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Abstract

The Diffusion model, a prevalent framework for image
generation, encounters significant challenges in terms of
broad applicability due to its extended inference times and
substantial memory requirements. Efficient Post-training
Quantization (PTQ) is pivotal for addressing these issues in
traditional models. Different from traditional models, diffu-
sion models heavily depend on the time-step t to achieve
satisfactory multi-round denoising. Usually, t from the fi-
nite set {1,...,T} is encoded to a temporal feature by a
few modules totally irrespective of the sampling data. How-
ever, existing PTQ methods do not optimize these modules
separately. They adopt inappropriate reconstruction targets
and complex calibration methods, resulting in a severe dis-
turbance of the temporal feature and denoising trajectory,
as well as a low compression efficiency. To solve these,
we propose a Temporal Feature Maintenance Quantization
(TFMQ) framework building upon a Temporal Information
Block which is just related to the time-step t and unrelated
to the sampling data. Powered by the pioneering block de-
sign, we devise temporal information aware reconstruction
(TIAR) and finite set calibration (FSC) to align the full-
precision temporal features in a limited time. Equipped with
the framework, we can maintain the most temporal informa-
tion and ensure the end-to-end generation quality. Exten-
sive experiments on various datasets and diffusion models
prove our state-of-the-art results. Remarkably, our quanti-
zation approach, for the first time, achieves model perfor-
mance nearly on par with the full-precision model under
4-bit weight quantization. Additionally, our method incurs
almost no extra computational cost and accelerates quan-
tization time by 2.0x on LSUN-Bedrooms 256 x 256 com-
pared to previous works. Our code is publicly available at
https://github.com/ModelTC/TFMQ-DM.

*Equal Contribution.
TWork done during an internship at SenseTime Research.
fCorresponding Author.

1. Introduction

Generative modeling plays a crucial role in machine learn-
ing, particularly in applications like image [13, 14, 17, 38,
441, voice [37, 42], and text synthesis [2, 51]. Diffusion
models have showcased impressive capabilities in produc-
ing high-quality samples across diverse domains. In com-
parison to generative adversarial networks (GANSs) [8] and
variational autoencoders (VAEs) [20], diffusion models suc-
cessfully sidestep issues such as model collapse and pos-
terior collapse, resulting in a more stable training process.
However, the substantial computational cost poses a criti-
cal bottleneck hampering the widespread adoption of diffu-
sion models. Furthermore, the computational cost for diffu-
sion models can be attributed to two primary factors. First,
these models typically require hundreds of denoising steps
to generate images, rendering the procedure considerably
slower than that of GANs. Prior efforts [21, 27, 29, 44]
have addressed this challenge by seeking shorter and more
efficient sampling trajectories, thereby reducing the num-
ber of denoising steps. Second, the substantial network ar-
chitecture of diffusion models demands considerable time
and memory resources, particularly for foundational mod-
els pre-trained on large-scale datasets, e.g., LDM [38] and
Stable Diffusion. Our work aims to tackle the latter chal-
lenge, focusing on the compression of diffusion models.
Quantization is currently the most widely used
method [1, 5, 7, 31, 32] for compressing models by map-
ping high-precision floating-point numbers to low-precision
numbers. Among different quantization methods, Post-
training quantization (PTQ) [15, 31, 47] incurs lower over-
head and is more user-friendly without the need for re-
training or fine-tuning. While PTQ on conventional mod-
els has undergone extensive study [7, 24, 31, 47], its ap-
plication to diffusion models has shown huge performance
degradation, especially under low-bit settings. For instance,
Q-Diffusion [23] exhibits severe accuracy drop on some
datasets [48] under 4-bit quantization. We believe the rea-
son they fail to achieve better results is that they all overlook
the sampling data independence and uniqueness of tempo-
ral features, which are generated from time-step ¢ through a
few modules, used to control the denoising trajectory in dif-
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fusion models. Furthermore, we observe that temporal fea-
ture disturbance significantly impacts model performance
in the aforementioned methods.

