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Abstract

The Segment Anything Model (SAM), a prompt-driven
foundational model, has demonstrated remarkable perfor-
mance in natural image segmentation. However, its appli-
cation in video camouflaged object detection (VCOD) en-
counters challenges, chiefly stemming from the overlooked
temporal-spatial associations and the unreliability of user-
provided prompts for camouflaged objects that are difficult
to discern with the naked eye. To tackle the above issues,
we endow SAM with keen eyes and propose the Temporal-
spatial Prompt SAM (TSP-SAM), a novel approach tailored
for VCOD via an ingenious prompted learning scheme.
Firstly, motion-driven self-prompt learning is employed to
capture the camouflaged object, thereby bypassing the need
for user-provided prompts. With the detected subtle motion
cues across consecutive video frames, the overall movement
of the camouflaged object is captured for more precise spa-
tial localization. Subsequently, to eliminate the prompt bias
resulting from inter-frame discontinuities, the long-range
consistency within the video sequences is taken into ac-
count to promote the robustness of the self-prompts. It is
also injected into the encoder of SAM to enhance the repre-
sentational capabilities. Extensive experimental results on
two benchmarks demonstrate that the proposed TSP-SAM
achieves a significant improvement over the state-of-the-art
methods. With the mIoU metric increasing by 7.8% and
9.6%, TSP-SAM emerges as a groundbreaking step forward
in the field of VCOD.

1. Introduction
Camouflaged object detection, a pivotal task in computer
vision, aims to identify the target object seamlessly blend-
ing with its surroundings in images [19, 44]. This task
plays an important role in various fields, including surveil-
lance and security [29], wildlife protection [28], and medi-
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Figure 1. Illustration of previous VCOD methods (a-b) and the
proposed TSP-SAM (c). In contrast to previous methods with two-
stage architecture, the proposed TSP-SAM is trained in an end-to-
end manner, incorporating short-long term temporal-spatial rela-
tionships to collaboratively learn the reliable prompts. Meanwhile,
the long-range consistency is also used to enhance the representa-
tional capability of SAM.

cal image processing [11, 41]. In recent years, single-image
camouflaged object detection has made significant progress
[16, 19, 45]. However, studies [26, 43] have discerned that
observers exhibit heightened perception towards the cam-
ouflaged object in motion compared to the static scenarios.
This observation has sparked a growing interest in video
camouflaged object detection (VCOD) [5].

Existing VCOD methods [1, 2, 5, 26] commonly employ
a two-step framework to model the inter-frame correlations
implicitly or explicitly for camouflage breaking, as shown
in Fig. 1(a)(b). Despite yielding promising results, they are
noticeably limited in certain aspects:
- (i) Primarily, their two-stage architecture exposes them to
cumulative errors, thus impacting their overall accuracy.
- (ii) Moreover, they exhibit weak generalization ability
due to the limited training data.
Consequently, there is a growing demand for universal mod-
els in video camouflaged object detection.
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With the emergence and development of the visual foun-
dation model, the segment anything model (SAM) [25] has
showcased unprecedented performance in the field of natu-
ral image segmentation. This accomplishment is attributed
to the impressive representations learned on 11 million im-
ages in SA-1B [25] and 636 million parameters of ViT-H
[8]. SAM not only exhibits heightened versatility in terms
of model capacity, but also potentially yields more consis-
tent results across different tasks [30]. Inspired by the re-
markable generality of SAM, this work endeavors to make
SAM suitable for VCOD.

However, it is worth noting that the performance of
SAM is uncertain when applied to VCOD due to the dif-
ferences between the camouflaged images and natural im-
ages. Specifically, SAM, as a prompt-driven foundational
model, requires extra prompts when segmenting specific re-
gions. Yet, the seamless blending of the camouflaged object
with its surroundings renders it imperceptible to the naked
eye, posing a formidable challenge in providing reliable
prompts. Hence, there arises an urgent need for adaptive
prompt learning to the camouflaged object.

It is well-known that the temporal-spatial interplay
in video sequences plays a pivotal role in video-related
tasks. Short-term temporal-spatial relationships accentuate
the variations between frames, while long-term temporal-
spatial correlations model the temporal-spatial context to
characterize the dependencies between the target object and
the background. Motivated by these considerations, in this
work, we develop a flexible end-to-end temporal-spatial
prompt SAM, called TSP-SAM, for VCOD. To the best of
our knowledge, the proposed TSP-SAM is the first SAM-
based camouflaged object detection framework.

