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Abstract

We study the problem of single-image zero-shot 3D shape
reconstruction. Recent works learn zero-shot shape recon-
struction through generative modeling of 3D assets, but
these models are computationally expensive at train and in-
ference time. In contrast, the traditional approach to this
problem is regression-based, where deterministic models
are trained to directly regress the object shape. Such regres-
sion methods possess much higher computational efficiency
than generative methods. This raises a natural question:
is generative modeling necessary for high performance, or
conversely, are regression-based approaches still competi-
tive? To answer this, we design a strong regression-based
model, called ZeroShape, based on the converging findings
in this field and a novel insight. We also curate a large
real-world evaluation benchmark, with objects from three
different real-world 3D datasets. This evaluation bench-
mark is more diverse and an order of magnitude larger than
what prior works use to quantitatively evaluate their mod-
els, aiming at reducing the evaluation variance in our field.
We show that ZeroShape not only achieves superior perfor-
mance over state-of-the-art methods, but also demonstrates
significantly higher computational and data efficiency.'

1. Introduction

Inferring the properties of individual objects such as their
category or 3D shape is a fundamental task in computer vi-
sion. The ultimate goal is to do this accurately for any ob-
ject, generally referred to as zero-shot generalization. For
machine learning methods, this means high accuracy on
data distributions that may be significantly different from
the training set, such as images of novel types of objects
like machine parts or images from uncommon visual con-
texts like underwater imagery. An object representation ca-
pable of zero-shot generalization, therefore, needs to accu-
rately capture the visual properties that are shared across all

“Both authors contributed equally to this work.
'Project website at: https://zixuanh.com/projects/
zeroshape.html
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Figure 1. We outperform SOTA methods for zero-shot 3D shape
reconstruction, while having faster inference time and less training
data. Circle size indicates the number of 3D assets used for train-
ing, with biggest being 3M>. F-Score with threshold 0.05 is aver-
aged over Octroc3D [47], Pix3D [48] and OmniObject3D [60].

objects in the world—an extremely ambitious goal.

Recent work in computer vision has taken the broader
challenge of zero-shot generalization head-on, with im-
pressive developments for 2D vision tasks like segmenta-
tion [23, 38], visual question answering [3, 24], image gen-
eration [1, 44, 45], and in training general vision representa-
tions that can be easily adapted for any vision task [34, 39].
This progress has largely been enabled by increasing model
size and scaling training dataset size to the order of tens to
hundreds of millions of images.

These developments have inspired efforts which aim at
zero-shot generalization for single image 3D object shape
reconstruction [20, 26, 27, 33]. This is a classical and fa-
mously ill-posed problem, with important applications like
virtual object placement in scenes in AR and object manip-
ulation in robotics. These works aim to learn a “zero-shot
3D shape prior” by relying on generative diffusion mod-
els for 3D point clouds [33], NeRFs [20], or for 2D im-

2We use 3M as a reference value. Point-E [33] and Shape-E [20] state
a dataset size of “several million”.
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Figure 2. ZeroShape reconstructions from in-the-wild images. Our method produces detailed and accurate object reconstructions from

single-view images on a diverse set of objects.

ages fine-tuned for novel-view synthesis [26, 27], enabled
by million-scale 3D data curation efforts such as Obja-
verse [8, 9]. While these methods show impressive zero-
shot generalization ability, it comes at a great compute cost
due to large model parameter counts and the inference-time
sampling required by diffusion models. Using expensive
generative modeling for zero-shot 3D shape from single
images diverges from the approach of early deep learning-
based works on this task [46, 52, 57, 61, 64]. These works
define the task as a 3D occupancy or signed distance regres-
sion problem and predict the shape of objects in a single
forward pass. This raises a natural question: is generative
modeling necessary for high performance at learning zero-
shot 3D shape prior, or conversely, can a regression-based
approach still be competitive?