To tackle temporal feature disturbance, we first find that
the modules generating temporal features are independent
of the sampling data and define the whole modules as the
Temporal Information Block. All existing methods do not
separately optimize this block during the quantization pro-
cess, causing temporal features to overfit to limited calibra-
tion data. On the other hand, since the maximum time-step
for denoising is a finite positive integer, the temporal feature
and the activations during its generation form a finite set.
The optimal approach is to optimize each element in this
set individually. Based on these observations and analyses,
we propose a novel quantization reconstruction approach,
temporal information aware reconstruction (TIAR), specif-
ically optimizing for temporal features. It aims to reduce
temporal feature loss as the optimization objective while
isolating the network’s components related to sampled data
from the generation of temporal features during calibration.
Furthermore, we also introduce a calibration strategy, finite
set calibration (FSC), for the finite set of temporal features
and activations during its generation. This strategy em-
ploys different quantization parameters for activations cor-
responding to different time-steps. Moreover, the calibra-
tion speed of this method is faster than existing mainstream
methods [1, 5], for example, we speedup quantization time
by 2.0x on LSUN-Bedrooms 256 x 256 dataset, yet the
strategy incurs negligible inference and storage overhead.
The overview of our framework can be seen in Fig. 1. In
summary, our contributions are as follows:

e We discover that existing quantization methods suffer
from temporal feature disturbance, disrupting the denois-
ing trajectory of diffusion models and significantly affect-
ing the quality of generated images.

* We reveal that the disturbance comes from two aspects:
inappropriate reconstruction target and unaware of finite
activations. Both inducements ignore the special charac-
teristics of time information-related modules.

* An advanced framework (TFMQ-DM) is proposed,
consisting of temporal information aware reconstruc-
tion (TIAR) for weight quantization and finite set cali-
bration (FSC) for activation quantization. Both are based
on a Temporal Information Block specially devised for
diffusion models.

» Extensive experiments on various datasets show that our
novel framework achieves a new state-of-the-art result in
PTQ of diffusion models, especially under 4-bit weight
quantization, and significantly accelerates quantization
time. For some hard tasks, e.g., CelebA-HQ 256 x 256,
our method reduces the FID score by 6.71 (images in ap-
pendix).

2. Related Work
2.1. Efficient Diffusion Models

There are diverse perspectives to accelerate the inference of
diffusion model, e.g., retraining-based model design [3, 6,
30, 52] and retraining-free sampler strategy [21, 44, 50].
However, the retraining-based method proves resource-
intensive and time-consuming. The efficient samplers can
reduce sampling iterations but still suffer from diffusion
models’ extensive parameters and computational complex-
ity. In this paper, we focus on diminishing the time and
memory overhead of the single-step denoising process us-
ing low-bit quantization in a training-free manner, a method
orthogonal to previous speedup techniques.

2.2. Model Quantization

Quantization is a predominant technique for minimizing
storage and computational costs. It can be categorized
into quantization-aware training (QAT) [7, 16, 28, 49, 53]
and post-training quantization (PTQ) [15, 24, 26, 31, 47].
QAT requires intensive model training with substantial data
and computational demands. Correspondingly, PTQ com-
presses models without re-training, making it a preferred
method due to its minimal data requirements and easy de-
ployment on real hardware. In PTQ, high-precision values
are mapped into discrete levels using uniform quantization
expressed as:

F= (5] 4202 1), M

where = represents floating-point data, & is the quantized
value, s is the quantization step size, z is the zero offset,
and b is the target bit-width. The clamp function ®(-) clips
the rounded value | 2] 4 z within the range of [0,2° — 1].
However, naive quantization may lead to accuracy degra-
dation, especially for low-bit quantization. Recent stud-
ies [15, 24, 31, 46, 47] have explored innovative strategies
based on reconstruction to preserve model performance af-
ter low-bit quantization.

In contrast, the iterative denoising process in diffusion
models presents new challenges for PTQ in comparison
to traditional models. PTQ4DM [41] represents the ini-
tial attempt to quantize diffusion models to 8-bit, albeit
with limited experiments and lower resolutions. Con-
versely, Q-Diffusion [23] achieves enhanced performance
and is evaluated on a broader dataset range. Moreover,
PTQD [10] eliminates quantization noise through corre-
lated and residual noise correction. Notably, traditional
single-time-step PTQ calibration methods are unsuitable for
diffusion models due to significant activation distribution
changes with each time-step [23, 41, 43, 45]. ADP-DM [45]
proposes group-wise quantization across time-steps for dif-
fusion models, and TDQ [43] introduces distinct quantiza-
tion parameters for different time-steps. However, all of the
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above works overlook the specificity of temporal features.
To address temporal feature disturbance in the aforemen-
tioned works, our study delves into the inducements of the
phenomenon and introduces a novel reconstruction and cal-
ibration framework, significantly enhancing quantized dif-
fusion model performance.