Our main contributions can be summarized as follows:

• Instead of user-provided prompts, we propose motion-
driven self-prompt learning to capture the camouflaged
object. It perceives the overall motion of the camouflaged
object by establishing inter-frame associations in the fre-
quency domain, facilitating its spatial identification.

• To eliminate the prompt bias stemming from inter-frame
discontinuities, robust prompt learning based on long-
range consistency is proposed. By modeling the long-
range temporal-spatial dependencies within video se-
quences, the robustness of self-prompts is well promoted.

• In order to enhance the representational capability of
SAM, we propose temporal-spatial injection that incorpo-
rates the long-range temporal-spatial consistency into the
encoder of SAM. This enhancement contributes to more
precise detection within the SAM framework.

• Extensive experiments on MoCA-Mask and CAD2016
datasets demonstrate that the proposed TSP-SAM
achieves substantial performance improvements over the
state-of-the-art method, with mIoU metric increasing by
7.8% and 9.6%.

2. Related work
2.1. Camouflaged object detection

Camouflaged object detection (COD) aims to identify ob-
jects blending into their surroundings in images. Existing
CNN-based methods address this task with various strate-
gies. Fan et al. [10, 12] introduced a two-stage process,
involving a search stage for localization followed by a seg-
mentation stage for refinement. In multi-task learning, Yang
et al. [43] and Ji et al. [21] incorporated an auxiliary task
to derive shared context representations for enhancing the
COD task. Other strategies, such as frequency cues, have
also been explored. These works [6, 45] combined the static
frequency spectrum with the spatial representations to dis-
cern the subtle differences between the camouflaged object
and its surroundings. In contrast to the static frequency per-
ception, our TSP-SAM perceives the frequency energy vari-
ants to depict the implicit motion between frames, facilitat-
ing the spatial identification of the camouflaged object.

2.2. Video camouflaged object detection

Compared to the static appearance of images, the mo-
tion between video frames is deemed a significant clue for
breaking camouflage. Existing video camouflaged object
detection methods [1, 2, 5, 26] implicitly or explicitly mod-
eled the temporal-spatial correlations through a two-stage
architecture to detect camouflaged objects. Explicit motion-
based methods [1, 2, 26] segmented the optical flow field
after compensation or registration into object and back-
ground. In contrast, implicit feature correspondences be-
tween frames are learned by the neural network for an ef-
fective alignment [5]. Nonetheless, their two-stage architec-
ture leads to cumulative errors. Different from the two-stage
architecture, our TSP-SAM is trained in an end-to-end man-
ner, incorporating the short-long term temporal-spatial rela-
tionships to collaboratively learn reliable prompts for SAM.

2.3. Segment anything model

The segment anything model (SAM) [25], a prompt-driven
large-scale foundation model, has exhibited unprecedented
performance in natural image segmentation. The core com-
ponents of SAM comprise an image encoder, a flexible
prompt encoder and a lightweight mask decoder. De-
spite exhibiting excellent zero-shot segmentation capability,
SAM performs unstable in application-specific tasks [4]. It
fails to segment medical images [18], camouflaged objects
[37] and concealed scenes [22]. To apply SAM to medical
images, MedSAM [30] and SAM-Adapter [4, 40] incorpo-
rated specific domain knowledge into SAM. Yet, up to now,
there has been no work on adapting SAM to be tailored for
camouflaged object detection. To fill this gap, TSP-SAM
explores the temporal-spatial relationships, presenting the
first SAM-based camouflaged object detection framework.
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Figure 2. The framework of the proposed TSP-SAM. In motion-driven self-prompt learning (b), the implicit motion between consecutive
frames is perceived to facilitate the spatial identification of the camouflaged object, thereby learning the dense self-prompt Pd(t) and
sparse self-prompt Ps(t). Subsequently, in robust prompt learning (c), the long-range consistency Xc(t) is modeled to refine the sparse
self-prompt Ps(t). Moreover, in temporal-spatial injection (d), the long-range consistency Xc(t) is injected into the image embedding
Xe(t) of SAM for representation enhancement. During the training phase, SAM (a) is frozen, including the image encoder Ei, prompt
encoder Ep and the mask decoder Em.