In this work, we find that regression approaches are in-
deed competitive if designed carefully, and computationally
more efficient by a large margin compared to the gener-
ative counterparts. We propose ZeroShape: a regression-
based 3D shape reconstruction approach that achieves state-
of-the-art zero-shot generalization, trained entirely on syn-
thetic data, while requiring a fraction of the compute and
data budget of prior work (see Fig. 1). We build our model
upon key ingredients that facilitate generalization based on
prior works: 1) usage of intermediate geometric representa-
tion (e.g. depth) [29, 52, 58, 61, 64], 2) explicit reasoning
with local features [5, 57, 62]. Specifically, we decompose
the reconstruction into estimating the shape of the visible
portion of the object, and then predicting the complete 3D
object shape based on this initial prediction. The accurate
estimation of the visible 3D surface is enabled by a joint
modeling of camera intrinsics and depth, which we find to
be essential for high accuracy.

Another thrust of our work is a large benchmark for eval-
uating zero-shot reconstruction performance. The 3D vision
community is working on developing a zero-shot 3D shape
prior, but what is the correct way to evaluate our progress?
Currently we lack a well-defined benchmark, which has
lead to well-curated qualitative results and small scale quan-
titative results® on different datasets across different papers.
This makes it difficult to track progress and identify direc-
tions for future research. To resolve this and standardize
evaluation, we develop a protocol based on data generated
from existing datasets of 3D object assets. Our benchmark
includes thousands of common objects from hundreds of
different categories and multiple data sources. We consider
real images paired with 3D meshes [47, 48], and also gener-
ate photorealistic renders of 3D object scans [60]. Our large
scale quantitative evaluation provides a rigorous perspective
on the current state-of-the-art.

In summary, our contributions are:

» ZeroShape: A regression-based zero-shot 3D shape re-
construction method with state-of-the-art performance at
a fraction of the compute and data budget of prior work.

* A unified large-scale evaluation benchmark for zero-shot
3D shape reconstruction, generated by standardized pro-
cessing and rendering of existing 3D datasets.

2. Related Work

Estimating the 3D shape of an object from a single is a com-
plex inverse problem: while the shape of the visible object
can be estimated from shading, estimating the shape of the
occluded portion requires prior knowledge about object ge-

30n the order of hundreds of objects from tens of categories at best, to
just a few dozen objects at worst.
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ometry. This is one of the marvels of human perception and
achieving it computationally is a major goal for our field.
We review regression and generative methods for this task.
Regression-based Methods. These works investigate dif-
ferent ways to represent 3D object shapes and the ar-
chitectures to produce them from a single image, e.g.,
meshes [21, 54, 56] or implicit representations like dis-
crete [7, 50] or continuous [31, 35] occupancy, signed dis-
tance fields [19, 52, 62], point clouds [2, 12], or sets of
parametric surfaces [13, 63]. A major limitation of these
works is the limited generalization beyond the categories
of the training set. The improvements of decomposing the
problem into predicting the depth and then estimating the
complete shape [46, 52, 58, 61, 64], and representing 3D
in a viewer centered rather than object centered reference
frame [46, 52, 64] allowed for improved zero-shot general-
ization. Most architectures follow an encoder/decoder de-
sign, where the encoder produces a feature map from which
the decoder predicts the 3D shape. While early works pro-
duced a single feature vector for the entire image, it was
later identified that using local features from a 2D feature
map improved the detail of the predicted shapes [54, 62]
and improved generalization to unseen categories [5, 61].
This culminated with the current state-of-the art regression
method, MCC [57], which takes an RGB-D image as input,
and uses a transformer-based encoder-decoder setup to pro-
duce a “shell occupancy” prediction #. Our approach incor-
porates all these prior findings for improved generalization,
and builds upon them with a new module for estimating the
visible shape of the object that estimates depth and camera
intrinsics, which is processed with a cross attention-based
decoder to produce an occupancy prediction.

