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Abstract

Given an input set of 3D point pairs, the goal of outlier-
robust 3D registration is to compute some rotation and
translation that align as many point pairs as possible. This
is an important problem in computer vision, for which many
highly accurate approaches have been recently proposed.
Despite their impressive performance, these approaches
lack scalability, often overflowing the 16GB of memory of
a standard laptop to handle roughly 30, 000 point pairs.
In this paper, we propose a 3D registration approach that
can process more than ten million (107) point pairs with
over 99% random outliers. Moreover, our method is ef-
ficient, entails low memory costs, and maintains high ac-
curacy at the same time. We call our method TEAR 1, as
it involves minimizing an outlier-robust loss that computes
Truncated Entry-wise Absolute Residuals. To minimize this
loss, we decompose the original 6-dimensional problem into
two subproblems of dimensions 3 and 2, respectively, solved
in succession to global optimality via a customized branch-
and-bound method. While branch-and-bound is often slow
and unscalable, this does not apply to TEAR as we propose
novel bounding functions that are tight and computationally
efficient. Experiments on various datasets are conducted to
validate the scalability and efficiency of our method.

1. Introduction

The 3D registration problem aims to find a rotation and
translation that best align an input set of 3D point pairs.
Ideally, the alignment errors for all point pairs are small,
and we call them inliers. In practice, the inliers are con-
taminated by other point pairs, called outliers, that induce
significant alignment errors. Given a set of inlier and outlier
point pairs, outlier-robust 3D registration aims to align the
3D inlier point pairs via some rotation and translation.

In this paper, we tackle the 3D registration problem with
extremely many outliers, via the proposed method that we

* Equal contribution
1https://github.com/tyhuang98/TEAR-release

call Truncated Entry-wise Absolute Residuals (TEAR). Nu-
merically, TEAR can handle more than 107 point pairs with
99.8% random outliers, a setting in which no existing meth-
ods have been shown to succeed: They are either unscal-
able, inefficient, or inaccurate. In Sec. 1.1, we review prior
3D registration methods. In Sec. 1.2, we further highlight
the TEAR approach and overview our contributions.

1.1. Prior Art

In this section, we briefly review several families of 3D ro-
bust registration methods that are relevant to our work.

First, observe that the outlier-robust 3D registration
problem can be decoupled into two subproblems: (1) if the
outliers are known, one can easily estimate a rotation and
translation by SVD [2, 25, 26], and (2) if the true rotation
and translation are given, one can easily remove the outliers.
These observations turn immediately into an efficient alter-
nating minimization method, which lies at the heart of clas-
sical approaches including iterative closest point [7, 55], it-
eratively reweighted least-squares [1, 6, 18, 43, 48, 50, 52],
and graduated non-convexity [8, 29, 58, 67, 73, 78]. Such
an alternating minimization scheme is shown to be conver-
gent in [1, 52] under very general conditions, but it might
not converge to a desired solution if the outlier ratio is high.

The RANSAC method [21] proceeds as follows: ran-
domly sample a minimum number of point pairs (typically
3 pairs), compute a rotation and translation that aligns them,
measure the alignment error for all pairs, repeat these steps
until a termination criterion is reached, and output the ro-
tation and translation that give the smallest alignment error.
RANSAC could terminate with a correct estimation as soon
as all pairs sampled in an iteration are inliers, but the prob-
ability of achieving so diminishes as the outlier ratio grows,
suggesting that RANSAC, or its variants [4, 5, 54, 62], can
be inefficient in the presence of extremely many outliers.

Alternatively, one could formulate some non-convex ob-
jective (e.g., consensus maximization) for outlier-robust
registration, and solve it via the branch-and-bound algo-
rithm [57]. Branch-and-bound guarantees global optimality
by design, so it has served well in recent years as a vali-
dation tool [11–13, 33–35, 37, 39, 40, 44, 47, 63, 70, 75].

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

27477

https://github.com/tyhuang98/TEAR-release


(a) (b)
Figure 1. Comparisons of TEAR (ours) to prior methods on random, synthetic, noisy data (20 trials). The outlier ratio is set to 95% and all
presented methods find accurate solutions. Fig. 1a: TEAR is 103 times more scalable than methods based on consistency graphs including
TEASER++ [68], SC2-PCR [14], MAC [76] and than deep learning methods including PointDSC [3] and VBReg [28]. Fig. 1b: TEAR is
100 times faster than TR-DE [13], a recent branch-and-bound method.

Its efficiency hinges on two critical aspects: the dimension
of the search space and bounds on the objective. Care is
needed to reduce the search space dimension or tighten the
bounds, otherwise branch-and-bound could quickly be in-
tractable as the problem scales up. The recent well-designed
branch-and-bound method of [13], called TR-DE, takes
more than 103 seconds to handle 105 point pairs (Fig. 1).

