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Abstract

Volumetric optical microscopy using non-diffracting
beams enables rapid imaging of 3D volumes by projecting
them axially to 2D images but lacks crucial depth informa-
tion. Addressing this, we introduce MicroDiffusion, a pi-
oneering tool facilitating high-quality, depth-resolved 3D
volume reconstruction from limited 2D projections. While
existing Implicit Neural Representation (INR) models of-
ten yield incomplete outputs and Denoising Diffusion Prob-
abilistic Models (DDPM) excel at capturing details, our
method integrates INR’s structural coherence with DDPM’s
fine-detail enhancement capabilities. We pretrain an INR
model to transform 2D axially-projected images into a pre-
liminary 3D volume. This pretrained INR acts as a global
prior guiding DDPM’s generative process through a linear
interpolation between INR outputs and noise inputs. This
strategy enriches the diffusion process with structured 3D
information, enhancing detail and reducing noise in local-
ized 2D images. By conditioning the diffusion model on
the closest 2D projection, MicroDiffusion substantially en-
hances fidelity in resulting 3D reconstructions, surpassing
INR and standard DDPM outputs with unparalleled image
quality and structural fidelity. Our code and dataset are
available at https://github.com/UCSC-VLAA/
MicroDiffusion.

1. Introduction
Volumetric optical imaging has emerged as a pivotal tool in
biological and medical domains, enabling precise 3D visu-
alization of intricate structures with unprecedented tempo-
ral resolution [13, 46]. Despite its high spatial resolution,
the predominant approach in optical microscopy, reliant on
3D laser scanning, suffers from suboptimal temporal res-
olution due to the slow data acquisition inherent in point-
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Figure 1. Background and concept of MicroDiffusion-enabled
volumetric microscopy. (a) Conventional 3D laser scanning mi-
croscopy, while depth-resolvable due to its point-scanning 3D data
acquisition scheme, suffers from slow imaging speed. (b) Volu-
metric microscopy using a non-diffracting laser beam provides fast
volumetric imaging by axially projecting 3D volumes onto 2D im-
ages but lacks depth information within each acquired 2D image.
(c) Our proposed MicroDiffusion model is employed as a digi-
tal backend for 3D volumetric reconstruction from 2D projections
acquired in (b). MicroDiffusion significantly enhances volumet-
ric imaging performance, providing a synergistic balance between
imaging speeds and depth-resolving capabilities.

scanning methods (Fig. 1(a)). This limitation not only re-
stricts clinical diagnosis mostly to 2D imaging, potentially
compromising diagnostic accuracy [6, 12], but also impedes
the observing of dynamic 3D biological processes [14, 18].

Recent advancements using non-diffracting beams have
expedited laser scanning microscopy by optically project-
ing 3D volumes as 2D projections for volumetric imag-
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ing [8, 30, 42]. However, this approach sacrifices depth in-
formation within each 2D snapshot [3, 43] (see Fig. 1(b)),
necessitating the development of tools capable of recon-
structing depth for accurate 3D reconstruction from 2D im-
ages. In this paper, we aim to reconstruct 3D volumes from
limited 2D projections obtained through such volumetric
imaging, striving to expedite optical volumetric imaging
without compromising depth resolvability of 3D volumes.

Existing 3D reconstruction methods, such as Implicit
Neural Representations (INR) [38], offer a comprehen-
sive global view from given 2D microscopy projections by
mapping coordinates to a holistic 3D volume using neu-
ral networks. However, direct 3D reconstruction using
INR often yields globally coherent yet visually blurry out-
puts, lacking local details. This limitation in spatial res-
olution may stem from the limited number of 2D images
acquired. Conversely, Denoising Diffusion Probabilistic
Models (DDPM) [17], especially with the U-Net architec-
ture [32], excel in detailed generative modeling, manag-
ing spatial hierarchies, and preserving fine-grained details.
Building upon these strengths, we propose MicroDiffusion,
a hybrid approach integrating INR’s global structural coher-
ence with DDPM’s detail enhancement capabilities.

MicroDiffusion encompasses two key designs as shown
in Fig. 2: 1) INR pretraining, which transforms 2D projec-
tions into a preliminary 3D volumetric output, establishing
a global structure; and 2) implicit representation-guided
diffusion, where the pretrained INR acts as a global prior
guiding a diffusion model, enhancing details and reducing
noise in local 2D projections within the 3D volume. Specifi-
cally, MicroDiffusion employs a linear interpolation of INR
model output with the noise input, rather than starting from
a conventional Gaussian noise baseline, to enrich the diffu-
sion process with structured 3D information. Furthermore,
this step enhances image fidelity by conditioning image and
positional embeddings extracted from the closest projec-
tions. Thus, MicroDiffusion generates 3D reconstructions
faithfully representing original optical microscopy images.

