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Figure 1. Edit friendly DDPM inversion. We present a method for extracting a sequence of DDPM noise maps that perfectly reconstruct a
given image. These noise maps are distributed differently from those used in regular sampling, and are more edit-friendly. Our method
allows diverse editing of real images without fine-tuning the model or modifying its attention maps, and it can also be easily integrated into
other algorithms (illustrated here with Prompt-to-Prompt [9] and Zero-Shot I2I [21])

Abstract

Denoising diffusion probabilistic models (DDPMs) em-
ploy a sequence of white Gaussian noise samples to generate
an image. In analogy with GANs, those noise maps could be
considered as the latent code associated with the generated
image. However, this native noise space does not possess a
convenient structure, and is thus challenging to work with in
editing tasks. Here, we propose an alternative latent noise
space for DDPM that enables a wide range of editing opera-
tions via simple means, and present an inversion method for
extracting these edit-friendly noise maps for any given image
(real or synthetically generated). As opposed to the native
DDPM noise space, the edit-friendly noise maps do not have
a standard normal distribution and are not statistically in-
dependent across timesteps. However, they allow perfect
reconstruction of any desired image, and simple transforma-
tions on them translate into meaningful manipulations of the
output image (e.g. shifting, color edits). Moreover, in text-

conditional models, fixing those noise maps while changing
the text prompt, modifies semantics while retaining structure.
We illustrate how this property enables text-based editing
of real images via the diverse DDPM sampling scheme (in
contrast to the popular non-diverse DDIM inversion). We
also show how it can be used within existing diffusion-based
editing methods to improve their quality and diversity. The
code of the method is attached to this submission.

1. Introduction

Diffusion models have emerged as a powerful generative
framework, achieving state-of-the-art quality on image syn-
thesis [2, 11, 20, 22, 23, 25]. Recent works harness diffusion
models for various image editing and manipulation tasks, in-
cluding text-guided editing [1, 5, 9, 14, 27], inpainting [16],
and image-to-image translation [17, 24, 30]. A key chal-
lenge in these methods is to leverage them for editing of
real content (as opposed to model-generated images). This
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requires inverting the generation process, namely extracting
a sequence of noise vectors that would reconstruct the given
image if used to drive the reverse diffusion process.

Despite significant advancements in diffusion-based edit-
ing, inversion is still considered a major challenge, par-
ticularly in the denoising diffusion probabilistic model
(DDPM) sampling scheme [11]. Many recent methods (e.g.
[5, 9, 19, 21, 27, 29]) rely on an approximate inversion
method for the denoising diffusion implicit model (DDIM)
scheme [26], which is a deterministic sampling process that
maps a single initial noise vector into a generated image.
However this DDIM inversion method becomes accurate
only when using a large number of diffusion timesteps (e.g.
1000), and even in this regime it often leads to sub-optimal
results in text-guided editing [9, 19]. To battle this effect,
some methods fine-tune the diffusion model based on the
given image and text prompt [13, 14, 28, 32]. Other methods
intervene in the generative process in various ways, e.g. by in-
jecting the attention maps derived from the DDIM inversion
process into the text-guided generative process [4, 9, 21, 27].

Here we address the problem of inverting the DDPM
scheme. As opposed to DDIM, in DDPM, T +1 noise maps
are involved in the generation process, each of which has
the same dimension as the generated output. Therefore, the
total dimension of the noise space is larger than that of the
output and there exist infinitely many noise sequences that
perfectly reconstruct the image. While this property may
provide flexibility in the inversion process, not every consis-
tent inversion (i.e. one that leads to perfect reconstruction)
is also edit friendly. For example, one property we want
from an inversion in the context of text-conditional models,
is that fixing the noise maps and changing the text-prompt
would lead to an artifact-free image, where the semantics
correspond to the new text but the structure remains similar
to that of the input image. What consistent inversions satisfy
this property? A tempting answer is that the noise maps
should be statistically independent and have a standard nor-
mal distribution, like in regular sampling. Such an approach
was pursued in [30]. However, as we illustrate in Fig. 2, this
native DDPM noise space is in fact not edit friendly.