3. Overview of the proposed TSP-SAM

3.1. Notations

In the subsequent sections, we establish the key notations
for clarity and consistency in our discourse. Given a se-
quence of camouflaged images, denote by I(t) ∈ RH×W×3

the t-th frame and Iw(t) = [I(t − T + 1), · · · , I(t)] ∈
RT×H×W×3 the corresponding windowed sequence con-
taining T frames. For a tensor A ∈ RH×W×C , Mat(A) ∈
RHW×C denotes its matrixization by spatial-wise concate-
nation. For a matrix B ∈ RHW×C , Ten(B) ∈ RH×W×C

represents its tensorization by spatial-wise division.

3.2. Framework

Fig. 2 illustrates the framework of the proposed TSP-SAM.
The core components consist mainly of the following three
modules:

(a) Motion-driven self-prompt learning. The motion-
driven self-prompt learning is to use the implicit inter-frame
motion X̂(t−1)→t in the frequency domain to facilitate the
spatial identification of the camouflaged object, thereby
learning the self-prompts for SAM.

(b) Robust prompt learning based on long-range
consistency. To eliminate the prompt bias stemming
from underlying inter-frame discontinuities, the long-range
temporal-spatial consistency Xc(t) in video sequences is
modeled to promote the robustness of the self-prompts.

(c) Temporal-spatial injection for representation en-
hancement. To enhance the representational capabilities
of SAM, the long-range temporal-spatial consistency Xc(t)
is injected into the image embedding Xe(t) of SAM, con-

tributing to more precise detection.

4. Methodology
In this section, we detail the proposed TSP-SAM method
for video camouflaged object detection.

4.1. Motion-driven self-prompt learning

It is well-known that SAM requires user-provided prompts
when segmenting specific regions. Nevertheless, the dif-
ficulty in distinguishing the camouflaged object with the
naked eye makes the requirement of providing visual
prompts a significant challenge. Consequently, a com-
pelling need arises to devise a prompt learning network, ca-
pable of adaptively identifying the camouflaged object.

4.1.1 Frequency-based motion perception

Inspired by the two-stream hypothesis in neuroscience [14],
which highlights the importance of motion in visual per-
ception, we consider the motion as a crucial clue for break-
ing camouflage. Building on this premise, several studies
[7, 23] indicate the motion between frames can be expressed
exhaustively in the frequency domain through the variants
in frequency energy. Hence, frequency-based motion per-
ception is designed to facilitate the spatial identification of
the camouflaged object.

Specifically, as shown in Fig. 3, given consecutive video
frames I(t − 1) ∈ RH×W×3 and I(t) ∈ RH×W×3, we
first map them into the frequency domain. Following [45],
the image features are divided into a set of s × s patches
and each patch is processed by Discrete Cosine Transform
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Figure 3. The framework of the motion-driven self-prompt learn-
ing. The spatial representations {Xb(t)}Nb

b=1 are extracted by PVT
[39], where Nb is the number of attention blocks.

(DCT) into frequency spectrum, where s is the size of
patches. To group all components of the same frequency
into one channel, we flatten and reshape the spectrum of
these patches, forming the frequency features Î(t − 1) ∈
RH

s ×W
s ×3s2 and Î(t) ∈ RH

s ×W
s ×3s2 .

In order to perceive the overall motion of the camou-
flaged object, the inter-frame associations are established
on high frequency and low frequency bands respectively.
Specifically, the frequency spectrum {Î(t − 1), Î(t)} is di-
vided into two groups in the channel dimension, namely low
frequency bands {Î l(t−1), Î l(t)} and high frequency bands
{Îh(t− 1), Îh(t)}. Hence, we have:

X̂l
(t−1)→t=MLP(ATTN(Mat(Îl(t− 1)),Mat(Îl(t)))) (1)

X̂h
(t−1)→t=MLP(ATTN(Mat(Îh(t− 1)),Mat(Îh(t)))) (2)

where X̂ l
(t−1)→t ∈ R

HW
s2

× 3s2

2 and MLP(·) is the linear
layer. ATTN(·, ·) is multi-head cross attention [38] to ex-
tract the inter-frame correspondences, in which the (t−1)-th
frame is taken as query and the t-th frame serves as key and
value. Note that Eq.1 tends to highlight the global deforma-
tions of the camouflaged object by characterizing the fea-
ture correspondences on the low-frequency bands. Mean-
while, Eq.2 implicitly reveals the local edge motion of the
camouflaged object on high-frequency bands.

