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Figure 1. Overview of VBench. We propose VBench, a comprehensive benchmark suite for video generative models. We design a com-
prehensive and hierarchical Evaluation Dimension Suite to decompose “video generation quality” into multiple well-defined dimensions
to facilitate fine-grained and objective evaluation. For each dimension and each content category, we carefully design a Prompt Suite as
test cases, and sample Generated Videos from a set of video generation models. For each evaluation dimension, we specifically design
an Evaluation Method Suite, which uses a carefully crafted method or designated pipeline for automatic objective evaluation. We also
conduct Human Preference Annotation for the generated videos for each dimension and show that VBench evaluation results are well
aligned with human perceptions. VBench can provide valuable insights from multiple perspectives.

Abstract

Video generation has witnessed significant advance-
ments, yet evaluating these models remains a challenge. A
comprehensive evaluation benchmark for video generation
is indispensable for two reasons: 1) Existing metrics do
not fully align with human perceptions; 2) An ideal eval-
uation system should provide insights to inform future de-
velopments of video generation.  To this end, we present
VBench, a comprehensive benchmark suite that dissects
“video generation quality” into specific, hierarchical, and
disentangled dimensions, each with tailored prompts and
evaluation methods. VBench has three appealing proper-
ties: 1) Comprehensive Dimensions: VBench comprises

*equal contributions. ®corresponding authors. Code is available

16 dimensions in video generation (e.g., subject identity in-
consistency, motion smoothness, temporal flickering, and
spatial relationship, etc.). The evaluation metrics with
fine-grained levels reveal individual models’ strengths and
weaknesses. 2) Human Alignment: We also provide a
dataset of human preference annotations to validate our
benchmarks’ alignment with human perception, for each
evaluation dimension respectively. 3) Valuable Insights:
We look into current models’ ability across various evalua-
tion dimensions, and various content types. We also investi-
gate the gaps between video and image generation models.
We will open-source VBench, including all prompts, evalua-
tion methods, generated videos, and human preference an-
notations, and also include more video generation models
in VBench to drive forward the field of video generation.
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Figure 2. VBench Evaluation Results of Video Generative
Models. We visualize the evaluation results of four video gen-
eration models in 16 VBench dimensions. We normalize the re-
sults per dimension for clearer comparisons. For comprehensive
numerical results, please refer to Table 1.

1. Introduction

Image generation models have made rapid progress in
the past few years, such as Variational Autoencoders
(VAEs) [51], Generative Adversarial Networks (GANs) [6,
19, 20, 24, 39, 41, 44-47, 67], vector quantized (VQ) based
approaches [16, 40, 85], and diffusion models [31, 78, 79].
This fuels recent explorations in video generation [3, 5, 10,
21, 23,27, 29, 34, 52, 62, 66, 77, 86, 87, 89, 91, 101, 107-
109], which goes beyond static imagery and models the
dynamics and kinematics of real-world scenes. With the
growth of video generation models, there arises a criti-
cal need for effective evaluation methods. The evaluation
should be able to accurately reflect human perception of
generated videos, providing reliable measures of a model’s
performance. Additionally, it should reflect each model’s
specific strengths and weaknesses, offering insights that in-
form the data, training, and architectural choices of future
video generation models.

However, existing metrics for video generation such
as Inception Score (IS) [76], Fréchet inception distance
(FID) [30], Fréchet Video Distance (FVD) [83, 84], and
CLIPSIM [73] are inconsistent with human judgement [15,
69]. Meanwhile, the Video Quality Assessment (VQA)
methods [55, 82, 93-99] are primarily designed for real
videos, thereby neglecting the unique challenges posed by
generative models, such as artifacts in synthesized videos.
Hence, there is a pressing need for an evaluation framework
that aligns closely with human perception, and specifically
designed for the characteristics of video generation models.

To this end, we introduce VBench, a comprehensive
benchmark suite for evaluating video generation model per-
formance. VBench has three appealing properties: 1) com-
prehensive evaluation dimensions, 2) human alignment, and
3) valuable insights.