Here we present an alternative inversion method, which
constitutes a better fit for editing applications, from text-
guidance manipulations, to editing via hand-drawn colored
strokes. Our inversion “imprints” the image more strongly
onto the noise maps, which leads to better preservation of
structure when fixing them and changing the condition of the
model. This is achieved by the fact that our noise maps have
higher variances than the native ones. Our inversion requires
no optimization and is extremely fast. Yet, it allows achiev-
ing state-of-the-art results on text-guided editing tasks with
a relatively small number of diffusion steps, simply by fixing
the noise maps and changing the text condition (i.e. without
requiring model fine-tuning or intervention in the attention
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Figure 2. The native and edit friendly noise spaces. When sam-
pling an image using DDPM (left), there is access to the “ground
truth” noise maps that generated it. This native noise space, how-
ever, is not edit friendly (2nd column). For example, fixing those
noise maps and changing the text prompt, changes the image struc-
ture (top). Similarly, flipping (middle) or shifting (bottom) the noise
maps completely modifies the image. By contrast, our edit friendly
noise maps enable editing while preserving structure (right).

maps). Importantly, our DDPM inversion can also be readily
integrated with existing diffusion based editing methods that
currently rely on approximate DDIM inversion. As we illus-
trate in Fig. 1, this improves their ability to preserve fidelity
to the original image. Furthermore, since we find the noise
vectors in a stochastic manner, we can provide a diverse set
of edited images that all conform to the text prompt, a prop-
erty not naturally available with DDIM inversion, see top
row of Fig. 1 and the Supplementary Supplementary (SM).

2. Related work
2.1. Inversion of diffusion models

Editing a real image using diffusion models requires extract-
ing the noise vectors that would generate that image when
used within the generative process. The vast majority of
diffusion-based editing works use the DDIM scheme, which
is a deterministic mapping from a single noise map to a gen-
erated image [5, 7, 9, 19, 21, 27, 29]. The original DDIM pa-
per [26] suggested an efficient approximate inversion for that
scheme. This method incurs a small error at every diffusion
timestep, and these errors often accumulate into meaningful
deviations when using classifier-free guidance [10]. Mokady
et al. [19] improve the reconstruction quality by fixing each
timestep drifting. Their two-step approach first uses DDIM
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inversion to compute a sequence of noise vectors, and then
uses this sequence to optimize the input null-text embedding
at every timestep. Miyake et al. [18] achieve similar re-
construction accuracy through forward propagation without
optimization, thereby enabling much faster editing processes.
An improvement in the reconstruction quality was suggested
by Han et al. [8] that integrate a regularization term into
the null-text embedding optimization. EDICT [29] enables
mathematically exact DDIM-inversion of real images by
maintaining two coupled noise vectors which are used to
invert each other in an alternating fashion. This method
doubles the computation time of the diffusion process. Cy-
cleDiffusion [30] presents a DDPM-inversion method by
recovering a sequence of noise vectors that perfectly recon-
struct the image within the DDPM sampling process. As
opposed to our method, their extracted noise maps are dis-
tributed like the native noise space of DDPM, which results
in limited editing capabilities (see Figs. 2,4).

2.2. Image editing using diffusion models

The DDPM sampling method is not popular for editing of
real images. When used, it is typically done without exact
inversion. Two examples are Ho et al. [11], who interpolate
between real images, and Meng et al. [17] who edit real
images via user sketches or strokes (SDEdit). Both construct
a noisy version of the real image and apply a backward dif-
fusion after editing. They suffer from an inherent tradeoff
between the realism of the generated image and its faithful-
ness to the original contents. DiffuseIT [15] performs image
translation guided by a reference image or by text, also with-
out explicit inversion. They guide the generation process by
losses that measure similarity to the original image [6].