Instead of tackling the non-convex robust registration
problem directly, one could consider relaxing it into a con-
vex semidefinite program, which is typically solvable in
polynomial time [9, 27, 49, 66, 69]. While semidefinite
relaxations might recover the solution of the original non-
convex objective, this recovery property could come at the
cost of working with quadratically many optimization vari-
ables and constraints [66], and thus at the expense of vast
computation: State-of-the-art solvers need more than 7
hours to solve such semidefinite programs and align 1,000
point pairs, even if the translation is given [69, Table 3].

The outlier removal method [10, 46] has a for loop: For
each point pair, assume it is an inlier, then one can reason
which point pair conflicts with this assumption. Doing so
allows removing some point pairs and—this is a virtue—
the point pairs to be removed are guaranteed to be outliers.
While outlier removal often serves as a preprocessing step
that facilitates subsequent alignment, it does so by charg-
ing a large amount of time (say, exponential in the variable
dimension [16, 46] or at least quadratic in the number of
points); e.g., on our laptop, the method of [46] takes more
than 2 hours for 105 point pairs with 95% outliers.

The next several methods we review rely on the so-called
consistency graph, a graph where a vertex denotes a point
pair and an edge indicates two consistent point pairs that
can both be inliers. The consistency graph finds its early use
in [20, 32] and is the cornerstone of many recent methods
for outlier-robust 3D registration [15, 41, 59, 65, 68, 76].

For example, using the consistency graph, the TEASER++
method computes a maximum clique2 often containing most
inliers and few outliers [68]; the SC2-PCR method gen-
eralizes the consistency graph into a second-order version
more discriminant between inliers and outliers [14, 15]; the
MAC method generalizes the maximum clique formulation
into computing maximal cliques2 [76]. Even though these
methods have established state-of-the-art performance, they
have also brought an elephant into the room: Computing a
consistency graph uses memory quadratic in the number of
point pairs, e.g., doing so for 30,000 point pairs would oc-
cupy the total 16GB memory of a standard laptop, which
limits the applicability of all these methods to larger-scale
robust 3D registration problems (Fig. 1).

There have recently been many deep learning approaches
developed to extract and match features of the input point
clouds [17, 24, 30, 45, 53, 64, 71, 72], the most relevant
to ours are methods that perform robust 3D registration,
such as PointDSC [3] and VBReg [28]. PointDSC builds
upon the consistency graph, and needs extra storage for a
large network and (temporarily, during forward passes) the
high-dimensional feature of each 3D point. VGReg builds
upon PointDSC and uses a recurrent network that admits
a variational interpretation, but it inherits the drawback of
PointDSC of being not scalable (Fig. 1).

Summary. Since scalability has been a fly in the ointment
compromising the recent success of 3D registration meth-
ods, why not simply downsample huge-scale point clouds
and perform registration from there? The answer to this
sticking point is that downsampling ignores some input in-
formation that one could otherwise leverage, so it ultimately
impinges upon performance; for numerical evidence, see,

2A maximum clique of a graph is a complete subgraph containing the
largest possible number of vertices, whereas a maximal clique is a com-
plete subgraph not contained in any (other) maximum clique.
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e.g., [28, Table 2], [15, Fig. 9], and Fig. 7. This thus ren-
ders downsampling into a stopgap that eventually necessi-
tates developing scalable and efficient registration methods.

1.2. Our Contribution: TEAR

Which methodology, reviewed above, can be utilized to de-
sign a scalable approach for registrating ten million point
pairs with extremely many outliers? Alternating minimiza-
tion and RANSAC are known to be brittle at high outlier
ratios. Semidefinite programs are costly to solve. Outlier
removal typically needs quadratic time, constructing consis-
tency graphs further consumes quadratic storage, and deep
learning demands even more memory.

To design a scalable method, we advocate the branch-
and-bound method. This might be surprising (if not doubt-
ful): Conventional wisdom has it that branch-and-bound is
slow and induces exponential running times! Contrary to
the common wisdom, Fig. 1 indicates the running time of
our proposal (TEAR) grows almost linearly. We achieve this
by revising the problem-solving pipeline, from the prob-
lem formulation to mathematical derivations (of upper and
lower bounds), and furthermore to implementation details.
More explicitly, we make the following contributions:
• (Problem Formulation, Secs. 2.1 and 2.2) We formulate

the 3D registration problem using the robust loss that we
call TEAR, a shorthand for Truncated Entry-wise Ab-
solute Residuals (Sec. 2.1). TEAR is similar in spirit
to commonly seen robust losses (e.g., consensus maxi-
mization, truncated least-squares), but it has subtle dif-
ferences that enable faster branch-and-bound algorithms
to be derived. Moreover, in Sec. 2.2 we decompose
TEAR into two subproblems of dimensions 3 and 2 re-
spectively, which further facilitates developing branch-
and-bound implementations. In fact, at a high level, our
approach is very simple: We solve the two subproblems,
one after another, by a basic branch-and-bound template.