Comprehensive experiments on three optical microscopy
datasets showcase MicroDiffusion’s efficacy. Compared to
the baseline INR, it notably enhances reconstruction qual-
ity by up to 15.5% in SSIM, 15.2% in PSNR, and 64.7% in
DICE on Dendrite dataset, up to 15.0% in SSIM, 3.0% in
PSNR, and 0.3% in DICE on Vasculature dataset, and up to
1.8% in SSIM, 0.8% in PSNR, and 4.7% in DICE on Neu-
ron dataset. The resulting 3D stacks demonstrate remark-
able resolution, delineating individual dendrites (less than
1µm) and preserving coherent 3D structures—an achieve-
ment unattainable by the naive DDPM approach. These
tangible outcomes establish MicroDiffusion as a pioneer-
ing framework for reconstructing high-quality 3D volumes
from 2D projections in volumetric microscopy using non-
diffracting beams, reconciling the trade-off between depth

information and imaging speed.

2. Related Works
Laser scanning microscopy with non-diffracting beams
for volumetric imaging. Laser scanning microscopy has
emerged as the gold standard in biomedical imaging. Com-
monly used in biomedical applications, imaging modalities
such as multiphoton microscopy [14], optical coherence mi-
croscopy [21], and photoacoustic microscopy [2] all share
at least one laser scanning mode. However, a critical chal-
lenge in laser scanning microscopy lies in accelerating data
acquisition without sacrificing resolution and depth, espe-
cially with the most widely used point-scanning methods
that scan a tightly focused 3D laser point to collect volu-
metric data (see Fig. 1(a)).

To address this, optical strategies using non-diffracting
laser beams, notably Bessel and Airy beams, have been
proposed. These beams generate an elongated and almost
uniform axial point spread function. Scanning with non-
diffracting beams essentially captures multiple axial layers
in a single lateral scan, as opposed to the point-scanning
method (see Fig. 1(b)). For instance, they have been uti-
lized for rapid volumetric imaging, enabling the real-time
capture of dynamic biological processes [2, 3, 30]. Despite
their speed advantages, these strategies often compromise
depth information, yielding 2D projections without detailed
information on feature depths. To combine the speed bene-
fits of non-diffracting beam scanning methods with the ca-
pability to discern depth information, we propose a deep
learning model for this inference (see Fig. 1(c)).

Implicit Neural Representations (INR). Implicit neural
representations excel at modeling the forms of 3D objects,
generating surfaces for 3D scenes, and capturing detailed
3D structures. Pioneering work such as GQN [9] utilizes
a generative query network to learn scene representations
from multiple perspectives. Building on this foundation,
Mildenhall et al. [25] introduce the seminal concept of Neu-
ral Radiance Fields (NeRF), which use a multi-layer percep-
tron to encode 3D scenes for view synthesis. Other works,
such as Poly-INR [37], SIREN [34] and LIIF [4], have em-
ployed periodic activation functions, significantly enhanc-
ing the quality and adaptability of image representations.

Parallel to these advancements, the application of INR in
medical imaging has shown remarkable potential. For ex-
ample, ARSSR [44] and CoIL [40] have adapted NeRF-like
methods for super-resolution in medical images. NeRP [35]
distinctively combines the inherent image information with
the physics of sparse measurements to enhance medical im-
age reconstruction. Cryodrgn [47] and fpm-inr [48] are no-
table for reconstructing 3D volumes from 2D microscopy
images. As a recent advancement, IDM [10] integrates INR
and diffusion models by employing INR as the decoder of
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a diffusion model. In contrast, we leverage INR to gener-
ate continuous and interpretable 3D representations used as
guidance for a diffusion model.

Diffusion Models. Diffusion models are currently at the
forefront of generative model innovation. The Denois-
ing Diffusion Probabilistic Model (DDPM) [16] can in-
crementally convert Gaussian noise into coherent signals.
Subsequent research has expanded on controlling the out-
put of these models, primarily categorized into classifier-
guidance [7] and classifier-free guidance [15, 31]. Re-
cent studies demonstrate the versatility of diffusion mod-
els in creating content guidance from a variety of sources,
including images, text, depth, video, and their combina-
tions [1, 11, 20, 29, 31, 33].