Subsequently, the complete implicit motion in the fre-
quency domain is obtained by:

X̂(t−1)→t=Î(t) + CBA(Cat(Ten(X̂l
(t−1)→t),Ten(X̂

h
(t−1)→t)))

(3)
where CBA(·) is the convolution operation followed by
batch normalization and activation and Cat(·) is the
channel-wise concatenation. Importantly, X̂(t−1)→t ∈
RH

s ×W
s ×3s2 implicitly depicts the overall motion of the

camouflaged object by perceiving the variants in the fre-
quency energy, enabling to facilitate the discovery of the
camouflaged object.

4.1.2 Implicit motion-induced spatial-frequency fu-
sion

To translate the perceived motion into the spatial domain,
the implicit motion-induced spatial-frequency representa-
tion fusion is established. This process involves the inte-
gration between the implicit motion X̂(t−1)→t in the fre-
quency domain and the spatial representations Xb(t) ∈
R

H

2b+1 × W

2b+1 ×C , b ∈ {1, · · · , Nb} extracted by PVT [39],
where Nb is the number of attention blocks. It can be ex-
pressed as follows:

X̂b(t)=Xb(t)+Ten(ATTN(Mat(CBA(X̂(t−1)→t)),Mat(Xb(t))))) (4)

where X̂b(t) ∈ R
H

2b+1 × W

2b+1 ×C . Note that the spatial per-
ception of the camouflaged object could be strengthened by
establishing cross attention between the implicit motion as
query and the spatial representation as key and value.

4.1.3 Self-prompt learning

Based on the co-representations {X̂b(t)}Nb

b=1, two prompt
heads are adopted to generate the dense self-prompt Pd(t)
and sparse self-prompt Ps(t), respectively. Specifically, we
adopt the decoder of SLTNet [5] as dense prompt head Ed

as follows:
Pd(t) = Ed({X̂b(t)}Nb

b=1) (5)

where Pd(t) is the dense self-prompt. Meanwhile, as
illustrated in Fig. 3, to obtain the sparse prompt, we
adopt the residual block of Resnet [17] to process the co-
representations in a bottom-up manner:

X̃b(t)=

{
Resblock(X̂b(t)) b=Nb

Resblock(X̂b(t)+X̃b+1(t)) b∈{1,· · ·, Nb − 1}
(6)

Finally, the sparse self-prompt is represented as follows:

Ps(t) = Avgpool(CBA(X̃1(t)))) (7)

where Avgpool(·) is global average pooling operation.

4.2. Robust prompt learning based on long-range
consistency

The self-prompts of the camouflaged object are well learned
by using the perceived inter-frame motion to facilitate its
spatial identification. However, the susceptibility of inter-
frame motion to underlying temporal-spatial discontinu-
ities, such as occlusions, shaking, scene changes, etc.,
brings a potential lack of reliability in the learned self-
prompts. It is well known that the long-range depen-
dencies within the video sequences enable to characterize
the temporal-spatial context to cope with the short-term
temporal-spatial discontinuities. Hence, it is necessary to
explore the long-range temporal-spatial consistency within
the video sequences to improve the robustness of the self-
prompts, which likes endowing SAM with keen eyes.
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4.2.1 Long-range consistency squeezing

As illustrated in Fig. 2(c), given the windowed sequence
Iw(t) ∈ RT×H×W×3 corresponding to the current frame
I(t), we adopt a 3D convolution neural network Et to ex-
tract the long-range temporal-spatial relationships:

Xw(t) = Et(I
w(t)) (8)

where Xw(t) ∈ RT×H
4 ×W

4 ×C fully reveals the temporal-
spatial dependencies within the video sequences. In our
work, we adopt 3D Resnet18 [15] as Et.

Subsequently, to further extract the long-range temporal-
spatial consistency of the camouflaged object, we take the
camouflage representation Xe(t) from the encoder of SAM
as query and the long-range temporal-spatial dependencies
Xw(t) averaged along the temporal dimension as key and
value to establish the cross attention:

Xc(t) = ATTN(Mat(Xe(t)),Mat(Avgt(X
w(t)))) (9)

where Avgt(·) is an average operation to squeeze the tem-
poral dimension. Xc(t) ∈ RHW

16 ×C characterizes the long-
range consistency specific to the camouflaged object.