• (Upper and Lower Bounds, Secs. 2.3 and 2.4) The non-
trivial part of our approach lies in deriving tight lower and
upper bounds for the branch-and-bound method, and our
key idea for achieving so is as follows (Sec. 2.3). To solve
the 3-dimensional subproblem, for example, our imple-
mentation searches a 2-dimensional space (rather than 3).
In this implementation, we derive upper and lower bounds
that can be computed via solving a specific 1-dimensional
problem in O(N logN) time, where N is the total num-
ber of point pairs. We follow a similar route to solve the
other 2-dimensional subproblem to global optimality, and
for simplicity, we call the final algorithm TEAR. Via nu-
merical comparisons (Sec. 2.4), we will show that using
TEAR as the robust loss ensures the bounds are tighter
than using the commonly used consensus maximization
loss, and it also ensures the bounds are more efficient to
compute than using the truncated least-squares loss.

• (Experiments, Secs. 3 and 4) In Sec. 3 we perform stan-
dard experiments on synthetic and real data, showing that
TEAR reaches state-of-the-art accuracy while being more
efficient in most cases. In Sec. 4 we perform experiments
on large-scale point clouds, presenting TEAR as a unique
method that can handle ten million (107) point pairs in the
presence of extremely many random outliers (99.8%).

2. The Design of TEAR
This section introduces the design of TEAR. In Sec. 2.1, we
revisit commonly used formulations for 3D registration and
their drawbacks, thus motivating our proposal of a novel
formulation called Truncated Entry-wise Absolute Residu-
als (TEAR). In Sec. 2.2, we decompose TEAR into easier
subproblems. In Sec. 2.3, we describe how to solve the sub-
problems using branch-and-bound. In Sec. 2.4, we provide
numerical validation that TEAR overcomes the drawbacks
of other formulations and can be solved more efficiently.

2.1. Problem Formulation: TEAR

Rethink Existing Formulations. Recall that our goal is to
find some 3D rotation R∗ and translation t∗ that best aligns
an input set of 3D point pairs {(yi,xi)}Ni=1 containing a
large fraction of (random) outliers. The first step of design-
ing TEAR is to choose, if not to propose, an outlier-robust
problem formulation that admits scalable algorithms. To
this end, we recall two highly robust losses often used in ge-
ometric vision, namely Consensus Maximization (CM) and
Truncated Least-Squares (TLS):

max
(R,t)∈SE(3)

N∑
i=1

1 (∥yi −Rxi − t∥2 ≤ ξi) , (CM)

min
(R,t)∈SE(3)

N∑
i=1

min
{
∥yi −Rxi − t∥22, ξ2i

}
. (TLS)

Here, 1(·) denotes the indicator function, and ξi ≥ 0 is a
threshold hyper-parameter, such that, if the residual ∥yi −
Rxi − t∥2 is larger than ξi, then (yi,xi) is regarded as
an outlier (with respect to R, t). Therefore, CM aims to
minimize the number of outliers, whereas TLS furthermore
minimizes the residuals of inliers using least-squares.

In the context of branch-and-bound, CM has been popu-
lar, as its upper and lower bounds are relatively easy to de-
rive. However, using branch-and-bound for CM has a subtle
yet crucial drawback. Indeed, note that in many cases two
different rotations and translations could correspond to the
same number of outliers (as determined by ξi), but the cor-
responding residuals are hardly the same. Note then that
CM only counts the number of outliers with respect to the
current rotation and translation, and it never calculates the
sum of residuals. These imply the upper and lower bounds
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of CM are usually loose, which would jeopardize, conse-
quentially, the efficiency of branch-and-bound.

Is TLS suitable for branch-and-bound? Here are some
concerns, though. First, to our knowledge, no prior work
applied branch-and-bound to TLS: The technical challenge
is deriving the corresponding upper and lower bounds; the
conceptual challenge is the impression that branch-and-
bound would be slow anyway. Our second, major, concern
has a deeper cause, which we will illustrate later in Sec. 2.4.

