denoised output.
With the smooth and accurate influence quantity of the

given subject injected into the current step, the generation
of the real word will gradually be narrowed from its ini-
tial general connotation to the specific subject, which will
shape a more precise influence scope for the generation of

the next step. Through this iterative updating and genera-
tion, we achieve real-time customization where the similar-
ity for the given subject is disentangled with the controlla-
bility for the given text, leading to an optimal of both. More
importantly, since both the adaptive scoring module as well
as visual cross-attention layers are trained on general text-
image datasets, the inference could be generally applied to
any categories by using any target real words, enabling ex-
cellent open-domain customization capability.

4. Experiments
4.1. Experimental Setups

Implementation. RealCustom is implemented on Sta-
ble Diffusion and trained on the filtered subset of Laion-5B
[29] based on aesthetic score, using 16 A100 GPUs for 16w
iterations with 1e-4 learning rate. Unless otherwise speci-
fied, DDIM sampler [31] with 50 sample steps is used for
sampling and the classifier-free guidance ωt, ωi is 7.5 and
12.5. Top-K ratios γnum = 0.8, γscope = 0.25.

Evaluation. Similarity. We use the state-of-the-art seg-
mentation model (i.e., SAM [15]) to segment the subject,
and then evaluate with both CLIP-I and DINO [4] scores,
which are average pairwise cosine similarity CLIP ViT-
B/32 or DINO embeddings of the segmented subjects in
generated and real images. Controllability. We calculate
the cosine similarity between prompt and image CLIP ViT-
B/32 embeddings (CLIP-T). In addition, ImageReward [37]
is used to evaluate controllability and aesthetics (quality).

Prior SOTAs. We compare with existing paradigm
of both optimization-based (i.e., Textual Inversion[10],
DreamBooth [27], CustomDiffusion [16]) and encoder-
based (ELITE[34], BLIP-Diffusion[18]) state-of-the-arts.

4.2. Main Results

Quantitative results. As shown in Tab. 1, RealCustom
outperforms existing methods in all metrics: (1) for control-
lability, we improve CLIP-T and ImageReward by 8.1% and
223.5%, respectively. The significant improvement in Im-
ageReward shows that our paradigm generates much higher

7481



Figure 5. Qualitative comparison with existing methods. RealCustom could produce much higher quality customization results that have
better similarity with the given subject and better controllability with the given text compared to existing works.

Figure 6. Illustration of gradually narrowing the real words into the given subjects. Upper: RealCustom generated results (first row) and
the original text-to-image generated result (second row) by pre-trained models with the same seed. The mask is visualized by the Top-25%
highest attention score regions of the real word “toy”. We could observe that starting from the same state (the same mask since there’s no
information of the given subject is introduced at the beginning), RealCustom gradually forms the structure and details of the given subject
by our proposed adaptive mask strategy, achieving the open-domain zero-shot customization. Lower: More visualization cases.

quality customization; (2) for similarity, we also achieve
state-of-the-art performance on both CLIP-I and DINO-I.
The figure of “CLIP-T verse DINO” validates that the ex-
isting paradigm is trapped into the dual-optimum paradox,
while RealCustom effectively eradicates it.

Qualitative results. As shown in Fig. 5, RealCustom
demonstrates superior zero-shot open-domain customiza-
tion capability (e.g., the rare shaped toy in the first row),
generating higher-quality custom images that have better
similarity with the given subject and better controllability

with the given text compared to existing works.

4.3. Ablations

Effectiveness of adaptive mask guidance strategy. We first
visualize the narrowing down process of the real word by
the proposed adaptive mask guidance strategy in Fig. 6.
We could observe that starting from the same state (the
same mask since there’s no information of the given sub-
ject is introduced at the first step), RealCustom gradually
forms the structure and details of the given subject, achiev-
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inference setting CLIP-T ↑ CLIP-I ↑
γscope = 0.1 0.32 0.8085
γscope = 0.2 0.3195 0.8431
γscope = 0.25 0.3204 0.8552

γscope = 0.25, binary 0.294 0.8567
γscope = 0.3 0.3129 0.8578
γscope = 0.4 0.3023 0.8623
γscope = 0.5 0.285 0.8654

Table 2. Ablation of different γscope, which denotes the influence
scope of the given subject in RealCustom during inference. “bi-
nary” means using binary masks instead of max norm in Eq. 11.

Figure 7. Visualization of different influence scope.

ID settings CLIP-T ↑ CLIP-I ↑
1 full model, γnum = 0.8 0.3204 0.8552
2 w/o adaptive scoring module 0.3002 0.8221
3 textual score only, γnum = 0.8 0.313 0.8335
4 visual score only, γnum = 0.8 0.2898 0.802
5 (textual + visual) / 2, γnum = 0.8 0.3156 0.8302
6 full model, γnum = 0.9 0.315 0.8541
7 full model, γnum = 0.7 0.3202 0.8307

Table 3. Ablation of the adaptive scoring module, where γnum

means the influence quantity of the given subject during inference.

ing the open-domain zero-shot customization while remain-
ing other subject-irrelevant parts (e.g., the city background)
completely controlled by the given text.

We then ablate on the Top-K raito γscope in Tab. 2: (1)
within a proper range (experimentally, γscope ∈ [0.2, 0.4])
the results are quite robust; (2) the maximum normalization
in Eq. 11 is important for the unity of high similarity and
controllability, since different regions in the selected parts
have different subject relevance and should be set to differ-
ent weights. (3) Too small or too large influence scope will
degrade similarity or controllability, respectively. These
conclusions are validated by the visualization in Fig. 7.

Effectiveness of adaptive scoring module. As shown in
Tab. 3, (1) We first compare with the simple use of all image
features (ID-2), which results in degradation of both sim-
ilarity and controllability, proving the importance of pro-
viding accurate and smooth influence quantity along with
the coarse-to-fine diffusion generation process; (2) We then
ablate on the module design (ID-3,4,5, ID-5), finding that
using image score only results in worse performance. The
reason is that the generation features are noisy at the begin-
ning, resulting in an inaccurate score prediction. Therefore,

Figure 8. The customization by using different real text words.

we propose a step-scheduler to adaptively fuse text and im-
age scores, leading to the best performance; (3) Finally, the
choice of influence quantity γnum is ablated in ID-6 & 7.

Impact of different read words. The customization re-
sults in using different real text words are shown in Fig.
8. The real text word narrowed down for customization is
highlighted in red. (1) No matter how coarse-grained text
word is used, the customization results of RealCustom are
quite robust. (2) When using completely different word to
represent the given subject, RealCustom opens a door for a
new application, i.e., novel concept creation. That is, Re-
alCustom will try to combine these two concepts and create
a new one, e.g., generating a parrot with the appearance of
the given brown corgi, as shown in the below three rows.
This application will be very valuable for designing new
characters in movies or games, etc.

5. Conclusion
In this paper, we present a novel customization paradigm
RealCustom that, for the first time, disentangles similar-
ity of given subjects from controllability of given text by
precisely limiting subject influence to relevant parts, which
gradually narrowing the real word from its general conno-
tation to the specific subject in a novel “train-inference”
framework: the adaptive scoring module learns to adap-
tively modulate influence quantity during training; (2) the
adaptive mask guidance strategy iteratively updates the in-
fluence scope and influence quantity of given subjects dur-
ing inference. Extensive experiments demonstrate that Re-
alCustom achieves the unity of high-quality similarity and
controllability in the real-time open-domain scenario.
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