3. Preliminaries

Diffusion models. Diffusion models [14, 44] iteratively
add Gaussian noise with a variance schedule 31, ..., 37 €
(0,1) to data xg ~ ¢(x) for T times as sampling pro-
cess, resulting in a sequence of noisy samples x;,...,Xr.
In DDPMs [14], the former sampling process is a Markov
chain, taking the form:

=

(I(X1:T|X0) = tle(Xt|Xt—1), 2
Q(Xt\Xt—l) = N(Xt; \/OTtXt—la @I),

where a; = 1 — ;. Conversely, the denoising process
removes noise from a sample from Gaussian noise X7 ~
N(0,1) to gradually generate high-fidelity images. Nev-
ertheless, due to the unavailability of the true reverse con-
ditional distribution ¢(x;—1|x¢), diffusion models approx-
imate it via variational inference by learning a Gaussian
distribution py (x;—1[x¢) = N (x¢—15 pg (¢, 1), Do (x4, 1)),
the p, can be derived by reparameterization trick as fol-

lows:
L (x-
- — t— T
Vag V19— oy

where @; = []'_, o and €4(-) is a noise estimation model.
The variance ¥y (x;,t) can be either learned [33] or fixed
to a constant schedule [14] o,. When employing the latter
method, x;_ can be expressed as:

Mo (Xs,t) = EG(Xt»t)) , 3

1
Xt_1 = \/77 (Xt - f@ee(xtato +oz, (4

where z ~ N (0,I).

Reconstruction on diffusion models. UNet [39], the pre-
dominant model employed as €y(-) in Eq. 4 to predict Gaus-
sian noise, can be divided into blocks that incorporate resid-
ual connections (such as Residual Bottleneck Blocks or
Transformer Blocks [35]) and the remaining layers. Nu-
merous PTQ approaches for diffusion models are grounded
in layer/block-wise reconstruction [10, 23, 41, 43] to obtain
optimal quantization parameters. For example, in the Resid-
ual Bottleneck Block, this approach typically minimizes the
following loss function as its optimization objective:

Li = 11£:0) = FOlEs (5)

where || - ||% denotes the Frobenius norm. The function
fi() represents the 7" Residual Bottleneck Block, and 2 ()
is its quantized counterpart. Furthermore, in the ensuing
sections, we use n to denote the total number of Residual
Bottleneck Blocks in a single diffusion model.

Temporal feature in diffusion models. Seeing from Fig. 1
(a), time-step t is encoded with time embed' and then
passes through the embedding layer? in each Resid-
ual Bottleneck Block, resulting in a series of unique acti-
vations. In this paper, we denote these activations as tem-
poral features. Notably, temporal features are independent
of x; and unrelated to other temporal features from differ-
ent time-steps. To enhance clarity, we simplify our nota-
tion as follows: we represent time embed as h(:), the
embedding layer in the i Residual Bottleneck Block
as g;(-), and denote the i temporal feature at time-step ¢ as
emb, ;. Moreover, as illustrated in Fig. 1 (a), the relation-
ship is explicitly expressed by the equation:

Temporal feature : emb, ; = g;(h(t)) (6)

Additionally, we have found that temporal features play
a crucial role in the context of the diffusion model, hold-
ing unique and substantial physical implications. These fea-
tures encompass temporal information that signifies the cur-
rent image’s temporal position along the denoising trajec-
tory. Within the UNet structure, each time-step transforms
into these temporal features, thereby controlling the denois-
ing trajectory by applying them to the features of images
generated at each iteration.

4. TFMQ for Diffusion Models

We present our novel PTQ framework in this section. We
first observe temporal disturbance in previous methods in
Sec. 4.1 and then analyze the inducements in Sec. 4.2. Fi-
nally, we propose our solutions in Sec. 4.3.

4.1. Temporal Feature Disturbance

Based on Sec. 3, we investigate the impact of previous
PTQ works on temporal features, and we identify the phe-
nomenon of temporal feature disturbance, which signifi-
cantly deteriorates the quality of generated images.