3D Generative Methods This category of methods does
zero-shot 3D shape reconstruction using a learned 3D gen-
erative prior, where the 3D generation is conditioned on one
or few input images. Given image or text conditioning,
early work [59] used GANs to generate voxels, whereas
more recent works use diffusion models to generate point
clouds [33], or function parameters for implicit 3D repre-
sentations [20]. Another related type of generative fram-
ing is conditional view synthesis. Works in this direction
fine-tune 2D generative models [27], or train them from
scratch [55, 65], to synthesize novel views conditioned on
single images and viewing angles. This results in an implicit
3D prior, from which a 3D shape can then be extracted by
fitting a 3D neural representation to the synthesized images,
or predicting its parameters [26].

3D from 2D Generative Models There have been efforts
to use the real-world 2D image prior from text-to-2D gen-
erative models [1, 40, 44, 45] to reconstruct 3D shape from

“4Traditionally occupancy is formulated as predicting whether a point in
3D is inside/outside a watertight mesh, whereas MCC predicts whether it
is within an € wide shell representing the surface of the object.

a single image. This category of works [10, 30, 49] often
uses techniques such as the SDS loss [36, 53] and gener-
ates 3D assets from images by optimizing for each object
separately. The prolonged optimization time prevents these
works from being evaluated at scale or applied in many real-
world applications. Orthogonal to the optimization-based
approaches, we focus on learning a 3D shape prior that
generalizes across instance. We do not perform any per-
instance optimization at test time.

3. Method

Our goal is to achieve state of the art zero-shot performance
for estimating the complete 3D shape of an object from
a single image. Formally, given an object-centric single-
view RGB image I € RM*®*3 we regress a function
that takes I as input and predicts the shape. We represent
shape using an implicit occupancy representation, where
we model the shape surface as the isosurface of occupancy
function f(z|I;0). Here, € R? denotes the query point’s
coordinates—when the query point lies within the surface
f(z|I;0) = 1, otherwise f(x|I;6) = 0.

3.1. Architecture

We now present our architecture (see Fig. 3) for shape re-
construction. Our architecture is based on two established
practices from prior works in this field: 1) usage of inter-
mediate geometric representation [29, 52, 58, 61, 64] and
2) explicit reasoning with spatial feature maps [5, 57, 62].
Specifically, our model consists of three submodules: a
depth and camera estimator, a geometric unprojection unit
and a projection-guided shape reconstructor.

Depth and camera estimator. We propose to estimate the
3D visible object surface as an intermediate representation.
To infer the full shape of an object, one must understand
the visible surface—not only because the visible surface is
often a large part of the full surface, but also because an ac-
curate visible surface facilitates geometric reasoning of the
full object reconstruction. This is because cues for recon-
struction that allow for generalization, such as symmetry,
curvature, and repetition, can be more effectively detected
and leveraged in the 3D space. For example, if an object
is symmetric, then accurately inferring the 3D symmetry
planes from a partial 3D surface is much easier than from
2D RGB or relative depth.

Inspired by this, we estimate 3D visible surface as our
intermediate representation instead of the commonly used
depth maps [52, 58, 64]. MCC [57] also uses visible sur-
face to estimate the full shape, but they assume the visible
surface to be given as input. When inferring on in-the-wild
images, they use fixed intrinsics to unproject depth maps
into the 3D surface. Erroneous intrinsics lead to skewed
3D visible surfaces (see Fig. 4), resulting in inaccurate 3D
cues for the complete object shape. Therefore, we propose
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Figure 3. Overview of our model. Our consists of three modules: a depth and camera estimator, a geometric unprojection unit and a
projection-guided shape reconstructor. The depth and camera estimator predicts the depth and camera intrinsics from the input image
with a DPT backbone. The geometric unprojection unit converts the depth and intrinsics estimation into a normalized 3D visible surface,
which is parameterized by a three-channel projection map. The shape reconstructor finally reconstructs the full occupancy field by fetching

localized information from projection map through cross attention.

to jointly estimate depth and intrinsics before predicting the
full shape. Note that learning to estimate depth and intrin-
sics can be fully supervised with synthetic data. Specifi-
cally, our depth and camera estimator estimates the depth
map of the object D € R" % and the camera intrinsics
K € R3*3 from the image I. We used a shared DPT [42]
backbone for the depth and camera estimator, and use two
different shallow heads to predict D from the local tokens
and K from the global token.