First, our framework includes an evaluation dimension

suite that employs a hierarchical and disentangled approach
to the decomposition of “video generation quality”. This
suite systematically breaks down the evaluation into two
primary dimensions at a coarse level: Video Quality and
Video-Condition Consistency. Each of these dimensions
is further subdivided into more granular criteria. This hi-
erarchical separation ensures that each dimension isolates
and evaluates a single aspect of video quality, without in-
terference from other variables, as illustrated in Figure 1.
Recognizing video generation’s unique challenges, we have
tailored evaluation dimensions to its specific characteris-
tics. For example, in terms of Video Quality, maintaining
consistent subject identity (e.g., a teddy bear) in generated
videos is crucial, and is a problem rarely encountered in
real-world videos. Additionally, Video-Condition Consis-
tency is vital for conditional video generation tasks, requir-
ing its dedicated evaluation criteria. For each evaluation di-
mension, we carefully prepared around 100 text prompts as
test cases for text-to-video (T2V) generation, and devised
specialized evaluation methods tailored to each dimension.
In addition to multi-dimensional evaluations, we also assess
T2V models across diverse content categories. We orga-
nized prompt suites for eight distinct types, such as animal,
architecture, human, and scenery, allowing for a separate
evaluation within each category. This exploration reveals
variable competencies in T2V generation across different
content types, highlighting areas of proficiency and those
requiring further enhancement.

Second, we systematically demonstrate that our evalu-
ation method suite is closely aligned with human percep-
tion in every fine-grained evaluation dimension. We col-
lected human preference annotations for each dimension.
Specifically, we use various T2V models to sample videos
from our prompt suites. Then given two videos sampled
from the same prompt, we ask human annotators to indicate
preferences according to each VBench dimension respec-
tively. We show that VBench evaluations highly correlate
with human preferences. Additionally, the human prefer-
ence annotations can be utilized for multiple purposes, such
as fine-tuning generation or evaluation models to enhance
alignment with human perceptions. For instance, we utilize
the annotations to implement Instruction Tuning within a
Visual-Language Model (VLM), enhancing its T2V evalu-
ation alignment with human preferences.

Third, VBench’s multi-dimensional and multi-
categorical approach can provide valuable insights to
the video generation community. Our multi-dimensional
system enables detailed feedback on the strengths and
weaknesses of video generation models across various
ability aspects. This approach not only ensures a compre-
hensive evaluation of existing models but also provides
valuable insights into the training of advanced video
generation models, guiding architectural and data choices
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for improved video generation outcomes. Additionally,
VBench can be readily applied to evaluate image generation
models, and thus we investigate the disparities between
video and image generation models. In Section 5, we
discuss in detail on various observations and insights drawn
from VBench evaluations.

We are open-sourcing VBench, including its evaluation
dimension suite, evaluation method suite, prompt suite, gen-
erated videos, and the dataset of human preference annota-
tions. We also encourage more video generation models to
participate in the VBench challenge.

2. Related Works

Video Generative Models. Recently, diffusion models [14,
31, 78, 79] have achieved significant progress in image
synthesis [25, 37, 38, 68, 71, 74, 75], and enabled a line
of works towards video generation [5, 9, 22, 26, 28, 29,
32, 33, 42, 50, 62, 63, 77, 87, 91, 102, 103, 109, 113].
Many recent diffusion-based works [29, 62, 87, 91] are
text-to-video (T2V) models. Other guidance modalities are
also available, including image-to-video [11, 13, 17, 106],
video-to-video [8, 59, 70, 72, 105], and a variety of control
maps [12, 43, 50, 64, 90, 110, 111] such as pose, depth, and
sketch. The boom of video generation models requires a
comprehensive evaluation system to inform their current ca-
pabilities and guide future developments, and VBench takes
the initiative in providing a comprehensive benchmark suite
for fine-grained and human-aligned evaluation.