In 3D reconstruction, considerable efforts are made to
produce 3D models from text prompts or 2D references [5,
19, 22, 23, 27, 36, 41, 45]. The approach most similar to
ours is Magic123 [28], which utilizes a two-stage, coarse-
to-fine framework to generate 3D models with reference im-
ages. MicroDiffusion differs from Magic123 in several as-
pects. First, Magic123 employs pretrained knowledge from
models like Stable Diffusion [27, 31] or Zero1-to-3 [24]
to generate reference views for training Neural Radiance
Fields. In contrast, our MicroDiffusion has no such pre-
trained knowledge, and we must directly train the Implicit
Neural Representation (INR) from projection. Second, dif-
fusion in the Magic123’s fine stage is applied solely to im-
prove the mesh generated from NeRF, without considering
the NeRF’s information. In MicroDiffusion, our diffusion
model focuses on learning 3D reconstructions, with the INR
acting as a source of prior knowledge for global information
and actively contributing throughout the training process.

3. Problem Formulation

As depicted in Figure 1(b), a non-diffracting beam creates
a uniform point spread function along the axial direction
with a limited width, offering an n-fold increase in imaging
speed when the optical axial width of the non-diffracting
beam is n times that of a conventional point-like axial pro-
file width beam. However, this advantage in volumetric mi-
croscopy comes at the cost of depth information, as these
beams optically project 3D volumetric information along
the axial direction, leading to a lack of depth information
in resulting 2D images.

This study aims to develop a model f capable of recon-
structing a depth-resolved 3D volume from 2D projections
{Xi}, obtained using non-diffracting beams. The objec-
tive is to achieve a reconstructed 3D volume M with image
quality comparable to traditional point-scanning methods.
The 3D stacks that can be acquired from point-scanning
methods within the same ith sub-volume are represented
as Mi = {mi

1,m
i
2, . . . ,m

i
n}. In non-diffracting volumet-

ric imaging, 2D projections are axially downsampled by a
factor of n in Mi, resulting in each projection Xi being ex-
pressed as Xi =

1
n

∑n
k=1 m

i
k. Hence, the problem is to find

a model f : {Xi} → M to reconstruct depth-resolved 3D
volumes from downsampled 2D projections.

4. Method
In this section, we begin by revisiting key concepts of Im-
plicit Neural Representations (INR) and present our INR
design crafted for optical microscopy reconstruction in
Sec. 4.1. We then delve into MicroDiffusion, our implicit
representation-guided diffusion model in Sec. 4.2.

4.1. Implicit Neural Representation

Revisit INR for 3D Reconstruction. INR methods uti-
lize a function, typically a Multilayer Perceptron (MLP) de-
noted as finr, to implicitly represent a 3D field. finr operates
over continuous 3D space and maps coordinates to a pre-
dicted property, like intensity or occupancy, formulated as

minr = finr(p(z)), (1)

where z denotes normalized 3D coordinate within the range
[−1, 1] to ensure uniformity across the input space. p(·)
denotes the positional encoding that transforms 3D coordi-
nates into a higher-dimensional space, crucial for capturing
high-frequency details during reconstruction. minr repre-
sents the property such as the intensity at position z.

Training INR involves a reference dataset, encompass-
ing a set of 2D projections from 3D sub-volumes, as de-
scribed in Sec. 5.1, with 3D coordinates and corresponding
intensities. The training objective is to minimize the recon-
struction error between the predicted intensities minr and
the actual data sampled at each coordinate.

INR for Volumetric Microscopy Reconstruction. As
shown in Figure 2 (step 1), we sample 3D coordinates uni-
formly from the 3D volume M, followed by positional en-
coding and the use of an MLP to map these encodings to
voxel density values. For each reference projection Xi, we
compute the coordinates for n neighboring slices (defined
as 2D projections of neighboring 3D sub-volumes), and
concurrently synthesize these slices {mi

1, . . . ,m
i
n} using

finr. Reconstruction loss is measured as the mean squared
error (MSE) between the mean of the synthesized slices and
the reference projection:

Lmse =

N∑
i=1

MSE

(
1

n

n∑
k=1

mi
k,Xi

)
, (2)

where mk denotes the k-th synthesized slice, and Xi repre-
sents the i-th reference projection.
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Figure 2. Pipeline of MicroDiffusion. Step 1, we pre-train an INR which provides rough reconstructed images. Step 2, the 2D projections
and 3D coordinates are used as the classifier-free guidance of the MicroDiffusion, and the INR output is integrated into the noisy image as
guidance during the diffusion process. Detailed information is available at Sec. 4.