TEAR. In light of the above concerns, we propose Trun-
cated Entry-wise Absolute Residuals (TEAR):

min
(R,t)∈SE(3)

N∑
i=1

min {∥yi −Rxi − t∥1, ξi} . (TEAR)

Different from CM, TEAR evaluates the sum of (truncated)
residuals. Different from TLS, TEAR evaluates the sum of
the entry-wise absolute values of yi − Rxi − t (ℓ1 loss),
rather than the squared sum (ℓ2 loss). The benefit of having
these differences is computational: With TEAR we can de-
rive a branch-and-bound algorithm with tight and efficiently
computable upper and lower bounds (Secs. 2.3 and 2.4).

Remark 1 (Truncated Least Unsquared Deviations). In a re-
cent preprint [31], the following robust loss was considered
(translated to the context of robust 3D registration):

min
(R,t)∈SE(3)

N∑
i=1

min {∥yi −Rxi − t∥2, ξi} . (TLUD)

TLUD uses the unsquared ℓ2 norm rather than the ℓ1 norm
of TEAR, and if yi−Rxi−t were a scalar, TLUD would be
equivalent to TEAR. One potential disadvantage of TLUD
is that ∥yi − Rxi − t∥2 is not separable and this might
bring computational difficulties (e.g., see [31, Table 1]). In
Secs. 2.2 and 2.3, we will simplify TEAR and improve com-
putational efficiency by leveraging its separable residual.

2.2. Tear Off: Decomposition of TEAR

Branching over the 6-dimensional space SE(3) would be
inefficient (as prior work showed), and directly applying
branch-and-bound to TEAR would lead to unscalable im-
plementations. Therefore, in order to implement a scalable
branch-and-bound method, in this section we decompose
TEAR into lower-dimensional problems (tears).

Denote by yij , r⊤j , and tj the j-th row of yi, R, and t,
respectively. The residual ∥yi−Rxi−t∥1 has 3 summands:

∥yi −Rxi − t∥1 =

3∑
j=1

|yij − r⊤j xi − tj |.

While ∥yi − Rxi − t∥1 has 6 degrees of freedom (R and
t), each summand |yij − r⊤j xi − tj | has only 3 degrees of

Solve

TEAR-1

Solve

TEAR-2

SVD

Rotation Error: 0.37

Translation Error: 0.29 cm

499 : 876

499 : 15

500 : 10000

Figure 2. The pipeline of TEAR visualized (cf . Sec. 2.2). Green
(resp. red) values denote the numbers of inliers (resp. outliers),
and green (resp. red) lines denote inlier (resp. outlier) point pairs.
Top left: Input point pairs; top right: point pairs indexed by Î1 (1)
after solving TEAR-1; bottom right: point pairs indexed by Î2 (2)
after solving TEAR-2; bottom left: the final output.

freedom (rj ∈ S2 := {r ∈ R3 : ∥r∥ = 1} and tj ∈
R). This motivates us to approximate the TEAR problem as
follows. First, with some threshold hyper-parameter3 ξi1,
we tear off the first summand from TEAR, targeting at

min
r1∈S2,t1∈R

N∑
i=1

min
{
|yi1 − r⊤1 xi − t1|, ξi1

}
. (TEAR-1)

Solving TEAR-1 gives a solution (r̂1, t̂1) revealing the set

Î1 =
{
i : |yi1 − r̂⊤1 xi − t̂1| ≤ ξi1

}
, (1)

which contains the indices of potential inliers. Then, we
tear off the second summand |yi2−r⊤2 xi− t2|, focusing on

min
r2∈S2,t2∈R

∑
i∈Î1

min
{
|yi2 − r⊤2 xi − t2|, ξi2

}
s.t. r⊤2 r̂1 = 0

(TEAR-2)

where ξi2 is another threshold hyper-parameter3. Note that
the extra constraint r⊤2 r̂1 = 0 in TEAR-2 ensures the re-
sulting rotation has orthogonal rows. Moreover, it implies
TEAR-2 has 2 degrees of freedom, easier to solve than
TEAR-1 after a suitable reparameterization.

Shall we proceed similarly for the third summand |yi3 −
r⊤3 xi − t3|? In fact, no more tear is needed: Given some
optimal (r̂1, t̂1) and (r̂2, t̂2) from TEAR-1 and TEAR-2 re-
spectively, one needs to set r3 to be ±(r̂1 × r̂2) to satisfy
the rotation constraint (the sign is chosen to ensure the de-
terminant is 1), after which one needs only to find the final

3The choices of hyper-parameters are discussed in the appendix.
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translation component. But what we do to implement TEAR
is even simpler: Solving TEAR-2 yields again a set

Î2 :=
{
i ∈ Î1 : |yi2 − r̂⊤2 xi − t̂2| ≤ ξi2

}
, (2)

which is expected to contain very few outlier indices (e.g.,
see Fig. 2), and next, we apply SVD [2, 25, 26] to the re-
maining point pairs indexed by Î2 and this gives a rotation
and translation estimate as the final output.