Evaluation of Visual Generative Models. Existing video
generation models typically use metrics like Inception
Score (IS) [76], Fréchet inception distance (FID) [30],
Fréchet Video Distance (FVD) [83], and CLIPSIM [73] for
evaluation. The UCF-101 [80] dataset’s class labels of-
ten serve as text prompts for IS, FID, and FVD, whereas
MSR-VTT [104]’s human-labeled video captions are used
for CLIPSIM. Despite covering various real-world sce-
narios, these prompts lack diversity and specificity, lim-
iting accurate and fine-grained evaluation of video gen-
eration. For text-to-image (T2I) models, several bench-
marks [2, 4, 35, 54, 65, 75, 88] are proposed to assess
various capabilities like compositionality [35] and editing
ability [4, 88]. However, video generative models still
lack comprehensive evaluation benchmarks for detailed and
human-aligned feedback. Our work differs from concurrent
research [60, 61] in three key ways: 1) We have created
16 distinct evaluation dimensions, each with specialized
prompts for precise assessment; 2) We have empirically
validated that every dimension aligns closely with human
perception; 3) Our multi-dimensional and multi-categorical
evaluation offers valuable and comprehensive insights into
video generation.

3. VBench Suite

In this section, we introduce the main components of
VBench. In Section 3.1, we present our rationale for de-
signing the 16 evaluation dimensions, as well as each di-
mension’s definition and evaluation method. We then elab-
orate on the prompt suites we use in Section 3.2. To vali-
date VBench’s alignment with human perception, we con-
duct human preference annotation for each dimension (see
Section 3.3). The experiments and the insights drawn from
VBench will be detailed in Section 4 and Section 5.

3.1. Evaluation Dimension Suite

We first introduce our evaluation dimensions and their cor-
responding evaluation methods.

Existing evaluation metrics like FVD [83] often con-
clude video generation model performance to a single num-
ber. This oversimplifies the evaluation and has several risks.
First, a single number can obscure an individual model’s
strengths and weaknesses, and it fails to provide insights
into specific areas where a model excels or underperforms.
This makes it challenging to derive insights for future ar-
chitectural and training designs based on single-valued met-
rics. Second, the notion of “high-quality video generation”
is complex and multifaceted, with individuals prioritizing
different video attributes based on the intended application.
For instance, some may prioritize the absence of tempo-
ral flickering, while others may consider fidelity to the text
prompt as the most significant, with less emphasis on flick-
ering. Therefore, in contrast with performing single-valued
evaluations of video generation quality, we propose a dis-
aggregated approach by decomposing the brand notion of
“video generation performance” into multiple discrete di-
mensions for fine-grained evaluation.

Specifically, we break “video generation quality” down
into 16 disentangled dimensions in a top-down manner,
with each evaluation dimension assessing one aspect of
video generation quality. On the top level, we evaluate
T2V performance from two broad perspectives: 1) Video
Quality — “Without considering alignment with the text
prompt, does the video alone look good?”, which focuses
on the perceptual quality of the synthesized video, and does
not consider the input condition (e.g., text prompt), and
2) Video-Condition Consistency — “Is the video consis-
tent with what the user wants to generate?”, which fo-
cuses on whether the synthesized video is consistent with
the guiding condition that the user provides (e.g., the text
prompt for T2V generation). Under both “Video Quality”
and “Video-Condition Consistency”, we further break the
coarse-grained dimensions into more fine-grained dimen-
sions, as shown in Figure 1. We briefly introduce each di-
mension here. Please refer to the Supplementary File for
the detailed definition and evaluation method of each di-
mension.
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3.1.1 Video Quality

We split “Video Quality” into two disentangled aspects,
“Temporal Quality” and “Frame-Wise Quality”, where the
former only considers the cross-frame consistency and dy-
namics, and the latter only considers the quality of each
individual frame without taking temporal quality into con-
cern. For “Temporal Quality”, we further devise five evalu-
ation dimensions, where each focusing on a different aspect
of temporal quality.

Temporal Quality - Subject Consistency. For a subject
(e.g., a person, a car, or a cat) in the video, we assess
whether its appearance remains consistent throughout the
whole video. To this end, we calculate the DINO [7] fea-
ture similarity across frames.