A series of papers apply text-driven image-to-image trans-
lation using DDIM inversion. Narek et al. [27] and Cao et
al. [4] achieve this by manipulating spatial features and their
self-attention inside the model during the diffusion process.
Hertz et al. [9] change the attention maps of the original
image according to the target text prompt and inject them
into the diffusion process. DiffEdit [5] automatically gen-
erates a mask for the regions of the image that need to be
edited, based on source and target text prompts. This is used
to enforce the faithfulness of the unedited regions to the orig-
inal image, in order to battle the poor reconstruction quality
obtained from the inversion. This method fails to predict
accurate masks for complex prompts.

Some methods utilize model optimization based on the
target text prompt. DiffusionCLIP [14] uses model fine-
tuning based on a CLIP loss with a target text. Imagic [13]
first optimizes the target text embedding, and then optimizes
the model to reconstruct the image with the optimized text
embedding. UniTune [28] also uses fine-tuning and shows
great success in making global stylistic changes and complex
local edits while maintaining image structure. Other works
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Figure 3. The DDPM latent noise space. In DDPM, the generative
(reverse) diffusion process synthesizes an image x0 in T steps, by
utilizing T + 1 noise maps, {xT , zT , . . . , z1}. We regard those
noise maps as the latent code associated with the generated image.

like Palette [24] and InstructPix2Pix [3], learn conditional
diffusion models tailored for specific editing tasks.

3. The DDPM noise space
Here we focus on the DDPM sampling scheme, which is
applicable in both pixel space [11] and latent space [23].
DDPM draws samples by attempting to reverse a diffusion
process that gradually turns a clean image x0 into white
Gaussian noise,

xt =
√

1− βtxt−1 +
√
βt nt, t = 1, . . . , T, (1)

where {nt} are iid standard normal vectors and {βt} is some
variance schedule. The forward process (1) can be equiva-
lently expressed as

xt =
√
ᾱtx0 +

√
1− ᾱt ϵt, (2)

where αt = 1 − βt, ᾱt =
∏t

s=1 αs, and ϵt ∼ N (0, I).
It is important to note that in the representation (2), the
vectors {ϵt} are not independent. This is because each ϵt
corresponds to the accumulation of the noises n1, . . . , nt, so
that ϵt and ϵt−1 are highly correlated for all t. This fact is
irrelevant for the training process, which is not affected by
the joint distribution of ϵt’s across different timesteps, but it
is important for our discussion below.

The generative (reverse) diffusion process starts from a
random noise vector xT ∼ N (0, I) and iteratively denoises
it using the recursion

xt−1 = µ̂t(xt) + σtzt, t = T, . . . , 1, (3)

where {zt} are iid standard normal vectors, and

µ̂t(xt) =
√
ᾱt−1P (ft(xt)) +D(ft(xt)). (4)

Here, ft is a neural network that is trained to predict ϵt
from xt, P (ft(xt)) = (xt −

√
1− ᾱtft(xt))/

√
ᾱt is the

predicted x0, and D(ft(xt)) =
√

1− ᾱt−1 − σ2
t ft(xt) is a
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direction pointing to xt. The variance schedule is taken to be
σt = ηβt(1 − ᾱt−1)/(1 − ᾱt), where η ∈ [0, 1]. The case
η = 1 corresponds to the original DDPM work, and η = 0
corresponds to the deterministic DDIM scheme.

This generative process can be conditioned on text [23] or
class [10] by using a neural network f that has been trained
conditioned on those inputs. Alternatively, conditioning can
be achieved through guided diffusion [1, 6], which requires
utilizing a pre-trained classifier or CLIP model during the
generative process.

The vectors {xT , zT , . . . , z1} uniquely determine the im-
age x0 generated by the process (3) (but not vice versa).
We therefore regard them as the latent code of the model
(see Fig. 3). Here, we are interested in the inverse direction.
Namely, given a real image x0, we would like to extract
noise vectors that, if used in (3), would generate x0. We re-
fer to such noise vectors as consistent with x0. Our method,
explained next, works with any η ∈ (0, 1].