INR Neighbouring-based Inference. During training,
we simulate the downsampling process triggered by the op-
tical axial projection with a non-diffracting beam, and opti-
mizate the target loss by averaging the output over n coordi-
nates. However, this may introduce a distribution shift when
predicting the density solely from its own coordinate. To
mitigate this issue, we incorporate information from neigh-
boring slices during inference. When considering a particu-
lar 3D coordinate z, the inference result is obtained through
a weighted average of n neighboring slices. The weight for
the k-th neighboring slice follows a Gaussian distribution:

gk =
1√
2π

e−
( k
n

−0.5)2

2 (3)

While INR reconstruction offers a comprehensive global
view, the reconstructed 3D slices suffer from blurriness, ar-
tifacts, and lack of fine details (as demonstrated in Figure 3).
These issues compromise the spatial resolution and overall
reliability of optical microscopy. To address these limita-
tions and ultimately improve reconstruction quality, we in-
troduce a novel approach where we leverage INR as a global
prior to guide a diffusion model, enhancing the details and
reducing noise in each local 2D slice.

4.2. Implicit Representation-Guided Diffusion

Diffusion Models with Classifier-free Guidance We
employ Diffusion Models [17, 39] to reconstruct 3D vol-
umes. As a likelihood model, Diffusion Model can grad-
ually recover the data from Gaussian noise. The forward
diffusion process transforms an input X0 to Gaussian noise
XT ∼ N (0, 1) by T iterations, defined as:

q(Xt|X0) = N (Xt|
√
ᾱtX0, (1− ᾱt)I), (4)

where Xt represents the data with added noise at time step
t. ᾱt =

∏t
s=0(1 − βs) and βs represents the noise vari-

ance schedule, and N represents the Gaussian distribution.

During training, the neural network ϵθ(Xt, t) is trained to
reconstruct the original data X0 from the noised data Xt.
This is achieved by minimizing ℓ2 loss between the pre-
dicted noise and the actual noise introduced in the data:

L(θ) = E(X,t)

[
∥ϵ− ϵθ(Xt, t)∥2

]
(5)

where t is time step in the forward diffusion process. Dur-
ing the generation process, the neural network ϵθ(Xt, t) it-
eratively denoises Xt to achieve high-quality output, θ is
the trainable parameters of the model.

Classifier-free Guidance [7, 15] is a method for steer-
ing the output generation in Diffusion Models. Diverging
from the standard approach of diffusion models, this tech-
nique involves training a neural network ϵθ(Xt, t, c) with
an additional conditioning c. The goal is to reconstruct X0

while incorporating a probability puncond that c ← ∅. The
loss function L(θ) can be written as:

L(θ) = E(X,t)

[
∥ϵ− ϵθ(Xt, t, c)∥2

]
, (6)

where ∅ is the null class. At the generation time, the model
uses a guidance scale ω to balance the influence of the con-
ditioning information. This is done by interpolating be-
tween the model’s predictions with and without the condi-
tioning:

ϵ̃t = ϵθ(Xt, t, c) + ω · (ϵθ(Xt, t, c)− ϵθ(Xt, t)), (7)

where ϵ̃t is the noise distribution that model predicts.

Projection and Coordinate Guidance In MicroDiffu-
sion, we use 2D projections and 3D coordinates as condi-
tioning information c in Eq. 6. Projections provide content
information of the 3D volume while 3D coordinates provide
3D spatial information.

As depicted in Figure 2, we introduce two distinct en-
coders: an image encoder, denoted as Eimg , and a posi-
tional encoder, denoted as Epos. Eimg encodes the current
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projection Xz , while Epos encodes the 3D coordinate z of
the current projection. The ultimate condition information
c is formulated as follows:

c = Eimg(Xz)⊕ Epos(p(z)), (8)

where Xz is the reference projection, ⊕ is the concatenate
function and p(·) is the coordinate embedding function.

INR Prior Integration To leverage global information
and coherent 3D structures in INR to guide the Diffusion
Models, we integrate INR outputs as prior knowledge for
the diffusion process. Specifically, the INR output minr

is linearly interpolated with the noisy image Xt, which is
later to be denoised by Diffusion Models. In MicroDiffu-
sion’s training and testing process, for each noisy image Xt

at time step t, we perform linear interpolation with the INR
output minr pixel by pixel as

X ′
t = γminr + (1− γ)Xt (9)

where X ′
t is the INR-enhanced image, Xt is the noised im-

age that needs to be denoised by the diffusion model, minr
is the reconstructed output from INR, and γ is the interpo-
lation rate. This approach empowers the diffusion model
to directly leverage structural information learned by INR,
addressing the learning challenge with a limited number of
input 2D projections and enhancing its capacity to generate
images with correct 3D structures.