4.2.2 Robust prompt learning

To enhance the robustness of the self-prompts to inter-frame
temporal-spatial discontinuities, the long-range temporal-
spatial consistency Xc(t) should be induced into the prompt
learning. Specifically, in order to map the long-range
consistency into the coordinate space, a learnable query
Qc(t) ∈ R4×C is defined to establish cross attention with
Xc(t). It is formulated as:

Pr(t) = Avgc(ATTN(Qc(t), Xc(t))) (10)

where Avgc(·) is an average operation along the channel
dimension. Pr(t) ∈ R4 is a refinement term derived from
long-range consistency to correct the sparse self-prompt:

P r
s (t) = Ps(t) + Pr(t) (11)

Through incorporating long-range consistency into the
prompt learning, the visual prompts could be more robust to
the temporal-spatial discontinuities, which means endowing
SAM with a pair of keen eyes.

4.3. Temporal-spatial injection for representation
enhancement

It is known that the remarkable performance of SAM re-
lies not only on well learned robust prompts but also on the
representational capability of the image encoder. However,
due to the fact that the image embedding of SAM lacks the
temporal-spatial information, the final predictions of con-
secutive frames may be inconsistent. Hence, it is necessary

to inject the long-range temporal-spatial consistency into
SAM. As shown in Fig. 2(d), it is represented as follows:

X̂e(t) = Xe(t) + Ten(Xc(t)) (12)

where Xc(t) is the long-range consistency from Eq. 9. In
this way, based on the enhanced image representations and
the robust prompts called keen eyes, SAM achieves more
precise camouflaged object detection in videos.

4.4. Model optimization

We train the proposed TSP-SAM in an end-to-end manner
by minimizing the joint loss below:

L(t) = LSAM (t) + αLs
p(t) + βLd

p(t) (13)

where LSAM , Ls
p and Ld

p supervise the final prediction, the
sparse prompt and the dense prompt, respectively.

Following [3], the supervision on the sparse prompt
Ls
p(t) is as follows:

Ls
p(t) = BCE(P r

s (t), G(t)) +MSE(P r
s (t), G(t)) (14)

where BCE is binary cross-entropy loss to supervise the co-
ordinates and MSE is mean square error to supervise the
size of the box prompt or the scale of the point prompt.
For the dense prompt loss Ld

p and the final prediction loss
LSAM , we adopt the hybrid loss [13] for supervision:

Lhybrid = Lw
ce + Lw

iou (15)

where Lw
ce is the weighted cross-entropy loss and Lw

iou is
the weighted intersection-over-union loss.

5. Experiment results and analysis
5.1. Experiment settings

Datasets. Following previous methods [5], we have con-
ducted a comprehensive evaluation on two widely used
datasets: MoCA-Mask [5] and CAD2016 [1]. The MoCA-
Mask dataset [5] is a video camouflaged object detection
dataset, covering camouflaged animals moving in natural
scenes. It contains 87 video sequences (22939 frames),
of which 71 video sequences are used for training and 16
sequences for testing. It is well annotated with bound-
ing boxes and pixel-level segmentation masks on every
fifth frames. Meanwhile, Camouflaged Animal Dataset [1]
(CAD2016) is a small video camouflaged object detection
dataset extracted from YouTube videos. It consists of nine
short video clips in total and is well annotated with pixel-
level semantic masks on every fifth frames.

Metrics. During the testing phase, we assess the predic-
tion masks using six widely-used metrics: S-measure (Sα)
[9], Weighted F-measure (Fw

β ) [31], Enhanced-alignment
measure (Eϕ) [13], Mean absolute error (MAE, M) [33],
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Method Year Input MoCA-Mask CAD2016
Sα ↑ Fw

β ↑ Eϕ ↑ M ↓ mDice↑ mIoU↑ Sα ↑ Fw
β ↑ Eϕ ↑ M ↓ mDice↑ mIoU↑

SINet[10] 2020-CVPR Image 0.574 0.185 0.655 0.030 0.221 0.156 0.601 0.204 0.589 0.089 0.289 0.209
SINet-v2[12] 2021-TPAMI Image 0.571 0.175 0.608 0.035 0.211 0.153 0.544 0.181 0.546 0.049 0.170 0.110
ZoomNet[32] 2022-CVPR Image 0.582 0.211 0.536 0.033 0.224 0.167 0.587 0.225 0.594 0.063 0.246 0.166
BGNet [36] 2022-IJCAI Image 0.590 0.203 0.647 0.023 0.225 0.167 0.607 0.203 0.666 0.089 0.345 0.256
FEDERNet[16] 2023-CVPR Image 0.555 0.158 0.542 0.049 0.192 0.132 0.607 0.246 0.725 0.061 0.361 0.257
FSPNet[19] 2023-CVPR Image 0.594 0.182 0.608 0.044 0.238 0.167 0.539 0.220 0.553 0.145 0.309 0.212
PUENet[44] 2023-TIP Image 0.594 0.204 0.619 0.037 0.302 0.212 0.673 0.427 0.803 0.034 0.499 0.389