Geometric unprojection unit. Given the intrinsics K and
the depth map D, the geometric unprojection unit unpro-
jects them into a projection map P € R"*%*3_ The pro-
jection map encodes the visible surface of the object, where
each pixel value P;; represents the coordinate of the unpro-
jected 3D point at the pixel location (4, 7). Formally, the
geometric unprojection can be written as

Pyj = Dy K~ i,5,1]". (1)

We use a view-centric coordinate system, because prior
works show that view-centric learning is beneficial to gen-
eralization [51, 52]. Therefore the camera coordinate frame
is the “world” coordinate frame for shape reconstruction,
which means that only the camera intrinsics matrix is re-
quired to unproject pixels to 3D. Note that unprojection is
fully differentiable w.r.t. D and K, so we can easily use
it as a module in an end-to-end learning-based model. Ad-
ditionally, the projection maps are foreground-segmented,
and the represented visible surface is normalized in the 3D
space to be zero-mean and unit-scale before being fed into
the next module.

Projection-guided shape reconstructor. Using the es-
timated projection map P, our projection-guided shape
reconstructor recovers the full object shape.  Specifi-
cally, the projection-guided shape reconstructor first uses a
ResNet [14] encoder to encode and reshape the projection
map P into a set of d-dimensional vectors, t € R¥*¢. Each

Image
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unproj(f = 70,d) /  unproj(f = 30,d) X
Figure 4. Effect of Intrinsics. Unprojecting an accurate depth
map into a 3D surface surface with erroneous intrinsics leads to
skewed shape with wrong 3D aspect ratio.

of the k vectors encodes a localized patch in the projec-
tion map. To facilitate an explicit spatial reasoning, we use
the cross-attention-based approach proposed in MCC [57].
We linearly map every query point z € R? to the same
dimension of feature vectors, d. Then we use two cross at-
tention layers to fetch relevant patch encodings from ¢ and
fuse them with each query separately. Finally, the recon-
structor predicts the occupancy value of each x using the
fused feature vector via an MLP.

3.2. Loss

We use a two-stage training paradigm for our model, where
we first pretrain the depth and camera estimator and then
fine-tune the whole model with 3D supervision. For depth
and camera pretraining, we use a depth loss Lgepen and
projection-based intrinsics loss £,,;. For the depth loss,
we use the SSIMAE loss from [41]. Note that the SSI-
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MAE loss is scale-invariant, meaning that the depth esti-
mator trained using this loss will be metrically correct up
to an unknown scale factor. Therefore, directly regressing
the absolute intrinsics is suboptimal due to the uncertainty
in the absolute scale. Instead, we observe that the only fac-
tor that impacts shape reconstruction is whether the visible
surface recovered using Eq. (1) is accurate. Therefore, we
directly minimize the MSE loss between the predicted pro-
jection map P and the ground truth projection map P*, and
backpropagate to the camera and depth estimators.

Once the depth and camera estimator are learned, we
jointly train the whole model using the 3D occupancy loss
Loce, Which is a standard binary cross entropy between the
predicted occupancy values f(x|I;6) and ground truth in
the viewer-centric coordinate frame.