3.1. Edit friendly inversion

It is instructive to note that any sequence of T + 1 images
x0, . . . , xT , in which x0 is the real image, can be used to
extract consistent noise maps by isolating zt from (3) as1

zt =
xt−1 − µ̂t(xt)

σt
, t = T, . . . , 1. (5)

However, unless such an auxiliary sequence of images
is carefully constructed, they are likely to be far from
the distribution of inputs on which the network ft(·) was
trained. In that case, fixing the so-extracted noise maps,
{xT , zT , . . . , z1}, and changing the text condition, may lead
to poor results.

What is a good way of constructing auxiliary images
x1, . . . , xT for (5) then? A naive approach is to draw them
from a distribution that is similar to that underlying the
generative process. Such an approach was pursued by [30].
Specifically, they start by sampling xT ∼ N (0, I). Then, for
each t = T, . . . , 1 they isolate ϵt from (2) using xt and the
real x0, substitute this ϵt for ft(xt) in (4) to compute µ̂t(xt),
and use this µ̂t(xt) in (3) to obtain xt−1.

The noise maps extracted by this method are distributed
similarly to those of the generative process. Unfortunately,
they are not well suited for editing global structures. This
is illustrated in Fig. 4 in the context of text guidance and
in Fig. 7 in the context of shifts. The reason for this is that
DDPM’s native noise space is not edit-friendly in the first
place. Namely, even if we take a model-generated image,
for which we have the “ground-truth” noise maps, fixing
them while changing the text prompt does not preserve the
structure of the image (see Fig. 2).

Interestingly, here we observe that constructing the auxil-
iary sequence x1, . . . , xT directly from x0, and not via (1),

1Commonly, z1 = 0 in DDPM, so that we run only over t = T, . . . , 2.

Our inversionCycle DiffusionInput

a silhouette of a bird on a branch → a photo of a sparrow on a branch

a photo of a black car → a photo of a red car

a yellow cat with a bow on its neck → a yellow dog with a bow on its neck

Figure 4. DDPM inversion via CycleDiffusion vs. our method.
CycleDiffusion’s inversion [30] extracts a sequence of noise maps
{xT , zT , . . . , z1} whose joint distribution is close to that used in
regular sampling. However, fixing this latent code and replacing
the text prompt fails to preserve the image structure. Our inversion
deviates from the regular sampling distribution, but better encodes
the image structure.

causes the image x0 to be more strongly “imprinted” into
the noise maps extracted from (5). Specifically, we propose
to construct them as

xt =
√
ᾱtx0 +

√
1− ᾱt ϵ̃t, 1, . . . , T, (6)

where ϵ̃t ∼ N (0, I) are statistically independent. Note
that despite the superficial resemblance between (6) and (2),
these equations describe fundamentally different stochastic
processes. In (2) every pair of consecutive ϵt’s are highly
correlated, while in (6) the ϵ̃t’s are independent. This implies
that in our construction, xt and xt−1 are typically farther
away from each other than in (2), so that every zt extracted
from (5) has a higher variance than in the regular generative
process. A pseudo-code of our method is provided in Alg. 1.

A few comments are in place regarding this inversion
method. First, it reconstructs the input image up to ma-
chine precision, given that we compensate for accumulation
of numerical errors (last row in Alg. 1), as we explain in
the SM. Second, it is straightforward to use with any kind
of diffusion process (e.g. a conditional model [11, 12, 23],
guided-diffusion [6], classifier-free [10]) by using the ap-
propriate form for µ̂t(·). Lastly, due to the randomness in
(6), we can obtain many different inversions. While each of
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Algorithm 1 Edit-friendly DDPM inversion

Input: real image x0

Output: {xT , zT , . . . , z1}
for t = 1 to T do
ϵ̃ ∼ N (0, 1)
xt ←

√
ᾱtx0 +

√
1− ᾱtϵ̃

end for
for t = T to 1 do
zt ← (xt−1 − µ̂t(xt))/σt

xt−1 ← µ̂t(xt)+σtzt // to avoid error accumulation
end for
Return: {xT , zT , . . . , z1}

them leads to perfect reconstruction, when used for editing
they will lead to different variants of the edited image. This
allows generating diversity in e.g. text-based editing tasks, a
feature not naturally available with DDIM inversion methods
(see Fig. 1 and SM).