RCRNet[42] 2019-ICCV Video 0.597 0.174 0.583 0.025 0.194 0.137 - - - - - -
PNS-Net[20] 2021-MICCAI Video 0.576 0.134 0.562 0.038 0.189 0.133 0.678 0.369 0.720 0.043 0.409 0.308
MG[43] 2021-ICCV Video 0.547 0.165 0.537 0.095 0.197 0.141 0.484 0.314 0.558 0.370 0.351 0.260
SLT-Net[5] 2022-CVPR Video 0.656 0.357 0.785 0.021 0.387 0.310 0.679 0.420 0.805 0.033 0.445 0.342

TSP-SAM(M+P) Ours Video 0.673 0.400 0.766 0.012 0.421 0.345 0.681 0.500 0.853 0.031 0.496 0.393
TSP-SAM(M+B) Ours Video 0.689 0.444 0.808 0.008 0.458 0.388 0.704 0.524 0.912 0.028 0.543 0.438

Table 1. Quantitative comparisons over two benchmark datasets. The top three results are highlighted in red, green, and blue. M+P:
Combination of mask and point prompts. M+B: Combination of mask and box prompts.

Method Sα ↑ Fw
β ↑ Eϕ ↑ M ↓ mDice↑ mIoU↑

SINet[10] 0.636 0.346 0.775 0.041 0.381 0.283
SINet-v2[12] 0.653 0.382 0.762 0.039 0.413 0.318
ZoomNet[32] 0.633 0.349 0.601 0.033 0.349 0.273
FEDERNet[16] 0.573 0.272 0.609 0.051 0.260 0.199
FSPNet[19] 0.681 0.401 0.716 0.044 0.446 0.332
PUENet[44] 0.691 0.485 0.795 0.034 0.514 0.396

RCRNet[42] 0.627 0.287 0.666 0.048 0.309 0.229
PNS-Net[20] 0.655 0.325 0.673 0.048 0.384 0.290
MG[43] 0.594 0.336 0.691 0.059 0.368 0.268
SLT-Net[5] 0.696 0.481 0.845 0.030 0.493 0.401

TSP-SAM(M+P) 0.705 0.565 0.836 0.027 0.531 0.422
TSP-SAM(M+B) 0.751 0.628 0.851 0.021 0.603 0.496

Table 2. Generalization comparisons on CAD2016 dataset. The
best results are highlighted in bold. M+P: Combination of mask
and point prompts. M+B: Combination of mask and box prompts.

meanDice (mDice), meanIoU (mIoU). Overall, a better
VCOD method has larger Sα, Fw

β , Eϕ, mDice and mIoU
scores, but a smaller MAE score.

Implementation details. In our experiments, we freeze
SAM and train our TSP-SAM in an end-to-end manner with
a maximum of 20 epochs. Specifically, for a fair com-
parison, both the training and testing images are resize to
352×352. We leverage Adam [24] as our optimizer and set
the weight decay to 1× 10−5. On the MoCA-Mask dataset,
the learning rate is initialized to 1× 10−5 for the spatial ex-
tractor of motion-driven self-prompt learning and 5× 10−5

for other trainable parameters. After 10 epochs, the learning
rate is reduced by 90%. On the CAD2016 dataset, we adopt
a ratio of 9:1 to divide all classes into training and testing
sets and report the mean value over the testing set. We set
the initial learning rate to 1× 10−4 for the spatial extractor
of the motion-driven self-prompt learning and 5× 10−4 for
other trainable parameters. The other settings are the same
as those on MoCA-Mask dataset.

Method
Tuning

parameters (M)

FSPNet 274.24
SLT-Net 82.41

TSP-SAM(ours) 89.78

Table 3. The number of
tuning parameters.

Method Time (s) ↓ Speed (fps) ↑
FSPNet 568.70 1.31
SLT-Net 253.40 2.94
Overall (ours) 294.99 2.53

Prompt learning 73.28 10.17
SAM 221.71 3.36

Table 4. Comparisons on infer-
ence time and speed.