In summary, TEAR consists of solving TEAR-1 and then
TEAR-2, followed by an SVD; this is illustrated in Fig. 2
where we use the Stanford Bunny point cloud [19] as an
example. We solve TEAR-1 and TEAR-2 by a tailored
branch-and-bound method, and we discuss that in Sec. 2.3.

2.3. Branch and Bound with Tears

As mentioned, TEAR-2 is easier to solve, so here we only
describe how to solve TEAR-1 using branch-and-bound, a
global optimization technique that we assume, for concise-
ness, the reader is familiar with. The full recipe for solving
TEAR-1 is in the appendix, and the code is available1.

While TEAR-1 has 3 degrees of freedom, it would suf-
fice to branch over the sphere S2 where r1 resides or equiv-
alently over the rectangle Q := [0, 2π) × [0, π], as each
point (α, β) in this rectangle corresponds uniquely to a unit
vector r1 = [sinβ cosα, sinβ sinα, cosβ]. To implement
branch-and-bound, we need to consider two key steps:
• (Upper Bound) Given a point in Q, that is given a unit

vector r1, we minimize TEAR-1 in variable t1, i.e., solve

min
t1∈R

N∑
i=1

min
{
|yi1 − r⊤1 xi − t1|, ξi1

}
. (3)

By construction, the minimum value of (3) is always an
upper bound of the minimum of TEAR-1.

• (Lower Bound) Given a subrectangle [α1, α2] × [β1, β2]
in Q, consider the following program:

min
α∈[α1,α2]
β∈[β1,β2]

t1∈R

N∑
i=1

min
{
|yi1 − r⊤1 xi − t1|, ξi1

}
s.t. r1 = [sinβ cosα, sinβ sinα, cosβ]⊤

(4)

Note that (4) is identical to TEAR-1 except that r1 is now
constrained such that the two angles α and β are bounded
in the intervals [α1, α2] and [β1, β2]. While (4) is a sub-
problem encountered during branch-and-bound, solving
(4) efficiently is not easy. The key step that we take is
to relax (4) a little bit more so that a lower bound on the
minimum of (4) can be efficiently calculated (see the ap-
pendix for details). By construction, this lower bound is
also a lower bound of TEAR-1 subject to α ∈ [α1, α2]
and β ∈ [β1, β2]. This is what we meant by computing a
lower bound for the branch-and-bound method.

(a) (b)

(c) (d)
Figure 3. Solve TEAR-1 and CM-1 via branch-and-bound on
random, synthetic, noisy data (Sec. 2.4). TR-DE [13], a recent
branch-and-bound method, is also compared. Outlier ratio: 95%
(Fig. 3a, Fig. 3b); N = 10000 (Fig. 3c, Fig. 3d). 30 trials.

We use the following statement to encapsulate the details of
computing the desired upper and lower bounds:

Theorem 1. We can solve (3) in O(N logN) time and com-
pute a “tight” lower bound of (4) also in O(N logN) time.

Behind Theorem 1 are two novel, non-trivial algorithms
that we propose to compute the bounds (see the appendix
for algorithmic details), and they are the game changers that
enable TEAR-1 to be solved highly efficiently. The coun-
terparts of Theorem 1 for CM and TLS are also derived,
but they lead to less efficient branch-and-bound solvers than
what we proposed for TEAR-1. We consolidate this claim
with theoretical and numerical insights in Sec. 2.4.

2.4. TEAR Versus CM and TLS

Previously, in Sec. 2.3, we advocated performing branch-
and-bound with tears. We now validate this design choice.
Specifically, we follow exactly the same logic as in Secs. 2.2
and 2.3 to derive branch-and-bound methods for CM and
TLS, and then compare them to TEAR. Again, at the heart
of the derivation is to compute the upper and lower bounds
(cf ., Sec. 2.3). Some details are given below.
TEAR Versus CM. Recall that TR-DE [13] is a branch-
and-bound method consisting of searching a 3-dimensional
space to optimize some consensus maximization objective
comparable to TEAR-1, with upper and lower bounds com-
puted in O(N) time. However, similarly in Sec. 2.3, one
could optimize the same objective by searching instead in
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a 2-dimensional space, with upper and lower bounds com-
putable in O(N logN) time; this is in fact the core idea of
the recent works [36, 75] to accelerate branch-and-bound.
We contextualize this idea by implementing our version to
solve a consensus maximization counterpart of TEAR-1:

max
r1∈S2,t1∈R

N∑
i=1

1
(
|yi1 − r⊤1 xi − t1| ≤ ξi1

)
. (CM-1)

Fig. 3 visualizes the differences between these methods:
TR-DE is 5 times slower than CM-1 as CM-1 searches a
space of 1 dimension lower; CM-1 is more than 5 times
slower than TEAR-1 as TEAR-1 better leverages numerical
values of the residuals than the binary truncation of CM-1.
Finally, Fig. 3 shows TEAR-1 has higher F1-scores, mean-
ing that TEAR-1 is more robust to outliers than CM-1.
Remark 2. Since TR-DE [13] was implemented with a sin-
gle thread, experiments in Sec. 2.4 (Figs. 3 and 4) all use
a single thread for fair comparison. In experiments of all
other sections, we use a parallel implementation of TEAR
that is multiple times faster than the single thread version.