Temporal feature error. We thoroughly analyze tempo-
ral feature variations before and after the quantization of
embedding layers and time embed in the Stable
Diffusion model (' = 50,7 = 11). Prior to this analy-
sis, we introduce the temporal feature error as defined by:

o —

cos(emby ;,emb; ;), )

IPyTorch time embed implementation in diffusion models.
2PyTorch embedding layer implementation in diffusion models.
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Figure 1. Overview of the proposed Temporal Feature Maintenance Quantization. (a) Temporal Feature emb; ;, belonging to a finite
set representing temporal information, has been overlooked in previous works due to inappropriate reconstruction targets (box with a
solid line). (b) This oversight leads to a severe disturbance for emb; ; and results in the mismatch of crucial temporal information for
the diffusion model’s generation, causing a deviation in the denoising trajectory and a significant drop in accuracy. (c) Based on these
analyses, we introduce a Temporal Information Block that exclusively correlates with the time-step ¢. Leveraging this x;-unrelated block,
we enable Temporal Information Aware Reconstruction and Finite Set Calibration (utilizing the finite number of ¢). This approach achieves
the maintenance of temporal features and yields state-of-the-art results.

where cos(-) denotes cosine similarity, and eEb\m signi-
fies the temporal feature corresponding to emby ; in the
quantized model. As illustrated in Fig. 2 (Left), quantiza-
tion induces notable temporal feature errors. We term this
phenomenon, characterized by substantial temporal feature
errors within diffusion models, as temporal feature distur-
bance.

Temporal information mismatch. Temporal feature dis-
turbance alters the original embedded temporal informa-
tion. Specifically, emb, ; is intended to correspond to time-
step t. However, due to significant errors, the quantized

model’s emb, ; is no longer accurately associated with ¢,
resulting in what we term as temporal information mis-
match:

—

t < emb;;, t <+ emby,;.

(®)
Furthermore, as depicted in Fig. 2 (Right), we even observe
a pronounced temporal information mismatch. Specifically,
the temporal feature generated by the quantized model at
time-step ¢ exhibits a divergence from that of the full-
precision model at the corresponding time-step, Instead, it
tends to align more closely with the temporal feature corre-
sponding to ¢ + ;, importing wrong temporal information
from t + 6.

Trajectory deviation. Temporal information mismatch de-
livers wrong temporal information, therefore, causing a de-
viation in the corresponding temporal position of the image
within the denoising trajectory, ultimately leading to:

Xt # Xt—1,

€))

where we apply disrupted temporal features to the model.
Evidently, as the deviation in the denoising trajectory ac-
cumulates with the increase in the number of denoising
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Figure 2. (Left) Temporal feature disturbance. The inflection
points serve as indicators of temporal feature errors at differ-
ent time-steps, and they highlight the significant phenomenon of
temporal feature disturbance. (Right) Temporal information mis-
match. The coordinates of the inflection points on the blue curve
can denoted as (¢,t + d¢,;). It indicates emby 5, ;i exhibits the

highest similarity with emby ;.

iterations, the final generated image struggles to align
with xg. This evolution is illustrated in Fig. 3, where
we maintain UNet excluding embedding layers and
time embed in full precision.

4.2. Inducement Analyses

In this section, we explore the two inducements of temporal
feature disturbance. For the purpose of clarity, in the subse-
quent sections, “reconstruction” specifically points to slight
weight adjustment for minimal quantization error, while
“calibration” specifically refers to activation calibration.

Inappropriate reconstruction target. Previous PTQ
works [10, 23, 43] have achieved remarkable progress
on diffusion models. However, these existing methods
overlook the temporal feature’s independence and its dis-
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settings and prompt: A man in the snow on a snow board. We represent {emby ; };=o

respectively. Additionally, we denote x; as x; in the context of the quantized diffusion model. It is noteworthy that, in the quantized
model employed here, to showcase the impact of temporal features, only the layers in Temporal Information Block are quantized and the
components unrelated to the generation of temporal features are maintained in full precision.

tinctive physical significance. During their reconstruc-
tion processes, there was a lack of optimization for the
embedding layers; instead, a Residual Bottleneck
Block of coarser granularity was selected as the reconstruc-
tion target. This method involves two potential factors caus-
ing temporal feature disturbance:

* Optimize the objective as expressed in Eq. 5 to decrease
the reconstruction loss of Residual Bottleneck Block, as
opposed to direct reduction of temporal feature loss.

* During backpropagation of the reconstruction process,
embedding layers independent from x; are affected
by x¢, resulting in an overfitting scenario on limited cali-
bration data.

To further validate our analyses, we respectively eval-
uate the FID [12] and sFID [40] for this reconstruction
method, e.g., BRECQ [24] and the approach where we
freeze the parameters of the embedding layers dur-
ing the reconstruction of the Residual Bottleneck Block,
initializing the embedding layers solely through Min-
max [32] for comparison. As shown in Tab. 1, the
Freeze strategy exhibits better results, which verify that
embedding layers serve as their own optimization ob-
jective and maintain their independence of x; can signifi-
cance mitigate temporal feature disturbance, especially at
low-bit.