5.2. Performance comparison

1) Baselines: To evaluate the performance of the proposed
TSP-SAM, we compare it with a range of state-of-the-art
methods. These methods fall into two categories:
• Single-image camouflaged object detection. These

methods analyze the static appearance of images to dis-
cern the subtle differences between camouflaged objects
and their surroundings. The compared methods in this
type include SINet [10], SINet-v2 [12], ZoomNet [32],
BGNet [36], FEDERNet [16], FSPNet[19], and PUENet
[44].

• Video object segmentation. This set of methods ex-
plores the temporal-spatial relationships between frames
for the purpose of segmenting objects with specific at-
tributes. The compared methods in this type encompass
RCRNet [42], PNS-Net [20], MG[43], and SLT-Net[5].
2) Quantitative Results: We evaluate TSP-SAM on

MoCA-Mask and CAD2016 datasets. From Table 1, we can
conclude that, (i) compared to the combination of mask and
point prompts, the combination of mask and box prompts is
more reliable for SAM. This is attributed to the limitations
of the point prompt in conveying the boundary information.
In contrast, bounding box excels in indicating the bound-
aries of the camouflaged object, even in the presence of bias.
(ii) the strong contrast between the performance of TSP-
SAM and single-image camouflaged object detection meth-
ods points to the importance of temporal-spatial relation-
ships in breaking camouflage. (iii) the proposed TSP-SAM
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Figure 4. Visualization of our proposed TSP-SAM and baseline methods on MoCA-Mask and CAD2016 dataset. From left to right:
frames (1st column), ground truth (2nd column), prediction of our TSP-SAM with mask and box prompts (3rd column), prediction of our
TSP-SAM with mask and point prompts (4th column), and predictions of compared methods (5th-7th columns).

Prediction(M+B) Frame GT M+B Prompts M+P Prompts Prediction(M+P)

Figure 5. Visualization of several failure cases with mask and
point prompts. From left to right: frames (1st column), ground
truth (2nd column), mask and box prompts (3rd column), pre-
diction with mask and box prompts (4th column), mask and
point prompts (5th column), and prediction with mask and point
prompts (6th column).

surpasses all video object segmentation methods. Notably,
TSP-SAM exhibits a 1.3% - 8.7% improvement over SLT-
Net [5] on MoCA-Mask dataset, meaning that the temporal-
spatial exploration in TSP-SAM is more effective.

To assess the generalization performance, we train on the
MoCA-Mask dataset and report the test performance on the
CAD2016 dataset. It can be observed from Table 2 that the
proposed TSP-SAM outperforms all baselines. Compared
with SLTNet [5], TSP-SAM surpasses it by 0.9%-14.7%,
indicating that TSP-SAM is capable of generalizing to the
unseen data more effectively. Meanwhile, we also test the
performance of TSP-SAM on general video object segmen-
tation datasets. On DAVIS2016 dataset [34], our model
achieves comparable performance to the SOTA SLT-Net.
While on SegTrack-v2 dataset [27] with multiple objects,
our method obtains 62.84% for mIoU, surpassing SLT-Net
by 9.9%. Surprisingly, our model is even comparable to the
recent SMTC [35] on SegTrack-v2.

Besides, we report the number of tuning parameters, the
inference time and speed. From Table 3, compared with
SLT-Net, our model achieves 9.6% improvements with a
slight parameter increase. From Table 4, our model is com-
parable to the latest video-oriented SLT-Net. Decomposing
the overall inference time, SAM consumes 75% of it.

3) Qualitative Results: To provide more intuitive eval-
uations of the proposed TSP-SAM, we conduct two quali-
tative discussions. Firstly, as shown in Fig. 4, we present
the segmentation results of several examples to intuitively
compare the proposed TSP-SAM with the baselines. It can
be seen that: (i) some confusing surrounding regions inter-
fere with the baseline methods, while our TSP-SAM is more
robust in identifying the camouflaged object. This demon-
strates the necessity of short-long term temporal-spatial re-
lationships. (ii) compared with the baselines, our TSP-SAM
exhibits superior capabilities in boundary segmentation in
terms of discriminability and details.

Secondly, to further analyze the influence of the type of
sparse prompts on overall performance, we visualize the
several failure cases with mask and point prompts. From
Fig. 5, it can be found that: (i) since the target object is
not always a regular shape, the learned point prompt is not
on the target object although it is near the center. (ii) under
the condition with unclear boundaries, the point prompt is
more likely to segment the regions of background. (iii) the
point prompt may induce the model to segment the local ar-
eas instead of the complete target object. In contrast, the
box prompt can avoid the above defects and achieve more
precise segmentation results. Meanwhile, the complete lo-
calization under the learned mask and box prompts verifies
the effectiveness of the temporal-spatial prompt learning.