Temporal Quality - Background Consistency. We eval-
uate the temporal consistency of the background scenes by
calculating CLIP [73] feature similarity across frames.
Temporal Quality - Temporal Flickering. Generated
videos can exhibit imperfect temporal consistency at local
and high-frequency details. We take static frames and com-
pute the mean absolute difference across frames.
Temporal Quality - Motion Smoothness. Subject Consis-
tency and Background Consistency focus on temporal con-
sistency of the “look” instead of the smoothness of “move-
ment and motion”. We believe it is important to evaluate
whether the motion in the generated video is smooth, and
follows the physical law of the real world. We utilize the
motion priors in the video frame interpolation model [58]
to evaluate the smoothness of generated motions.
Temporal Quality - Dynamic Degree. Since a completely
static video can score well in the aforementioned temporal
quality dimensions, it is important to also evaluate the de-
gree of dynamics (i.e., whether it contains large motions)
generated by each model. We use RAFT [81] to estimate
the degree of dynamics in synthesized videos.
Frame-Wise Quality - Aesthetic Quality. We evaluate the
artistic and beauty value perceived by humans towards each
video frame using the LAION aesthetic predictor [53]. It
can reflect aesthetic aspects such as the layout, the richness
and harmony of colors, the photo-realism, naturalness, and
artistic quality of the video frames.

Frame-Wise Quality - Imaging Quality. Imaging qual-
ity refers to the distortion (e.g., over-exposure, noise, blur)
presented in the generated frames, and we evaluate it us-
ing the MUSIQ [49] image quality predictor trained on the
SPAQ [18] dataset.

3.1.2 Video-Condition Consistency

We mainly dissect “Video-Condition Consistency” into
“Semantics” (i.e., the type of the entities and their at-
tributes) and “Style” (i.e., whether the generated video

is consistent with user-requested style), with each decom-
posed into more fine-grained dimensions.

Semantics - Object Class. We use GRiT [100] to detect
the success rate of generating the specific class of objects
depicted in the text prompt.

Semantics - Multiple Objects. Other than generating a sin-
gle object of a particular class, the ability to compose mul-
tiple objects from different classes in the same frame is also
an essential ability in video generation. We detect the suc-
cess rate of generating all the objects specified in the text
prompt within each video frame.

Semantics - Human Action. Human action is an impor-
tant aspect in human-centric video generation. We apply
UMT [57] to evaluate whether human subjects in gener-
ated videos can accurately execute the specific actions men-
tioned in the text prompts.

Semantics - Color. To evaluate whether synthesized object
colors align with the text prompt, we use GRiT [100] for
color captioning and comparison with expected colors.
Semantics - Spatial Relationship. Other than classes and
attributes of synthesized objects, we also evaluate whether
their spatial relationship follows what is specified by the
text prompt. We focus on four primary types of spatial rela-
tionships, and perform rule-based evaluation similar to [35].
Semantics - Scene. We need to evaluate whether the syn-
thesized video is consistent with the intended scene de-
scribed by the text prompt. For example, when prompted
“ocean”, the generated video should be “ocean” instead of
“river”. We use Tag2Text [36] to caption the generated
scenes, and then check its correspondence with scene de-
scriptions in the text prompt.

Style - Appearance Style. Apart from semantics con-
sistency with the text prompt, another important pillar in
video-condition consistency is style. There are many styles
that alter the look, color, and texture of synthesized video
frames, such as “oil painting style”, “black and white style”,
“watercolor painting style”, “cyberpunk style”, “black and
white” efc. We calculate the CLIP [73] feature similarity
between synthesized frames and these style descriptions.
Style - Temporal Style. Apart from appearance styles,
videos also have temporal styles like various camera mo-
tions. We use VICLIP [92] to calculate the video feature
and the temporal style description feature similarity to re-
flect temporal style consistency.

Overall Consistency. We further use overall video-text
consistency computed by ViCLIP [92] on general text
prompts as an aiding metric to reflect both semantics and
style consistency.

3.2. Prompt Suite

The sampling procedure of current diffusion-based video
generation models [29, 87, 91] is time-consuming (e.g., 90
seconds per video for LaVie [91], and more than 2 minutes
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Figure 3. Prompt Suite Statistics. The two graphs provide an overview of our prompt
suites. Left: the word cloud to visualize word distribution of our prompt suites. Right: the
number of prompts across different evaluation dimensions and different content categories.

per video for CogVideo [34]). Therefore, we need to control
the amount of test cases for efficient evaluation. Meanwhile,
we need to maintain the diversity and comprehensiveness of
our prompt suite, so we design compact yet representative
prompts in terms of both the evaluation dimensions and the
content categories. We visualize our prompt suite distribu-
tions in Figure 3.