Table 1. FID and sFID on LSUN-Bedrooms 256 x 256 [48] for
LDM-4 with 50000 sampling images. Prev represents BRECQ.
Freeze denotes our trial.

Methods  Bits (W/A)  FID| sFID}

Full Prec. 32/32 2.98 7.09

Prev 8/8 7.51 12.54
Freeze 8/8 576 (-1.75)  8.42 (-4.12)
Prev 4/8 9.36 22.73

Freeze 4/8 7.08 (-2.28)  16.82 (-5.91)

Unaware of finite activations within /() and g;(-). We
observe that, given 7" as a finite positive integer, the set
of all possible activation values for embedding layers
and time embed is finite and strictly dependent on time-
steps. Within this set, activations corresponding to the same
layer display notable range variations across different time-
steps (refer to the appendix). Previous methods [43, 45]
mainly focus on finding the optimal calibration method for
x;-related network components. Moreover, akin to the first
inducement, their calibration is directly towards the Resid-
ual Bottleneck Block, which proves suboptimal (refer to the
appendix). However, based on the finite activations, we
can employ calibration methods, especially for these time
information-related activations, to better adapt to their range
variations.

4.3. Temporal Feature Maintenance

To address the problem of temporal feature disturbance, we
design a novel Temporal Information Block to maintain the
temporal features. Based on the block, Temporal Informa-
tion Aware Reconstruction and Finite Set Calibration are
proposed to solve the two inducements analyzed above.

Temporal Information Block. Based on the inducements,
it is crucial to meticulously separate the reconstruction
and calibration process for each embedding layer and
Residual Bottleneck Block to enhance quantized model per-
formance. Considering the unique structure of the UNet, we
consolidate all embedding layers and time embed
into a unified Temporal Information Block, which can be
denoted as {g;(h(-)) }i=o,....n (see Fig. 1 (c)).

Temporal information aware reconstruction. Based on
the Temporal Information Block, we propose Temporal in-
formation aware reconstruction (TIAR) to tackle the first in-
ducement. The optimization objective for the block during
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the reconstruction process is as follows:

n

Lrrar =Y lg:s(h(®) = Gh)7,  (10)

=0

where ﬁ() and g;(+) are quantized versions of h(-) and g(-),
respectively. With this reconstruction, weights are adjusted
to pursue a minimal disturbance for temporal features.

Finite set calibration. To address the challenge posed by
the wide span of activations within a finite set for the sec-
ond inducement, we propose Finite Set Calibration (FSC)
for activation quantization. This strategy employs 1" sets
of quantization parameters for every activation within all
the embedding layers and time embed, such as
{(sT,21),- .., (81,21)} for activation x. In time-step ¢, the
quantization function for the x can be expressed as:

X

&:@({ W+zt,0,2b—1)- (11)

St

To be noted, the calibration target is also aligned with the
output of the Temporal Information Block. For a more spe-
cific estimation method of activation ranges, since the solu-
tion space within the finite set is limited, we find the Min-
max [32] method can achieve satisfactory results with high
efficiency (more evidence in Sec. 5.3).

5. Experiments
5.1. Implementation details

Models and datasets. In this section, we conduct image
generation experiments to evaluate the proposed TFMQ-
DM framework on various diffusion models: pixel-space
diffusion model DDPM [14] for unconditional image gen-
eration, latent-space diffusion model LDM [38] for un-
conditional image generation and class-conditional image
generation. We also apply our work to Stable Diffusion-
vl-4 for text-guided image generation. In our experi-
ments, We use seven standard benchmarks: CIFAR-10
32 x 32 [22], LSUN-Bedrooms 256 x 256 [48], LSUN-
Churches 256 x 256 [48], CelebA-HQ 256 x 256 [18],
ImageNet 256 x 256 [4], FFHQ 256 x 256 [19] and MS-
COCO [25].

Quantization settings. We use channel-wise quantization
for weights and layer-wise quantization for activations, as
it is a common practice. In our experimental setup, we em-
ploy BRECQ [24] and AdaRound [31]. Drawing from em-
pirical insights derived from conventional model quantiza-
tion practices [9, 36], we maintain the input and output lay-
ers of the model in full precision. Calibration sets, integral
to our methodology, are generated through full-precision

diffusion models, mirroring the approach outlined in Q-
Diffusion [23]. Moreover, in weight quantization, we re-
construct quantized weights for 20k iterations with a mini-
batch size of 32 for DDPM and LDM, and 8 for Stable Dif-
fusion. In activation quantization, we utilize EMA [16] to
estimate the ranges of activations with a mini-batch size of
16 on all models. More details can be found in the appendix.