3.3. Implementation Details

We train our model with the Adam [22] optimizer. Dur-
ing depth and camera pretraining, we use a learning rate of
3x 105, a batch size of 44, a weight decay of 0.05 and mo-
mentum parameters of (0.9, 0.95). We train our model for
15 epochs and initialize the depth estimator with the Om-
nidata [11] weights. During the joint training stage, we
use a learning rate of 3 x 10~° for the projection-guided
shape reconstructor, and a learning rate of 10~ for the pre-
trained depth and camera estimator (geometric unprojection
unit does not have learnable parameters). We use a batch
size of 28, a weight decay of 0.05 and momentum parame-
ters of (0.9, 0.95). At every iteration, we randomly sample
4096 points to compute the occupancy loss. We train our
model on 4x NVIDIA GeForce RTX 2080 Ti, which takes
~2 days for pretraining and ~3 days for joint training.

4. Data Curation
4.1. Training Dataset

We use all the 55 categories of ShapeNetCore.v2 [6] for
a total of about 52K meshes, as well as over 1000 cat-
egories from the Objaverse-LVIS [8] subset. This subset
of Objaverse has been manually filtered by crowd workers
to primarily include meshes of objects instead of other as-
sets like scans of large scenes and buildings. After filtering
Objaverse-LVIS to remove objects with minimal geometry
(e.g. objects consisting of a single plane) this dataset has
42K meshes. Pooling these two data sources gives us a total
of over 90K 3D object meshes from over 1000 categories.
We use Blender [37] to generate synthetic images from
the 3D meshes, and to extract a variety of useful annota-
tions: depth maps, camera intrinsics, and object and cam-
era pose. Because the object distribution of ShapeNet is
highly skewed (67% of data is 7 categories), we generate 1
to 20 images per object, scaled inversely from the number
of meshes in the category of the object, resulting in a total

of 159K images. For Objaverse we generate 25 images per
object resulting in 939K images. Our traning set consists of
slightly less than 1.1M images.

We generate images with varying focal lengths, from
30mm to 70mm for a 35mm image sensor size equivalent.
We generate diverse object-camera geometry: rather than
the common approach of always pointing the camera at the
middle of the object at a fixed distance, we vary the object
camera distance and vary the LookAt point of the camera.
This allows us to capture a wide range of variability in how
3D shape projects to 2D. We follow the convention to use
center cropped and foreground segmented images for train-
ing and testing. We provide more details in the supplement.

4.2. Evaluation Benchmark

We use three different real-world dataset evaluation: Om-
niObject3D [60], Ocrtoc3D [47], and Pix3D [48]. Because
our testing images images come from the real world, or are
renders of real 3D object scans distinct from our training
set, they are a good test set for zero-shot generalization.
OmniObject3D. OmniObject3D is a large and diverse
dataset of 3D scans and videos of objects from 216 cate-
gories, including household objects and products, food and
toys. Because the foreground segmentations are noisy, we
follow convention and render the 3D scans to generate test
images [26, 27]. We improve the default material shader
which generates glass-like surface appearance to appear
more natural. We use Blender and HDR environment maps
to generate realistic images with diverse lighting. We ran-
domly sample camera viewpoint, distance and focal length.
Ocrtoc3D. Ocrtoc3D is a real-world object dataset that con-
tains object-centric videos and full 3D annotations from 15
coarse categories. Some coarse categories contain many
subcategories (e.g. toy animals contain various species).
For each video the mesh (3D scan) and the viewpoint in-
formation are provided. We clean up this dataset by man-
ually removing outliers (e.g. empty meshes/wrong object
scales) and use the full filtered dataset consisting of 749
unique image-object pairs.

Pix3D. Pix3D is a real-world object dataset that contains
3D annotations from 9 categories. For each image in this
dataset, an object mask, a CAD model, and the input view-
point information are provided. These 3D annotations come
from manual alignment between shapes and images. We
follow the split of [17] and use 1181 images.