Prompt Suite per Dimension. For each VBench evalu-
ation dimension, we carefully designed a suite of around
100 prompts as test cases. The prompt suite is carefully
curated to probe the specific ability relevant to the dimen-
sion tested. For example, for the “Subject Consistency” di-
mension which aims to evaluate the consistency of subjects’
appearances throughout the video, we ensure every prompt
has a movable subject (e.g., animals or vehicles) performing
non-static actions, where their consistency might be com-
promised due to inconsistency introduced by their move-
ments or changing locations. In “Object Class” dimension,
we ensure the existence of a specific class of object in every
prompt. For “Human Action”, each test prompt contains
a human subject performing a well-defined action from the
Kinetics-400 dataset [48], where 100 representative actions
are selected with minimal semantic overlaps among them-
selves. Please refer to the Supplementary File for the design
rationale of the prompt suite for all 16 dimensions.

Prompt Suite per Category. When designing prompts for
each dimension, the focus was to showcase models’ ability
in that specific dimension. We further incorporate prompt
suites for eight content categories to provide insights into
the performance across varied content types. To this end,
we prepare a collection of human-curated prompts from the
Internet and divide them into 8 distinctive categories fol-
lowing YouTube’s categorization. Subsequently, we feed
both the category labels and prompts into a Large Lan-
guage Model (LLM) [112] (see more implementation de-
tails in Supplementary File), obtaining multi-label outputs
for each caption. We select 800 prompts and manually clean
their labels to serve as per-category prompt suites. Finally,
we obtain 100 prompts for each of these eight categories:
Animal,Architecture,Food, Human, Lifestyle,
Plant, Scenery, and Vehicles.

Interface for Human Prefer-

Figure 4.
ence Annotation. Top: prompt and question.
Right: choices that annotators can make. Bot-
tom left: control for stop and playback.

3.3. Human Preference Annotation

We perform human preference labeling on massive gener-
ated videos. The primary goal is to validate VBench evalu-
ation’s alignment with human perception in each of the 16
evaluation dimensions, and the verification results will be
detailed in Section 4.2. We also show that our human pref-
erence annotations can be useful in future tasks of finetun-
ing generation and evaluation models to enhance alignment
with human perceptions.

Data Preparation. Given a text prompt p;, and four
video generation models to be evaluated {A, B, C, D}, we
use each model to generate a video, forming a “group”
of videos Gi,j = {V;)AJ‘, ‘/;737]‘, ‘/;‘707]‘, V;,D,j}« For
each prompt p;, we sample five such groups of videos
{Gi0,Gi1,Gi2,Gi3,G;4}. For each group, we pair
the videos up in pair-wise combinations, yielding six
pairs: (VA, VB), (VA, Vc), (VA7 VD), (VB7 Vc), (VB, VD),
(Ve, Vp), and ask human annotators to indicate their pre-
ferred video for each pair. Within the VBench evaluation
framework, a prompt suite of N prompts produces N x5 x 6
pairwise video comparisons. The video order within each
pair is randomized to ensure unbiased annotation.

Human Labeling Rules. Specifically, the human annota-
tors are asked to only consider the specific evaluation di-
mension of interest and select the preferred video. For ex-
ample, in Figure 4, for the Appearance Style dimension,
the question is “Is the style of the video in the Van Gogh
style?”, and human annotators are instructed to only focus
on whether the generated video’s style belongs to the Van
Gogh style and should not consider other quality aspects
of the generated video, such as potential issues like the de-
gree of temporal flickering. In the example in this figure,
video A resembles the Van Gogh better than video B, and
the annotator is expected to select “A is better”. For every
dimension, we carefully prepare instructions and train the
human annotators to understand the definition of the dimen-
sion, and perform multiple quality assurance protocols via
a pre-labeling trial, and two rounds of post-labeling checks
Annotations for VLM Tuning. We map VBench evalu-
ation scores from various dimensions to the scale of 0-10
and combine them with human preference annotations to
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Table 1. VBench Evaluation Results per Dimension. This table compares the performance of four video generation models across
each of the 16 VBench dimensions. A higher score indicates relatively better performance for a particular dimension. We also provide two
specially built baselines, i.e., Empirical Min and Max (the approximated achievable min and max scores for each dimension), as references.