Training and Generation Process MicroDiffusion
adopts a conditional U-net [32] similar to that in stable-
diffusion [31]. However, in our Denoising U-Net, we
remove the cross-attention mechanisms, and add both
time condition and conditional feature c at each output
of the ResNet block. MicroDiffusion training algorithm

Algorithm 1 Training function of MicroDiffusion

Require: X: 2D projections; z: 3D Coordinate; t: Time
step; puncond : Probability of being unconditional.
minr = finr(p(z)) : INR Inference in Sec. 4.1
c = Eimg(X)⊕ Epos(p(z))
c← ∅ with probability puncond
Xt ←sample from q (Xt | X0)
X ′

t = γminr + (1− γ)Xt

L(θ) = E(X,t)

[
∥X0 − ϵθ(X

′
t, t, c)∥2

]
Take gradient step on L(θ)

is formulated in Algorithm 1, which continues running
until convergence. ⊕ is the concatenate operation. During
training, we first encode 3D coordinates and 2D projections
into conditional features c. We then generate the INR prior
and the noised data Xt, and linearly interpolate them with
an interpolation rate γ. After preparing all model inputs,
we follow the equation (6) to update the model parameters.

Algorithm 2 Sampling function of MicroDiffusion

Require: w: guidance strength; z: 3D Coordinate; γ: in-
terpolation rate; T : Max time step; X: 2D projections.
XT ∼ N (0, 1)
c = Eimg(X)⊕ Epos(p(z))
minr = finr(p(z)) : INR Inference in Sec. 4.1
for t = T to 1 do
X ′

t = γminr + (1− γ)Xt

ϵ̃t = (1 + w)ϵθ(X
′
t, t, c)− wϵθ(X

′
t, t)

ϵt = sample from ϵ̃t
X̃t−1 = Xt − ϵt

end for
return X0

Generation process is outlined in Algorithm 2. Here w
is the condition weight controlling whether the model bias
more towards conditional or unconditional generation. Sim-
ilar to the training process, we first prepare all model inputs,
and then have the model predict the noise distribution ϵ̃t at
the current time-step t. We sample a noise ϵt from the noise
distribution, subtract it from Xt, and repeat this for T times.
We repeat this process for all the coordinates until the algo-
rithm converges.

5. Experiments
5.1. Datasets

We collected experimental data using a conventional mul-
tiphoton laser scanning microscope, which has been a gold
standard imaging tool for modern biomedical study. This
approach is known for creating a three-dimensional, point-
like point spread function. By 3D scanning the tightly fo-
cused Gaussian beam, we generated high-quality 3D vol-
ume stacks. These stacks serve as ground truth datasets
for our research problem. Our setup captures 3D volume
stacks of various biological structures—such as dendrites,
neurons, and vasculature—within the shallow layers of the
mouse cortex in a living animal (Fig. 1). These datasets al-
low us to test our model with varied 2D projected images
from diverse 3D biological features of varying densities.

Subsequently, we generated three synthetic datasets.
These datasets simulate the case of fast data acquisition us-
ing a non-diffracting beam, whose point spread function has
a quasi-uniform distribution axially and a predefined width
(Fig. 1b). In later experiments, as we will demonstrate,
we varied this width to be different multiples (denoted as
step length n) of the Gaussian point spread function’s axial
width used to scan and generate the ground truth datasets.
Consequently, the acquired 2D image sequences effectively
averaged every n frames along the axial direction, with no
spatial overlapping in between. This approach reduced the
volume data acquisition time by a factor of n. We then used
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both the ground truth and the generated synthetic datasets
to evaluate our model at different step length n values, fo-
cusing on various datasets from the brain. The design of
these datasets allows us to directly determine the optimal
step length n value, which will inform both future optimal
experimental data acquisition and hardware optical design.