TEAR Versus TLS. Similarly, we solve via branch-and-
bound the TLS counterpart of TEAR-1:

min
r1∈S2,t1∈R

N∑
i=1

min
{
(yi1 − r⊤1 xi − t1)

2, ξ2i1
}
. (TLS-1)

To our knowledge, branch-and-bound algorithms have not
been applied to TLS-1, so we derive lower and upper
bounds for such implementation and specify the computa-
tion complexities below (compare this to Theorem 1):

Proposition 1. At each iteration of the branch-and-bound
method for solving TLS-1, we can compute an upper bound
in O(N logN) time via solving

min
t1∈R

N∑
i=1

min
{
(yi1 − r⊤1 xi − t1)

2, ξ2i1
}
, (5)

and we can compute a lower bound in O(N2) time.

Remark 3. [68, Algorithm 2] is not necessarily optimal to
(5) as it only finds the least-squares solution at a maximum
consensus set, while an O(N logN) optimal algorithm was
described in [38]. Computing lower bounds entails solving
a harder problem than (5) (e.g., compare (3) and (4)), and
for the moment we are only able to do so in O(N2) time.

Fig. 4 compares the efficiency of solving TEAR-1 and
TLS-1. Fig. 4a shows TLS-1 takes slightly fewer itera-
tions than TEAR-1, meaning that the bounds for TLS-1 are
slightly tighter. On the other hand, since computing bounds
for TLS-1 is more time-consuming (cf . Theorem 1, Propo-
sition 1), the overall running time of TLS-1 grows more
rapidly than TEAR-1 as the number of point pairs increases.
Finally, Fig. 4b shows TLS-1 and TEAR-1 have similar F1-
scores, suggesting they are comparable in rejecting outliers.

(a) (b)

Figure 4. Solve TEAR-1 and TLS-1 via branch-and-bound on ran-
dom, synthetic, noisy data (Sec. 2.4). Outlier ratio: 99%. 30 trials.

3. Standard Experiments

Here we conduct experimental comparisons that are stan-
dard as in prior works. These include experiments on syn-
thetic data (Sec. 3.1) and real datasets (Sec. 3.2).

Setup. For a fair comparison, we evaluate all methods on
a laptop equipped with an Intel Core i7-10875H@2.3 GHz
and 16GB of RAM. For methods implemented in PyTorch,
we slightly adjust their codes so that they run on CPUs;
note that this typically only affects running times, not accu-
racy. We run all methods in Python or through the provided
Python interfaces of the C++ codes. Since the Python and
C++ codes of MAC [76] behave differently, we compare
both versions, namely MAC (Python) and MAC (C++). The
maximum number of iterations for RANSAC is set to 100k.

Evaluation Metrics. Following [3, 13, 14], we use 5 met-
rics for evaluation: Registration Recall (RR), F1-score (F1),
Rotation Error (RE), Translation Error (TE), and Time. RR
denotes the percentage of successful registration where the
RE and TE are below specific thresholds, e.g., (15◦, 30cm)
for 3DMatch dataset, (5◦, 60cm) for KITTI dataset, and
(3◦, 50cm) for ETH dataset. F1 denotes the harmonic mean
of precision and recall [3]. Finally, we report the peak mem-
ory consumption of an algorithm during its execution.

3.1. Experiments on Synthetic Data

Data Generation. Following [14, 46], we generate syn-
thetic point pairs as follows. First, we randomly sample N
points {xi}Ni=1 from N (0, I3). Then, we apply a random
rotation R∗ and translation t∗ to each xi and add some
Gaussian noise ϵi ∼ N (0, σ2I3) of variance σ = 0.01;
that is yi = R∗xi + t∗ + ϵi. This gives N (noisy) inlier
pairs {xi,yi}Ni . Next, to generate outliers, we replace a
fraction of yi’s with random Gaussian points sampled from
N (0, τ2I3), where τ is set to 1.67. Almost all methods re-
quire an inlier threshold ξi, and we set it to 5.54σ.

Results. TEAR is shown to be scalable (Fig. 1), accurate
(Fig. 5a, Fig. 5b) and more efficient in most cases (Fig. 5c).
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(a) (b)

(c)

Figure 5. Synthetic Experiments (Sec. 3.1). N = 10000, 30 trials.