Models Subject | Background | Temporal Motion Dynamic | Aesthetic | Imaging Object
Consistency | Consistency | Flickering | Smoothness | Degree Quality Quality Class
LaVie [91] 91.41% 97.47% 98.30% 96.38% 49.72% 54.94% 61.90% 91.82%
ModelScope [62, 87] |  89.87% 95.29% 98.28% 95.79% 66.39% 52.06% 58.57% 82.25%
VideoCrafter [29] 86.24% 92.88% 97.60% 91.79% 89.72% 44.41% 57.22% 87.34%
CogVideo [34] 92.19% 96.20% 97.64% 96.47 % 42.22% 38.18% 41.03% 73.40%
Empirical Min 14.62% 26.15% 62.93% 70.60% 0.00% 0.00% 0.00% 0.00%
Empirical Max 100.00% 100.00% 100.00% 99.75% 100.00% | 100.00% 100.00% 100.00%
Multiple Human Spatial Appearance | Temporal |  Overall
Models Objegts Action Color Relal:ionship Scene ppStyle Stly)le Consistency
LaVie [91] 33.32% 96.80 % 86.39% 34.09% 52.69% 23.56% 25.93% 26.41%
ModelScope [62, 87]|  38.98% 92.40% 81.72% 33.68% 39.26% 23.39% 25.37% 25.67%
VideoCrafter [29] 25.93% 93.00% 78.84% 36.74% 43.36% 21.57% 25.42% 25.21%
CogVideo [34] 18.11% 78.20% 79.57% 18.24% 28.24% 22.01% 7.80% 7.70%
Empirical Min 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%
Empirical Max 100.00% 100.00% 100.00% 100.00% 82.22% 28.55% 36.40% 36.40%

form the instruction data, which is then used to fine-tune
the pre-trained VideoChat [56] model to demonstrate im-
proved evaluation capabilities. For implementation details
and tuning results, please refer to the Supplementary File.

4. Experiments

We adopt the video generation models LaVie [91], Mod-
elScope [62, 87], VideoCrafter [29], and CogVideo [34] for
VBench evaluation, and more will be added as they become
open-sourced. Details of the models and sampling proce-
dures are in the Supplementary File.

4.1. Per-Dimension Evaluation

For every dimension, we calculate the VBench scores using
the evaluation method suite described in Section 3.1, and
show the results using Figure 2 and Table 1. We additionally
designed three reference baselines, namely Empirical Max,
Empirical Min, and WebVid-Avg. The first two approximate
the maximum / minimum scores that videos might be able
to achieve, and WebVid-Avg reflects the WebVid-10M [1]
dataset quality in each VBench dimension.

Empirical Max. For most dimensions, to approximate
the maximum achievable values, we first retrieve WebVid-
10M [1] videos according to our prompt suites. We use
CLIP [73] to extract text features of both WebVid-10M’s
captions and our prompts. For each prompt, we retrieve the
top-5 WebVid-10M videos according to text feature sim-
ilarity with the given prompt. Given that the generated
videos are usually 2 seconds in length, we randomly select
a 2-second segment from each retrieved video and sample
frames at 8 frames per second (FPS). For each dimension,
we use the retrieved videos according to its prompt suite and
report the highest-scoring video’s result as Empirical Max.
Empirical Min. To approximate the minimum achiev-
able values, we use randomly generated 2-second Gaus-
sian noise clips to calculate results for the “Video-Condition
Consistency” dimensions. For most “Video Quality” di-
mensions, we select frames from real videos and design
frame concatenation for each dimension, approximating the
minimum score achievable for each VBench dimension.

WebVid-Avg. Similar to Empirical Max, we compute
the average for each dimension on retrieved WebVid-
10M [1] videos. This baseline could reflect the average per-
dimension quality of the commonly used video generation
training dataset WebVid-10M, and provide a reference for
model performances. The comparison against WebVid-Avg
and Empirical Max is visualized in Figure 6 (b).