3.2. Properties of the edit-friendly noise space

We now explore the properties of our edit-friendly noise
space and compare it to the native DDPM noise space. We
start with a 2D illustration, depicted in Fig. 5. Here, we
use a diffusion model designed to sample from N (( 1010 ), I).
The top-left pane shows a regular DDPM process with 40
inference steps. It starts from xT ∼ N (( 00 ), I) (black dot
at the bottom left), and generates a sequence {xt} (green
dots) that ends in x0 (black dot at the top right). Each step is
broken down to the deterministic drift µ̂t(xt) (blue arrow)
and the noise vector zt (red arrow). On the top-right pane,
we show a similar visualization, but for our latent space.
Specifically, here we compute the sequences {xt} and {zt}
using Alg. 1 for some given x0 ∼ N (( 1010 ), I). As can be
seen, in our case, the noise perturbations {zt} are larger.
This property comes from our construction of xt, which are
typically farther away from one another than in (2). How can
the red arrows be longer and still form a trajectory from the
origin to the blue cloud? Close inspection reveals that the
angles between consecutive noise vectors tend to be obtuse.
In other words, our noise vectors are (negatively) correlated
across consecutive times. This can also be seen from the
two plots in the bottom row, which depict the histograms
of angles between consecutive noise vectors for the regular
sampling process and for ours. In the former case, the angle
distribution is uniform, and in the latter it has a peak at 180◦.

The same qualitative behavior occurs in diffusion models
for image generation. Figure 6 shows the per-pixel variance
of zt and correlation between zt and zt−1 for sampling with
100 steps from an unconditional diffusion model trained on
Imagenet. Here the statistics were calculated over 10 images
drawn from the model. As in the 2D case, our noise vectors
have higher variances and they exhibit negative correlations
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Figure 5. Regular vs. edit-friendly diffusion. In the regular gen-
erative process (top left), the noise vectors (red) are statistically
independent across timesteps and thus the angle between consecu-
tive vectors is uniformly distributed in [0, 180◦] (bottom left). In
our dynamics (top right) the noise vectors have higher variances and
are negatively correlated across consecutive times (bottom right).
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Figure 6. Native vs. edit friendly noise statistics. Here we show
the per-pixel standard deviations of {zt} and the per-pixel correla-
tion between them for model-generated images.

between consecutive steps. As we illustrate next, these larger
variance noise vectors encode the structure of the input image
more strongly, and are thus more suitable for editing.

Image shifting Intuitively, shifting an image should be
possible by shifting all T + 1 maps of the latent code. Fig-
ure 7 shows the result of shifting the latent code of a model-
generated image by various amounts. As can be seen, shift-
ing the native latent code (the one used to generate the im-
age) leads to a complete loss of image structure. In contrast,
shifting our edit-friendly code, results in minor degradation.
Quantitative evaluation is provided in the SM.

Color manipulations Our latent space also enables con-
venient manipulation of color. Specifically, suppose we are
given an input image x0, a binary mask B, and a correspond-
ing colored mask M . We start by constructing {x1, . . . , xT }
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Figure 7. Image shifting. We shift to the right a 256 × 256
image generated by an unconditional model trained on ImageNet
by d = 1 . . . 16 pixels. When shifting the native noise maps (top)
or the ones extracted by CycleDiffusion [30] (middle) the structure
is lost. With our latent space, the structure is preserved.

and extracting {z1, . . . , zT } using (6) and (5), as before.
Then, we modify the noise maps as

zedited
t = zt + sB ⊙ (M − P (ft(xt))), (7)

with P (ft(xt)) from (4), where s is a parameter controlling
the editing strength. We perform this modification over a
range of timesteps [T1, T2]. Note that the term in parenthesis
encodes the difference between the desired colors and the
predicted clean image in each timestep. Figure 8 illustrates
the effect of this process in comparison to SDEdit, which
suffers from an inherent tradeoff between fidelity to the input
image and conformation to the desired edit. Our approach
can achieve a strong editing effect without modifying tex-
tures (neither inside nor outside the mask).