Evaluation metrics. For each experiment, we evaluate
the performance of diffusion models with Fréchet Inception
Distance (FID) [12]. In the case of LDM and Stable Diffu-
sion experiments, we also include sFID [40], which better
captures spatial relationships than FID. For ImageNet and
CIFAR-10 experiments, we additionally provide Inception
Score (IS) [40] as a reference metric. Further, in the con-
text of Stable Diffusion experiments, we extend our eval-
uation to include the compatibility of image-caption pairs,
employing the CLIP score [11]. The ViT-B/32 is used as
the backbone when computing the CLIP score. To ensure
consistency in the reported outcomes, all results are derived
from our implementation or from other papers, where ex-
periments are conducted under conditions consistent with
ours. More specifically, in the evaluation process of each
experiment, we sample 50k images from DDPM or LDM,
or 30k images from Stable-Diffusion. All experiments are
conducted utilizing one H800 GPU and implemented with
the PyTorch framework [34].

5.2. Main Results

Unconditional image generation. In the experiments con-
ducted on the LDM, we maintain the same experimental set-
tings as presented in [38], including the number of steps,
variance schedule, and classifier-free guidance scale (de-
noted by eta and cfg in the following, respectively). As
shown in Tab. 2, the FID performance differences rela-
tive to the full precision (FP) model are all within 0.7 for
all settings. Specifically, on the CelebA-HQ 256 x 256
dataset, our method exhibits a FID reduction of 6.71 and
a sFID reduction of 6.60 in the w4a8 setting compared to
the current state-of-the-art (SOTA). It is noticeable that ex-
isting methods, whether in 4-bit or 8-bit, show significant
performance degradation when compared to the FP model
on face datasets like CelebA-HQ 256 x 256 and FFHQ
256 x 256, whereas our TFMQ-DM shows almost no perfor-
mance degradation compared to the FP model. Importantly,
our method achieves significant performance improvement
on the LSUN-Bedrooms 256 x 256 in the w4a8 setting,
with FID and sFID reductions of 2.26 and 7.51 compared
to PTQD [10], respectively. Regarding LDM-8 on LSUN-
Churches 256 x 256, we attribute the moderate improve-
ment, compared to other datasets. We believe that the use
of the LDM-8 model with a downsampling factor of 8§ may
be more quantization-friendly. Existing methods have al-
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Table 2. Quantization results for unconditional image generation with LDM-4 on LSUN-Bedrooms 256, FFHQ 256 and CelebA-HQ
256 x 256, LDM-8 on LSUN-Churches 256 x 256. * represents our implementation according to open-source codes and fmeans directly

rerunning open-source codes.

LSUN-Bedrooms 256 x 256 LSUN-Churches 256 x 256

CelebA-HQ 256 x 256 FFHQ 256 x 256

Methods Bits (W/A)

FIDJ SFIDJ FIDJ SFIDJ FIDJ SFIDJ FIDJ SFIDJ
Full Prec. 32/32 2.98 7.09 4.12 10.89 8.74 10.16 9.36 8.67
PTQ4DM* [41] 4/32 4.83 7.94 4.92 13.94 13.67 14.72 11.74 12.18
Q-Diffusiont [23] 4/32 4.20 7.66 4.55 11.90 11.09 12.00 11.60 10.30
PTQD* [10] 4/32 442 7.88 4.67 13.68 11.06 12.21 12.01 11.12
TFMQ-DM (Ours) 4/32 3.60 (-0.60) 17.61 (-0.05) 4.07 (-0.48) 11.41 (-0.49) 8.74 (-2.32) 10.18 (-1.82) 9.89 (-1.71) 9.06 (-1.24)
PTQ4DM* [41] 8/8 4.75 9.59 4.80 13.48 14.42 15.06 10.73 11.65
Q-Diffusiont [23] 8/8 4.51 8.17 441 12.23 12.85 14.16 10.87 10.01
PTQD [10] 8/8 3.75 9.39 4.89% 14.89* 12.76%* 13.54%* 10.69* 10.97*
TFMQ-DM (Ours) 8/8 3.14 (-0.61) 7.26 (-0.91) 4.01 (-0.40) 10.98 (-1.25)  8.71 (-4.05) 10.20 (-3.34) 9.46 (-1.23) 8.73 (-1.28)
PTQ4DM [41] 4/8 20.72 54.30 4.97* 14.87* 17.08* 17.48* 11.83* 12.91*
Q-Diffusiont [23] 4/8 6.40 17.93 4.66 13.94 15.55 16.86 11.45 11.15
PTQD [10] 4/8 5.94 15.16 5.10% 13.23* 15.47* 17.38* 11.42% 11.43%
TFMQ-DM (Ours) 4/8 3.68 (-2.26) 17.65 (-7.51) 4.14 (-0.52) 11.46 (-1.77) 8.76 (-6.71) 10.26 (-6.60) 9.97 (-1.45) 9.14 (-2.01)

Table 3. Quantization results for unconditional image generation
with class-conditional image generation with LDM-8 on ImageNet
256 x 256.