4.2. Validating Human Alignment of VBench

To validate that our evaluation method can faithfully reflect
human perception, we performed a large-scale human an-
notation for each dimension, as mentioned in Section 3.3.
We show the correlation between VBench evaluation results
and human preference annotations in Figure 5.

Win Ratio. Given the human labels, we calculate the win
ratio of each model. During pairwise comparisons, if a
model’s video is selected as better, then the model scores
1 and the other model scores 0. If there is a tie, then both
models score 0.5. For each model, the win ratio is calcu-
lated as the total score divided by the total number of pairs-
wise comparisons participated.

Per-Dimension Evaluation. For each evaluation dimen-
sion, we calculate the model win ratio based on (1) VBench
evaluation results, and (2) human annotation results, respec-
tively, and compute their correlations, as shown in Figure 5.
We observe that VBench’s per-dimension evaluation results
are highly correlated with human preference annotations.

4.3. Per-Category Evaluation

We evaluate the T2V models across eight different con-
tent categories, by generating videos based on Prompt Suite
per Category described in Section 3.2, and then calculating
their performance across different evaluation dimensions.
Figure 7 visualizes the evaluation results of each model in
terms of the eight content categories.

4.4. Video Generation V.S. Image Generation

We conduct a comparative analysis of the frame-wise gen-
eration capability exhibited by text-to-video (T2V) mod-
els and text-to-image (T2I) models with two primary ob-
jectives: first, to assess the extent to which T2V models
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Figure 5. Validate VBench’s Human Alignment. Our experiments show that VBench evaluations across all dimensions closely match
human perceptions. Each plot shows the alignment verification result of a specific VBench dimension. In each plot, a dot represents the
human preference win ratio (horizontal axis) and VBench evaluation win ratio (vertical axis) for a particular video generation model. We
linearly fit a straight line to visualize the correlation, and calculate the Spearman’s correlation coefficient (p) for each dimension.
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lines. See the Supplementary File for comprehensive numerical
results and details on normalization methods.
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have successfully inherited the frame-wise generative ca-
pability of the T2I models; and second, to investigate the
frame-wise generation capability gap between existing T2I
and T2V models. As an initial exploration into this prob-
lem, we compare video generation models with three image
generation models, namely Stable Diffusion (SD) 1.4 [74],
SD2.1 [74], and SDXL [71]. We choose 10 VBench dimen-
sions that can encompass frame-wise generation capabili-
ties, and sample frames from all the image and video gen-
eration models according to Prompt Suite per Evaluation
Dimension described in Section 3.2. Figure 6 (a) visualizes
the evaluation results of T2V versus T2I models.

5. Insights and Discussions

In this section, we discuss the observations and insights we
draw from our comprehensive evaluation experiments.

- Trade-off across Ability Dimensions. We have noticed
a trade-off in video generation models between 1) temporal
consistency (Subject Consistency, Background Consistency,
Temporal Flickering, Motion Smoothness) and 2) Dynamic
Degree. Models strong in temporal consistency often have
a lower Dynamic Degree, as these two aspects are some-

what complementary (see Figure 2 and Table 1). For exam-
ple, LaVie excels in Background Consistency and Tempo-
ral Flickering but has a low Dynamic Degree, probably be-
cause generating relatively static scenes can “cheat” to get
high temporal consistency scores. Conversely, VideoCrafter
shows a high Dynamic Degree but suffers from poor perfor-
mance in all temporal consistency dimensions. This trend
highlights the current challenge for models to achieve tem-
poral consistency with dynamic content of large motions.
Future research should focus on enhancing both aspects si-
multaneously, as improving only one might indicate com-
promising the other.

- Uncovering Hidden Potential of T2V Models in Spe-
cific Content Categories. Our analysis reveals that the
capabilities of some models vary significantly across dif-
ferent content types. For instance, for Aesthetic Quality,
CogVideo scores well for Food (see Figure 7 rightmost
chart), whereas it underperforms in others like Animal and
Vehicles. The average results across various prompts
might suggest a lower overall “Aesthetic Quality” (as seen
in Figure 2), but CogVideo demonstrates relatively strong
aesthetics in at least the Food category. This suggests that
with tailored training data and strategies, CogVideo could
potentially match other models in aesthetics by improving
such ability in other content types. Therefore, we recom-
mend evaluating video generation models not just based on
ability dimensions but also considering specific content cat-
egories to uncover their hidden potential.