Benchmark curation. To create an easy-to-use benchmark,
we convert the three heterogeneous datasets into a unified
format. This includes aligning and converting the camera
intrinsics and extrinsics, and object poses, to a standardized
convention across the test datasets and our synthetic dataset.
This is often a tedious obstacle in 3D vision research. We
also organize images, masks and other metadata in a stan-
dardized manner. The release of our training data, data gen-
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Figure 5. Qualitative results. We compare ZeroShape to other SOTA methods on our curated benchmark (first three columns are from
Ocrtoc3D [47], last three are from OmniObject3D [60]). Our reconstruction not only better aligns with the visible surfaces from images,

but also recovers a faithful global structure of the reconstructed objects.

erating pipeline, and benchmark will benefit the community
by providing a unified setup for large scale training on syn-
thetic data and large scale testing on real data.

S. Experiments

In this section we present our experiments, which include
state-of-the-art comparisons and ablations. We first de-
scribe the baselines we implemented on our benchmark, and
then show detailed quantitative and qualitative results.

5.1. Metrics

We evaluate the shape reconstruction models using Cham-
fer Distance (CD) and F-score as our quantitative metrics
following [13, 17, 18, 25, 51, 52].

Chamfer Distance. Chamfer Distance (CD) measures the
alignment between two pointclouds. Following [18], CD is
defined as an average of accuracy and completeness. De-
noting pointclouds as X and Y, CD is defined as:

CD(X,Y)

2|X| Z vey

1 .
e —ylla+ 517 > min ol
yey
(@)

F-score. F-score measures the pointcloud alignment un-
der a classification framing. By selecting a rejection
threshold d, F-score@d (FS@d) is the harmonic mean of
precision@d and recall@d. Specifically, precision@d is the
percentage of predicted points that lies close to GT point
cloud within distance d. Similarly, recall@d is the percent-
age of ground truth points that have neighboring predicted
points within distance d. FS@d can be intuitively inter-
preted as the percentage of surface that is correctly recon-
structed under a certain threshold d that defines correctness.
Evaluation protocol. To compute CD and F-score, we
grid-sample the implicit function and extract the isosur-
face via Marching Cubes [28] for methods using implicit
representation. Then we sample 10K points from the sur-
faces for the evaluation of CD and F-scores. Because most
methods cannot predict view-centric shapes, we use brute-
force search to align the coordinate frame of prediction with
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Table 1. Quantitative comparison on OmniObject3D. Our
method performs favorably to other state-of-the-art methods.

Table 2. Quantitative comparison on Pix3D. Our method per-
forms favorably to other state-of-the-art methods.

Methods FS@11t FS@21 FS@51 | CDJ Methods FS@11 FS@21 FS@5t | CDJ
SS3D [4] 0.1515 0.3482 0.6618 | 0.482 SS3D [4] 0.1326  0.2998 0.6316 | 0.485
MCC [57] 0.1362  0.3215 0.6015 | 0.551 MCC [57] 0.1754 0.3386 0.6165 | 0.514
One-2-3-45 [26] 0.1532  0.3585 0.6882 | 0.446 One-2-3-45 [26] 0.1364 0.3137 0.6666 | 0.443
OpenLRM [16] 0.1683 0.3848 0.7204 | 0.407 OpenLRM [16] 0.1458 0.3190 0.6440 | 0.492
Point-E [33] 0.1505 0.3598 0.6932 | 0.448 Point-E [33] 0.1779  0.3830 0.7255 | 0.403
Shap-E [20] 0.1483  0.3650 0.7029 | 0.434 Shap-E [20] 0.2016  0.4287 0.7833 | 0.340
ZeroShape (ours)  0.2297  0.4927 0.8169 | 0.310 ZeroShape (ours) 0.1928  0.4290  0.7759 | 0.345

ground truth before calculating the metrics. This evaluation
protocol ensures a fair comparison between methods with
different shape representation and coordinate conventions.

5.2. Baselines

We consider five state-of-the-art baselines for shape recon-
struction, SS3D [4], MCC [57], Point-E [33], Shap-E [20],
One-2-3-45 [26] and OpenLRM [15, 16].