4. Text-Guided Image Editing
Our latent space can be utilized for text-driven image edit-
ing. Suppose we are given a real image x0, a text prompt
describing it psrc, and a target text prompt ptar. To modify
the image according to these prompts, we extract the edit-
friendly noise maps {xT , zT , . . . , z1}, while injecting psrc
to the denoiser. We then fix those noise maps and generate
an image while injecting ptar to the denoiser. We run the
generation process starting from timestep T−Tskip, where
Tskip is a parameter controlling the adherence to the input
image. Figures 1, 2, 4, and 9 show several text driven editing
examples using this approach. As can be seen, this method
nicely modifies semantics while preserving the structure of
the image. In addition, it allows generating diverse outputs
for any given edit (see Fig. 1 and SM). We further illustrate
the effect of using our inversion in combination with meth-
ods that rely on DDIM inversion (Figs. 1 and 11). As can be
seen, these methods often do not preserve fine textures, like
fur, flowers, or leaves of a tree, and oftentimes also do not
preserve the global structure of the objects. By integrating
our inversion, structures and textures are better preserved.

S
D
E
d
it

OursInput Mask

T=25 T=30T=20

Figure 8. Color manipulation on a real image. Our method
(applied here from T2 = 70 to T1 = 20 with s = 0.05) leads to
a strong editing effect without modifying textures and structures.
SDEdit, on the other hand, either does not integrate the mask well
when using a small noise (left) or does not preserve structures when
the noise is large (right). In both methods, we use an unconditional
model trained on ImageNet with 100 inference steps.

5. Experiments

We evaluate our method both quantitatively and qualitatively
on text-guided editing of real images. We analyze the usage
of our extracted latent code by itself (as explained in Sec. 4),
and in combination with existing methods that currently use
DDIM inversion. In the latter case, we extract the noise maps
using our DDPM-inversion and inject them in the reverse
process, in addition to any manipulation they perform on e.g.
attention maps. All experiments use a real input image as
well as source and target text prompts.

Implementation details We use Stable Diffusion [23], in
which the diffusion process is applied in the latent space
of a pre-trained image autoencoder. The image size is
512× 512× 3, and the latent space is 64× 64× 4. Our
method is also applicable in unconditional pixel space mod-
els using CLIP guidance, however we found Stable Diffusion
to lead to better results. Two hyper-parameters control the
balance between faithfulness to the input image and adher-
ence to the target prompt: the strength of the classifier-free
guidance [10], and Tskip explained in Sec. 4. In all our nu-
merical analyses and all the results in the paper, we used
strength=15, Tskip =36, η=1 and 100 inference steps, un-
less noted otherwise. In the SM we provide a thorough anal-
ysis of the effect of the strength and Tskip hyper-parameters.

Datasets We use two datasets of real images: (i) “modi-
fied ImageNet-R-TI2I” from [27] with additional examples
collected from the internet and from other datasets, (ii) “mod-
ified Zero-Shot I2IT”, which contains images of 4 classes
(Cat, Dog, Horse, Zebra) from [21] and from the internet.
The first dataset comprises 48 images, with 3-5 different
target prompts for each, leading to 212 image-text pairs. The
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Input
Time [sec]

Our inv.
[36]

PnP
[206]

A bear doll with a blue knitted sweater → A bear doll with a blue knitted sweater and a hat

An origami of a hummingbird → A sculpture of a hummingbird

A photo of a horse in the mud → A photo of a zebra in the snow

A photo of a cat sitting on a car → A photo of a smiling dog sitting on a car

EDICT
[520]

null-text inv.
[160]

A sculpture of a panda→ A sketch of a panda

CycleDiffusion
[36]

Figure 9. Comparisons. We show results for editing of real images using all methods. Our approach maintains high fidelity to the input
while conforming to the text prompt. The time taken to edit a single image is indicated within parentheses.

second dataset has 15 images in each category with one tar-
get prompt for each, making 60 image-text pairs in total.
Please refer to the SM for full details.