- Bottleneck in Temporally Complex Categories Af-
fecting Spatial and Temporal Performance. For spa-
tially complex categories (e.g., Animal, LifeStyle,
Human, Vehicles), models all perform relatively poorly
mainly in Aesthetic Quality (shown in Figure 7). This is
likely due to the challenges in synthesizing harmonious
color schemes, articulated structures, and appealing layouts
amidst complex elements. On the other hand, for cate-
gories involving complex and intense motions like Human
and Vehicle (see their Dynamic Degree in Supplemen-
tary File), performance is relatively poor across all dimen-
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Figure 7. VBench Results across Eight Content Categories (best viewed in color). For each chart, we plot the VBench evaluation results
across eight different content categories, benchmarked by our Prompt Suite per Category. The results are linearly normalized between 0
and 1 for better visibility across categories. See the Supplementary File for comprehensive numerical results, and normalization details.

sions. This suggests that motion complexity and dynamic
intensity significantly hinder synthesis, impacting both spa-
tial and temporal dimensions, probably because poor tem-
poral modeling results in distorted and blurred imagery.
This highlights the need for improved handling of dynamic
motions in video generation models.

- Challenges of Data Quantity in Handling Complex
Categories like Human. The WebVid-10M dataset [1] al-
locates 26% of its content to the Human category, which
is the largest share among the eight categories (see statis-
tics in Supplementary File). However, the Human category
exhibits one of the poorest results among eight categories
(see Figure 7). This suggests that merely increasing data
volume may not significantly enhance performance in com-
plex categories like Human. A potential approach could in-
volve integrating human-related priors or controls, such as
skeletons, to better capture the articulated nature of human
appearances and movements.

- Prioritizing Data Quality Over Quantity in Large-
Scale Datasets. For Aesthetic Quality, Figure 7 shows that
the Food category almost always tends to have the high-
est scores among all categories. This is corroborated by
the WebVid-10M dataset [1], where Food ranks highest
in Aesthetic Quality according to VBench evaluation (refer
to Supplementary File for more details), despite compris-
ing just 11% of the total data. This observation suggests
that at million scales, data quality might hold greater im-
portance than quantity. Furthermore, VBench’s evaluation
dimensions can be potentially useful for cleaning datasets
in specified quality dimensions.

- Compositionality: T2I versus T2V. As shown in Figure 6
(a), T2V models significantly underperform in Multiple Ob-
jects and Spatial Relationship compared to T2I models (es-
pecially SDXL [71]), which highlights the need to enhance
compositionality (i.e., correctly composing multiple objects
in the same frame). We believe possible solutions might
be: 1) curating training data incorporating multiple objects
with corresponding captions explicitly depicting this com-
positionality, or 2) adding intermediate spatial control mod-
ules or modalities during video synthesis. Furthermore, the
disparity of the text encoders might also account for the per-

formance gap. As T2I models leverage bigger (OpenCLIP
ViT-H for SD2.1 [74]) or more sophisticated (CLIP ViT-L &
OpenCLIP ViT-G for SDXL [71]) text encoders compared
with T2V models (e.g., CLIP ViT-L alone for LaVie), more
representative text embeddings could be featuring more ac-
curate object composition comprehension.

6. Conclusion

With the growing focus on video generation, comprehen-
sive evaluation of these models is essential to assess cur-
rent advancements and guide future research. In this work,
we take the first step forward and propose VBench, a com-
prehensive benchmark suite for evaluating video genera-
tion models. With its multi-dimensional, human-aligned,
and insight-rich properties, VBench could play vital roles
for evaluating future video generation models and inspiring
further advancements in video generation. We believe that
VBench is a significant contribution to the video generation
and evaluation community.

Limitations and Future Work. We plan to extend VBench
to include more models that recently became available, and
extend the evaluations aspects to additional video genera-
tion tasks, like image-to-video.

Potential Negative Societal Impacts. We also recognize
the importance of considering ethical aspects in future iter-
ations of VBench. While VBench currently does not assess
safety and equality dimensions, we urge users to exercise
caution with open-sourced video generation models.
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