SS3D learns implicit shape reconstruction by first pretrain-
ing on ShapeNet GT, and then finetuning on real-world
single-view images. The finetuning is performed in a cat-
egory specific way, and then a single unified model is dis-
tilled from all category-specific experts. We compare our
model with their final distilled model.

MCC learns shell occupancy reconstruction using multi-
view estimated point clouds from CO3D [43]. Their model
assumes known depth and intrinsics during inference. To
evaluate their model on RGB images, we use the DPT-
estimated depth and fixed intrinsics as MCC'’s input follow-
ing their pipeline.

Point-E is a point cloud diffusion model that generates
point clouds from text prompts or RGB images. They ad-
ditionally train a separate model that converts point clouds
into meshes. We compare our model with Point-E by com-
bining their image-to-point and point-to-mesh models.
Shap-E is another diffusion model that learns conditioned
shape generation from text or images. Different from Point-
E, Shap-E uses a latent diffusion setup and can directly gen-
erate implicit shapes. The final mesh reconstruction are ex-
tracted with marching cubes.

One-2-3-45 learns implicit shape reconstruction by break-
ing it down into a generative view synthesis step and a
multiview-to-3D reconstruction step. The view synthesis is
achieved with Zero-123 [27], a diffusion model that gener-
ates novel-view images conditioned on the original images
and poses. Based on the synthesized multi-view images, a
cost-volume-based module reconstructs the full 3D mesh of
the object.

LRM is a concurrent work that learns to predict NeRF [32]
from single images using transformer-based architecture.
Since the authors have not released the code, we use the

Table 3. Quantitative comparison on Ocrtoc3D. Our method
performs favorably to other state-of-the-art methods.

Methods FS@11 FS@21 FS@5t | CDJ
SS3D [4] 0.1271  0.2910 0.5963 | 0.543
MCC [57] 0.1994 0.4098 0.7135 | 0411
One-2-3-45 [26] 0.1323  0.3076  0.6325 | 0.492
OpenLRM [16] 0.1552  0.3481 0.6885 | 0.432
Point-E [33] 0.1589 0.3591 0.6968 | 0.423
Shap-E [20] 0.1725 0.3939 0.7315 | 0.395
ZeroShape (ours) 0.2410  0.5091  0.8459 | 0.286

code and weights from OpenLRM °. The mesh is extracted
via Marching Cubes [28] from the triplane NeRF.

5.3. Comparison to SOTA Methods

We compare our approach to other state-of-the-art methods
on the benchmark we curated. We now present and analyze
the quantitative results for each dataset.

Results on OmniObject3D. We present our main quan-
titative comparison results on OmniObject3D, which cov-
ers a great variety of object types. The results are shown
in Tab. 1. Comparing with other SOTA zero-shot 3D re-
construction methods, we see our approach achieves signif-
icantly better performance.

Results on Ocrtoc3D. We present additional quantitative
comparison results on Ocrtoc3D. Ocrtoc is smaller than
OmniObject, but still covers many object types, and the in-
put images are real photos. The results are shown in Tab. 3.
Similar to the results on OmniObject3D, our approach out-
performs previous SOTA methods by a large margin.
Results on Pix3D. We also present quantitative comparison
results on Pix3D. Unlike OmniObject3D and Ocrtoc3D, the
object variety of this evaluation dataset is much lower —
all objects are furniture and more than two third of the im-
ages are chairs and sofas. Therefore, the evaluation results
are highly bias towards this specific class of objects. The
results are shown in Tab. 2, and our method still achieves
state-of-the-art performance. It is worth noting that Point-E

5https://qithub.com/BDTopia/OpenLRM
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Table 4. Ablation study on OmniObject3D. The design choices
of our architecture are quantitatively justified: enforcing explicit
geometric reasoning, and implementing it through unprojection
with estimated depth and intrinsics is essential.