5.3. Ablation study

To gain a comprehensive understanding of the efficacy of
core components and the impact of hyper parameters, we
delve into a detailed analysis.
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Method Sα ↑ Fw
β ↑ Eϕ ↑ mDice↑ mIoU↑

SAM+SSP 0.637 0.330 0.768 0.367 0.311
SAM+MSP 0.657 0.353 0.823 0.407 0.340
SAM+MSP+LCP 0.665 0.409 0.757 0.429 0.366
SAM+MSP+LCP+TSI 0.689 0.444 0.808 0.458 0.388

Table 5. Ablation studies of the core components on MoCA-Mask
dataset. SSP: Spatial-based self-prompt learning. MSP: Motion-
driven self-prompt learning. LCP: Long-range consistency-based
robust prompt learning. TSI: Temporal-spatial injection for repre-
sentation enhancement.
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Figure 6. Sensitivity analysis of the size T of the windowed se-
quence on MoCA-Mask dataset.

Ablation analysis: Table 5 present the segmenta-
tion results by progressively applying each part in our
model. Compared to the spatial-based self-prompt learn-
ing (SSP) comprising a spatial extractor and two prompt
heads, motion-driven self-prompt learning (MSP) improves
the mDice metric from 36.7% to 40.7% to a large de-
gree. This affirms the effectiveness of the inter-frame mo-
tion in camouflage breaking. Subsequently, the long-range
consistency-based robust prompt learning (LCP) brings
2.2% gains for mDice, indicating the effectiveness of long-
range consistency in improving the robustness of self-
prompts. Meanwhile, the temporal-spatial injection (TSI)
further boosts the mDice metric by 2.9%, once again veri-
fying the significance of long-range consistency.

To further analyze the effectiveness of frequency-based
motion perception in MSP, we replace it with spatial-based
motion perception, frequency-based static appearance per-
ception, and spatial-based static appearance perception to
conduct the ablation studies. As can be seen from Table
6, the frequency-based motion perception yields the best
performance. While verifying the significant role of inter-
frame motion in breaking camouflage, it also demonstrates
that inter-frame motion can be expressed more exhaustively
in the frequency domain than in the spatial domain.

Hyper parameter analysis: To investigate the effect of
the size of the windowed sequence on segmentation per-
formance, we conduct the ablation experiments by varying
T from {5, 6, 7, 8, 9, 10}. As illustrated in Fig. 6, the ac-

Method Sα ↑ Fw
β ↑ Eϕ ↑ mDice↑ mIoU↑

Spatial appearance 0.637 0.330 0.768 0.367 0.311
Frequency appearance 0.647 0.344 0.793 0.396 0.328
Spatial motion 0.651 0.335 0.730 0.396 0.324
Frequency motion 0.657 0.353 0.823 0.407 0.340

Table 6. Ablation studies of frequency-based motion perception on
MoCA-Mask dataset. Spatial appearance: Spatial-based appear-
ance perception. Frequency appearance: Frequency-based appear-
ance perception. Spatial motion: Spatial-based motion perception.
Frequency motion: Frequency-based motion perception.
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Figure 7. Sensitivity analysis of the balance factor (α, β) in the
loss function on MoCA-Mask dataset.

curacy initially rises with increasing the size of the win-
dowed sequence, reaches the best at T = 7 before declin-
ing. Moreover, we assess the sensitivity of α and β that
are used to balance the sparse and dense prompt loss in Fig.
7. The optimal segmentation performance is observed at
(α, β) = (1, 0.6).

6. Conclusion
In this paper, we propose a flexible end-to-end temporal-
spatial prompt SAM (TSP-SAM) for video camouflaged
object detection. Instead of user-provided prompts, motion-
driven self-prompt learning is proposed to capture the over-
all motion of the camouflaged object, facilitating its spa-
tial identification. Subsequently, a robust prompt learning
based on long-range consistency is proposed to promote the
robustness of the self-prompts, which likes endowing SAM
with keen eyes. Moreover, the long-range consistency is in-
jected into the encoder of SAM for representation enhance-
ment. Notably, TSP-SAM provides a new perspective, that
is temporal-spatial associations, for visual prompt learning.
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