Table 4. Quantization results for text-guided image generation
with Stable-Diffusion on MS-COCO captions.

; . Methods  Bits (W/A) Ms-coco
Methods  Bits (W/A) mageNet 256 x 256 FID| sFID}  CLIPt
ISt FID| sFID| Full Prec. 32/32  13.15 19.31 0.3146

Full Prec. 32/32  235.64 10.91 7.67 Q-Diffusiont [23]  4/32  13.58 19.50 0.3143
PTQ4DM [41] 432 - B B TFMQ-DM (Ours)  4/32  13.21 (-0.37) 19.03 (-0.47) 0.3144 (+0.0001)
Q-Diffusion* [23] 4/32  213.56 11.87 8.76 Q-Diffusiont [23] 8/8 13.31 20.54 0.3134
PTQDT [10] 4/32  201.78 11.65 9.06 TFMQ-DM (Ours) 8/8 13.09 (-0.22) 19.91 (-0.63) 0.3134 (+0.0000)
PTQ4DM [41] 8/8 161.75 12.59 - TFMQ-DM (Ours) 4/8 13.36 (-1.13) 20.14 (-0.29) 0.3128 (+0.0007)
Q-Diffusion* [23] 8/8 187.65 12.80 9.87
EBID []1)‘13[ o gg i;g-gé( . 1(1)-3‘9‘ s 3‘22 038 Text-guided image generation. In this experiment, we

QDM (Ours) 86 (+11.21) 10.79 (1.15)7.65 (0.38) sample high-resolution images of 512 x 512 pixels with 50
gTS;;RI:;{OE*”P 3 ig 2 1251 1 0.68 1 485 denoising steps and fix cfg to the default 7.5 in Stable Dif-
PTQD[10] 48 21473 10.40 12.63 fusion as the trade-off between sample quality and diver-

TFMQ-DM (Ours) 4/8 221.82 (+7.09) 10.29 (-0.11) 7.35 (-5.28)

ready achieved satisfactory results on this dataset. Nonethe-
less, our method still approaches the performance of the FP
model more closely compared to existing methods. Besides
the experiments on LDM, We have also conducted exper-
iments with DDPM on CIFAR-10 32 x 32, which can be
found in the appendix.

Class-conditional image generation. On the ImageNet
256 x 256 dataset, we employed a denoising process with
20 iterations, setting eta and cfg to 0.0 and 3.0, respectively.
Compared to PTQD, our method achieved a FID reduction
of 1.15 on both w4a32 and w8a8. Simultaneously, in the
w4a8 setting, sFID decreased by 5.28. Under the same
conditions, we observed an improvement of over 7 in IS.
Particularly noteworthy is that, across various quantization
settings, our method consistently achieved lower FID com-
pared to the FP model.

sity. In Tab. 4, compared to the current SOTA Q-Diffusion,
our approach achieves an FID reduction of 1.13 on w4a8.
Simultaneously, our FID on w8a8 and sFID on w4a32 are
even lower than those of the full precision model. How-
ever, existing metrics fail to adequately assess the seman-
tic consistency of generated images. Nevertheless, based
on the images generated in the appendix, our method pro-
duces higher-quality images with more realistic details, bet-
ter demonstrating semantic information. Furthermore, our
generated images closely approximate the effects of FP
model.

5.3. Ablation Study

To evaluate the effectiveness of each proposed method, we
perform a thorough ablation study on the LSUN-Bedrooms
256 x 256 dataset with w4a8 quantization, utilizing the
LDM-4 model with a DDIM sampler, as outlined in Tab. 5.
We begin the assessment with a baseline BRECQ [24],
which shows ineffective in denoising images when oper-
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Table 5. The effect of different methods proposed in the paper on
LSUN-Bedrooms 256 x 256.

Table 6. Different calibration methods for FTFC. We note 1" as
calibration GPU hours in the table.