3.2. Experiments on Real Data

Here we report experimental results on three real-world
datasets, namely 3DMatch (indoor scenes) [74], KITTI
(outdoor scenes) [22], and ETH (outdoor, large-scale) [60].

3DMatch. We follow [14, 68] to use 3DSmoothNet [23]
as the feature descriptor for the 3DMatch dataset [74]. The
results are shown in Tab. 1. Note that MAC (Python) runs
out of the 16GB memory, so we compared its C++ version.

KITTI. Following [3, 76], we use FPFH [56] as the fea-
ture descriptor of the KITTI dataset [22]. In Tab. 2, MAC
(Python) works well, and MAC (C++) runs out of memory.

ETH. Following [36, 60], we use ISS [77] and FPFH [56]
as feature descriptors for the ETH dataset. This time, in
Tab. 3, more methods run out of memory including both ver-
sions of MAC and two deep learning methods, PointDSC
and VBReg. This is because, after feature matching, there
are still a few relatively large point clouds (e.g., N > 10k)
with high outlier ratios, making registration challenging.

Analysis of Results. That MAC often runs out of memory
is not quite surprising, as it stores all maximal cliques be-
sides the consistency graph. In theory, in the worst case, a
graph can have as many as 3N/3 maximal cliques [42, 61].
In our experiments of Tab. 2, MAC (Python) typically pro-
duces more than 104 cliques, and in Tab. 1, MAC (C++)
typically produces more than 105, or occasionally a few
million, maximal cliques (N = 5000 in both tables).

That TR-DE [13] is often slower than TEAR validates
our design and implementation again: Even though TR-
DE is also a branch-and-bound method (similarly to TEAR),
TEAR is up to 70 times faster than TR-DE on real data.

That other methods perform really well—once given the
memory they demand—might have been established knowl-

Table 1. Results on 3DMatch (3DSmoothNet descriptors).

Method RR(%)↑ F1(%)↑ RE(◦)↓ TE(cm)↓ Time(s)↓
RANSAC [21] 92.30 87.95 2.59 7.91 2.52
TEASER++ [68] 92.05 87.42 2.23 6.62 3.77
SC2-PCR [14] 94.45 89.23 2.19 6.40 4.56
MAC (Python) [76] out-of-memory
MAC (C++) [76] 94.57 89.48 2.21 6.52 6.89
PointDSC [3] 93.65 89.07 2.17 6.75 5.28
VBReg [28] 37.09 18.07 6.15 15.65 8.07
TR-DE [13] 91.37 86.99 2.71 7.62 12.76
TEAR (Ours) 94.52 89.65 2.06 6.55 1.26

Table 2. Results on the KITTI dataset (FPFH descriptors).

Method RR(%)↑ F1(%)↑ RE(◦)↓ TE(cm)↓ Time(s)↓
RANSAC [21] 95.68 81.23 1.06 23.19 3.79
TEASER++ [68] 97.84 93.73 0.43 8.67 0.36
SC2-PCR [14] 99.64 94.26 0.39 8.29 4.33
MAC (Python) [76] 94.95 89.52 0.52 10.26 4.53
MAC (C++) [76] out-of-memory
PointDSC [3] 98.20 92.71 0.57 8.67 6.20
VBReg [28] 98.92 92.69 0.45 8.41 8.20
TR-DE [13] 96.76 87.20 0.90 15.63 8.66
TEAR (Ours) 99.10 93.85 0.39 8.62 0.25

Table 3. Results on the ETH dataset (ISS + FPFH descriptors).

Method RR(%)↑ F1(%)↑ RE(◦)↓ TE(cm)↓ Time(s)↓
RANSAC [21] 69.05 65.17 0.44 10.31 6.12
TEASER++ [68] 96.43 92.23 0.29 5.84 0.85
SC2-PCR [14] 91.67 90.34 0.32 6.25 12.93
MAC (both) [76] out-of-memory
PointDSC [3] out-of-memory
VBReg [28] out-of-memory
TR-DE [13] 88.09 73.40 0.62 16.49 7.57
TEAR (Ours) 96.43 93.14 0.25 5.71 0.38

edge in the literature (e.g., TEASER++ [68], PointDSC [3],
SC2-PCR [14]). But the drawback of their unscalability
manifests itself when memory is insufficient or point clouds
encountered are huge; we re-emphasize this point in Sec. 4.

Overall, on the three standard datasets, we find TEAR to
be competitive in registration accuracy, while it runs a few
times faster than the second fastest method.