Methods FS@11 FS@21 FS@51 | CDJ
Ours w/o geo 0.2110 0.4572  0.7797 | 0.347
Ours w/o unproj  0.2135  0.4738  0.8053 | 0.323
Ours w/o intr 0.2158 0.4742 0.8039 | 0.324
Ours 0.2297  0.4927 0.8169 | 0.310

and Shap-E also perform well on this dataset. We hypothe-
size this is might relate to the abundance of similar furniture
categories in their training set.

5.4. Qualitative Results

We show qualitative results of different methods in Fig. 5.
Generative approaches such as Point-E and Shap-E tend to
have sharper surfaces and contain more details in their gen-
eration. However, many details are erroneous hallucination
that do not accurately follow the input image, and the vis-
ible surfaces are often reconstructed incorrectly. Previous
regression-based approaches such as MCC better follow the
input cues in the input images, but the hallucination of the
occluded surfaces is often inaccurate. We observe that One-
2-3-45, OpenLLRM and SS3D cannot always accurately cap-
ture details and concavities. Comparing with prior arts, the
reconstruction of ZeroShape not only faithfully capture the
global shape structure, but also accurately follows the lo-
cal geometry cues from the input image. More qualitative
results are included in the supplement.

5.5. Ablation Study

We analyze our method by ablating the design choices we
made. We consider baselines by modifying different mod-
ules correspondingly. The results are shown in Tab. 4.
Explicit geometric reasoning. We first consider the base-
line without any geometric reasoning (Ours w/o geo). We
remove the projection unit together with the depth and cam-
era pretraining losses. The number of parameters is con-
trolled to be the same, and we train the model for the same
number of total iterations. Comparing the first row to the
last row, we see that enforcing explicit geometric reasoning
in our model positively affects performance.

Alternative intermediate representations. Prior
works [52, 58, 59] typically consider depth as the
2.5D intermediate representation. To compare this to our
projection-based representation, we consider a baseline
where the latent vectors directly come from the depth map
instead of a 3D projection map. As shown in Tab. 4 (Ours
w/o unproj), depth leads to inferior performance to our
intrinsic-guided projection map representation.
Intrinsic-guided projection. We propose joint learning of
intrinsics with depth to more accurately estimate the 3D

viewpoint rotation —

. wRQ QO

Unprojection with Fixed Intrinsics

- mAaQCCQ

Unprojection with Predicted Intrinsics

viewpoint rotation —

| R— = N>

Unprojection with Fixed Intrinsics

Cescoe

Unprojection with Predicted Intrinsics

Figure 6. Benefits of intrinsics learning. We show the recon-
structed visible surfaces for two real image inputs. The visible
surface is unprojected from estimated depths, with either fixed in-
trinsics or predicted intrinsics. Using fixed intrinsics cause un-
realistic deformations in the 3D aspect ratio of the visible object
surface (e.g. objects appear to be compressed).

shape of the visible object surface. To study the impact
of this, we compare our full model with a baseline with-
out intrinsics learning, where the unprojection to 3D is done
via a fixed intrinsics during both training and testing. This
baseline (Ours w/o intr) leads to indifferent performance to
using depth intermediate representation and is worse than
our full model. We also show qualitative examples of the
estimated surface using our pretrained intrinsics estimator
in Fig. 6. Compared with fixed intrinsics, unprojection with
our estimated intrinisics leads to more accurate reconstruc-
tion of the visible surface.

6. Conclusion

We present a strong regression-based model for zero-shot
shape reconstruction. The core of our model is an interme-
diate representation of the 3D visible surface which facil-
itates effective explicit 3D geometric reasoning. We also
curate a large real-world evaluation benchmark to test zero-
shot shape reconstruction methods. Our benchmark pools
data from three different real-world 3D datasets and has
an order of magnitude larger scale than the test sets used
by prior work. Tested on our benchmark, our model sig-
nificantly outperforms other SOTA methods and achieves
higher computational efficiency, despite being trained with
much less 3D data. We hope our effort is a meaningful step
towards building zero-shot generalizable 3D reconstruction
models.
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