Methods Bits (W/A) FID] sFID]
Full Prec. 32/32 2.98 7.09
BRECQ [24] (Baseline) 4/8 9.36 22.73
+TIAR 4/8 4.84 9.29
+FSC 4/8 6.07 11.31

+TFMQ-DM (TIAR + FSC) 4/8 3.68 (-5.68) 7.65 (-15.08)

ating with 4-bit quantization. Additional ablation experi-
ments can be found in the appendix.

Effect of TIAR. It can be observed that, compared to the
baseline, our TIAR method reduces FID and sFID by 4.52
and 13.44, respectively. Furthermore, As shown in Fig. 4,
our method’s temporal feature disturbance is significantly
far weaker than existing SOTA PTQD. This indicates the
effectiveness of our method in maintaining temporal infor-
mation contained in temporal features. Further details of
the effects are presented in the appendix.

1.00

0.99

o
©
©

cosine similarity
o
(o]
~

0.96 «—iterative dir.
0.95 ; —— PTQD
1 —— FSC
0.94 —— TIAR
—— TFMQ-DM
0.93

0 25 50 75 100125150175200
time-step

Figure 4. Temporal feature errors across different PTQ methods.

Effect of FSC. Our FSC method has also achieved remark-
ably positive results. Compared to the baseline, it reduces
FID and sFID by 3.29 and 11.42, respectively. Compared to
PTQD, from Fig. 4, our method’s temporal feature error is
significantly smaller than that of PTQD. Since we employ
layer-wise quantization for activations, this introduces less
than one percent of additional parameters. The inference
time overhead incurred by switching different step sizes and
zero points during multiple time-steps inference is negligi-
ble, as detailed in the appendix.

Efficiency of FSC. For FSC, there are various methods to
evaluate the range of activations to determine the optimal
step size. We try several methods and assess the GPU time
consumed during calibration, as detailed in Tab. 6. Since the
improvements achieved by these methods in model perfor-
mance are similar, we opt for the simplest and most efficient

TSC Methods Bits (W/A) FID, sFID] T (hours)
FIAR 8/32 284 7.08 2.18
+LSQ[51 88 317 718 248
+KL-divergence 8/8 3.27 7.32 19.67
+Percentile 8/8 3.34 7.41 12.00
+MSE 8/8 3.12 7.12 8.89
+Min-max [32] 8/8 3.14 (+0.02) 7.26 (+0.14) 0.12 (-2.36)
FIAR 4/32  3.04 7.16 2.20
+LSQI51 48 369 748 257
+KL-divergence 4/8 3.94 7.42 19.65
+Percentile 4/8 3.74 8.02 12.04
+MSE 4/8 3.62 7.48 8.89

+Min-max [32] 4/8 3.68 (+0.06) 7.65 (+0.23) 0.12 (-2.45)

Min-max [32] method as our specific calibration strategy,
striking a balance between calibration time and effective-
ness. Notably, we have found that PTQD and Q-Diffusion
cost 4.68 and 5.29 GPU hours in their PTQ methods un-
der w4a8 quantization on LSUN-Bedrooms 256 x 256, re-
spectively. However, our framework only spends 2.32 GPU
hours (as shown in Tab. 6).

Furthermore, for the only learning-based method in the
table, LSQ [5], which is one of the most commonly used
methods in previous works [10, 23, 41], we observe that it
did not outperform other methods and, in some cases, per-
forms even worse. We speculate that the main reason might
be that, for a fixed time-step, the calibration data used to
determine the quantization parameters is relatively limited
compared to all calibration data. In such cases, LSQ may
struggle to learn an optimal set of parameters.

6. Conclusion & Discussions of Limitations

This research explores the application of quantization for
accelerating diffusion models. In this work, we identify a
novel and significant problem, namely temporal feature dis-
turbance, in the quantization of diffusion models. We con-
ducted a detailed analysis of the root causes of this problem
and introduced our TFMQ-DM quantization framework. In
4-bit quantization on extensive datasets and different diffu-
sion models, this framework exhibits minimal performance
degradation compared to the FP model and speedup quanti-
zation time.

However, besides temporal features, we have also found
the textual features introduced in Stable Diffusion have
a physical meaning and influence the generation effect.
Nevertheless, these textual features are not taken into con-
sideration in current methods. Secondly, temporal feature
maintenance is suitable for both PTQ and QAT scenarios.
But in this study, our main focus is on the PTQ setting and
achieving 4-bit quantization. The extension to the QAT
setting should be conducted in the future to achieve lower-
bit quantization and further performance enhancements.
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