4. Huge-Scale Experiments

Inspired by [51], here we perform huge-scale experiments
using 5 objects (Armadillo, Happy Buddha, Asian Dragon,
Thai Statue, Lucy) from the Stanford 3D scanning dataset
[19]. The number of points in each object ranges from 105

to 107. For each object, we resize it so that all points lie in
[0, 1]3 and treat it as the source point cloud {xi}Ni=1. We use
the same procedure of Sec. 3.1 to generate the target point
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Table 4. Experiments with huge-scale point pairs at extremely high outlier ratios on the Stanford 3D scanning dataset [19]. We report
rotation errors in degrees | translation errors in centimeter | running times in seconds of various methods. Average over 20 trials.

Point Cloud Name Armadillo Happy Buddha Asian Dragon Thai Statue Lucy
# of Input Point Pairs (Outlier Ratio) 105 (99%) 5× 105 (99.2%) 106 (99.4%) 4× 106 (99.6%) 107 (99.8%)

Consistency Graph-based [14, 68, 76] out-of-memory
Deep Learning-based [3, 28] out-of-memory

RANSAC [21] 53.1 | 23.1 | 95.9 30.7 | 15.8 | 582 36.5 | 22.7 | 1179 37.1 | 24.6 | 6125 ≥ 8 hours
FGR [78] 57.1 | 39.1 | 2.48 84.1 | 23.7 | 19.3 62.1 | 19.7 | 39.8 79.7 | 15.2 | 175 88.9 | 11.5 | 449

GORE [46] 0.67 | 0.52 | 6592 ≥ 12 hours
TR-DE [13] 36.5 | 16.9 | 4658 ≥ 9 hours
TEAR (Ours) 0.51 | 0.25 | 12.7 0.23 | 0.13 | 119 0.14 | 0.12 | 356 0.11 | 0.08 | 1013 0.07 | 0.06 | 1972

106 (99.4%)
RANSAC [21]

51.6◦ | 18.6cm | 1263s
TEAR (Ours)

0.13◦ | 0.11cm | 289s

107 (99.8%)
FGR [78]

91.7◦ | 15.1cm | 514s
TEAR (Ours)

0.08◦ | 0.05cm | 1813s

Figure 6. Column 1: input point pairs (Top: Asian Dragon, Bot-
tom: Lucy). Column 2: Outputs of RANSAC [21] and FGR [78]
(Format: rotation error | translation error | running time). Column
3: TEAR succeeds in registration for challenging scenarios.

cloud {yi}Ni=1 with a controlled number of random outliers.
Tab. 4 shows the consistency graph methods and deep

learning methods are unscalable, RANSAC [21] and FGR
[78] are inaccurate at extreme outlier ratios, GORE [46] and
TR-DE [13] are inefficient. Fig. 6 visualizes the results in
Tab. 4 for Asian Dragon and Lucy, where TEAR is the only
method that aligns the huge-scale point clouds accurately.

Inasmuch as downsampling the point clouds would en-
able other methods to be applied, we perform such an ex-
periment for these methods to compare with TEAR. In par-
ticular, we take the 107 point pairs generated from Lucy and
downsample them to 104 point pairs, which are given as in-
puts to other methods. In Fig. 7, the rotation errors of these
methods are large (the translation errors are shown in the ap-
pendix). Indeed, downsampling would throw away inliers,
making the subsequent registration problem more challeng-
ing. In fact, in experiments of Fig. 7b, we found it was not
just that the total number of inliers inevitably decreased af-
ter downsampling; the outlier ratio could even grow from
95% to averagely 98.17%. In contrast, since TEAR is ca-
pable of operating the original point cloud, it delivers lower

(a) (b)
Figure 7. Average rotation errors of other methods in Tab. 4 taking
as inputs the 104 points downsampled from Lucy that originally
has 107 point pairs (Fig. 7a: 99.8% outliers; Fig. 7b: 95% out-
liers). TEAR runs on the original 107 input point pairs. 20 trials.

errors than other methods that perform downsampling.

5. Conclusion and Future Work

In the paper, we showed that TEAR stands on the simple
principle of branch-and-bound, stands with state-of-the-art
methods at the same level of accuracy, stands in contrast to
other slower branch-and-bound methods, and stands out as
a scalable method for outlier-robust 3D registration.

We found it exciting to exhibit a case where branch-and-
bound, a technique famously known for its global optimal-
ity guarantees and infamously known for its being slow,
can actually be competitive in outlier-robust 3D registra-
tion. The key ideas of achieving so include using Truncated
Entry-wise Absolute Residuals (TEAR) as the robust loss,
deriving tight upper and lower bounds based on TEAR, and
engineering an efficient implementation. We look forward
to extending these ideas to other geometric vision problems,
for example, absolute pose estimation (2D-3D registration).
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