Metrics We numerically evaluate the results using two
complementary metrics: LPIPS [31] to quantify the extent
of structure preservation (lower is better) and a CLIP-based
score to quantify how well the generated images comply
with the text prompt (higher is better). We additionally quan-
tify the editing time in seconds required for image editing.
Further information on diversity is provided in the SM.

Comparisons on the modified ImageNet-R-TI2I dataset
We perform comparisons with Plug-and-Play (PnP) [27],
EDICT [29], null-text inversion [19] and CycleDiffu-
sion [30]. Additionally, we assess our method against

prompt-to-prompt (p2p) [9], both as a standalone technique
and when integrated with our inversion. Further details on
the integration can be found in the SM. We report the results
of CycleDiffusion with η = 1, similarly to our configuration.
Quantitative results with η = 0.1, as suggested in their pa-
per, can be found in SM. Finally, we compare our method to
both plain DDIM inversion and DDIM inversion that applies
the inversion until a specific timestep. All methods were
run with the default parameters suggested by their authors
and are provided in SM. For a fair comparison, we use the
same parameters of CycleDiffusion across all images within
the experiment. This is in contrast to their paper where
parameters are individually selected for each image.

As seen in Fig. 9, our method successfully modifies real
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Figure 10. Fidelity to source image vs. compliance with
target text. The plot compares the LPIPS and CLIP scores
achieved by all methods on the modified ImageNet-R-TI2I
dataset. Our inversion, P2P with our inversion, and Cy-
cleDiffusion are shown with three options of the parameters
(strength,Tskip): for our method (15, 36), (12, 36), (9, 36), for
P2P+Ours (7.5, 8), (7.5, 12), (9, 20), and for CycleDiffusion
(3, 30), (4, 25), (4, 15). DDIM inversion mid-way is shown with
three options for Tskip: 20, 40, 60, all with a guidance strength of 9.
The parameters for the other methods are reported in the SM. For
CLIP higher is better, while for LPIPS lower is better.

images according to the target prompts. In all cases, our
results exhibit both high fidelity to the input image and ad-
herence to the target prompt. EDICT shows some artifacts in
their results and CycleDiffusion produces images with less
compliance with the target text. PnP and null-text inversion
often preserve structure but require more than 2.5 minutes
to edit an image. Qualitative results with plain DDIM inver-
sion and P2P with and without our inversion appear in SM.
Figure 10 shows the CLIP-LPIPS losses graph for all meth-
ods, where, for our inversion, P2P with our inversion, and
CycleDiffusion we report these losses with three different
parameters. As can be seen, our method achieves a good
balance between LPIPS and CLIP. CycleDiffusion struggles
to apply a strong edit while preserving the structure. Inte-
grating our inversion into P2P improves their performance
in both metrics. See more details in the SM.

Comparisons on the modified Zero-Shot I2IT dataset
Next, we compare our method to Zero-Shot Image-to-Image
Translation (Zero-Shot) [21], which uses DDIM inversion.
This method only translates between several predefined
classes. We follow their setting and use 50 diffusion steps.
When using with our inversion, we decrease the hyper-
parameter controlling the cross-attention from the default
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Figure 11. Improving Zero-Shot I2I Translation. Images gen-
erated by Zero Shot I2I suffer from loss of detail. With our inver-
sion, fine textures, like fur and flowers, are retained. Both meth-
ods achieve CLIP accuracy of 0.88, however, Zero-Shot method
achieves LPIPS score of 0.35 while Zero-Shot with our inversion
produces images more similar to the input, and hence, achievs an
LPIPS score of 0.27 (for LPIPS lower is better).

value 0.1 to 0.03. As can be seen in Fig. 11, while Zero-
Shot’s results comply with the target text, they are typically
blurry and miss detail. Integrating our inversion adds back
the details from the input image. See more details in the SM.

6. Conclusion

We presented an inversion method for DDPM. Our noise
maps encode the image structure more strongly than the
noise maps in regular sampling, and are therefore better
suited for image editing. We illustrated their advantages in
text-based editing, both when used by themselves and in
combination with other editing methods.
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