5.2. Implementation Details

Depending on the specific imaging modality, the practical
axial width of a non-diffracting beam, such as a Bessel
beam, can vary from a few times to tens or hundreds of
times that of the point-like Gaussian beam used in con-
ventional 3D laser scanning microscopes [3, 13]. We ini-
tiate our experiments with a step length n of approximately
6, which corresponds to roughly an order of magnitude
in speed-up — an important initial milestone for volumet-
ric imaging. The performances of different reconstruction
models were compared at this setting, and subsequently, an
ablation study was conducted over the step length value.
This study aims to further understand the impact of the step
length of n on reconstruction quality, with the goal of identi-
fying the optimal trade-off region between n times speed-up
and image reconstruction quality.

For computational efficiency, we downsample all the
samples to a resolution of 128 × 128 pixels in the lateral
plane. For the pure Implicit Neural Representation (INR)
model and the INR encoder, we map the 3D coordinates to a
512-dimensional space using a Gaussian-based embedding
technique. The INR model is optimized using the Adam
optimizer with a learning rate of 10−3 over 5000 epochs,
a process that takes approximately 8 hours on an A-100
GPU. Additionally, we employ the AdamW optimizer with
a learning rate of 2−4 and a weight decay of 10−4. As for
the diffusion model, it is trained over 2000 epochs, taking
around 4 hours on a single NVIDIA A-100 GPU.

5.3. Baselines

Given the novelty of this task and the absence of exist-
ing reference works, we established baseline methods. The
initial approach is a straightforward Interpolation method,
in which the generated structure is created through a uni-
formly weighted average of the two adjacent projections,
weighted according to their distance. And Interpolation -
cubic, which estimates values by using cubic polynomials
between points. This means that each interpolated curve
segment is based on the position and slope (derivative) at its
endpoints. The last baseline employs a pure INR method,
which functions as our prior to the diffusion model.

5.4. Reconstruction Results

5.4.1 Quantitative Results

We evaluate our methods using three metrics: Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Mea-

sure (SSIM), and the Dice coefficient. PSNR and SSIM
are calculated slice-wise along the axial direction, with the
mean value across all slices being reported. For the DICE
coefficient, we use the OTSU [26] algorithm to determine
the threshold for each image to assess the volumetric sim-
ilarity between the generated 3D structure and the ground
truth. As presented in Table 1, our method demonstrates
strong performance, successfully capturing the principal
structure of the original high-resolution model. Addition-
ally, we observe that the diffusion model’s decoder signifi-
cantly enhances the performance of the pure INR model.

Dataset Method SSIM ↑ PSNR ↑ DICE ↑

Dendrite

Interpolation 0.5799 28.78 0.6482
Interpolation - cubic 0.6511 28.85 0.3973

INR 0.5837 25.81 0.4589
Naive Diffusion 0.0297 19.95 0.2869

Interpolation Diffusion 0.6366 27.02 0.5729
Interpolation - cubic Diffusion 0.4765 21.31 0.3786

MicroDiffusion 0.6742 29.74 0.7557

Vasculature

Interpolation 0.3774 20.42 0.5936
Interpolation - cubic 0.5204 20.52 0.4448

INR 0.5032 21.69 0.7136
Naive Diffusion 0.0207 14.81 0.3234

Interpolation Diffusion 0.4039 19.09 0.4860
Interpolation - cubic Diffusion 0.2395 16.41 0.2672

MicroDiffusion 0.5787 22.35 0.7158

Neuron

Interpolation 0.1208 24.12 0.3553
Interpolation - cubic 0.3265 26.50 0.1116

INR 0.4759 26.43 0.6403
Naive Diffusion 0.0210 24.08 0.1468

Interpolation Diffusion 0.4426 25.35 0.2425
Interpolation - cubic Diffusion 0.3478 23.79 0.1318

MicroDiffusion 0.4845 26.66 0.6708

Table 1. Main results of the image reconstruction quality across
different datasets with different biological features: vasculature,
neurons, and dendrites. For all metrics, higher values indicating
better performance as indicated by the arrows.

5.4.2 Qualitative Results
Here, we present the reconstruction results of three meth-
ods: pure INR and MicroDiffusion. Part of the slices from
the reconstructed 3D stacks are illustrated in Fig. 3, where
we randomly selected three slices from the 3D reconstruc-
tions generated by naive diffusion, the pure INR reconstruc-
tion, our MicroDiffusion and compare with ground truth.
From these results, it is evident that the reconstructions ob-
tained via the MicroDiffusion method more closely resem-
ble the ground truth as the density of the biological features
increases. This result indicates an encouraging possibility
that volumetric imaging with a non-diffracting beam allows
not only well-known volumetric imaging of sparse features
such as neurons in the cortex [3] but also denser features
such as vasculature and even dense dendrites.

5.5. Ablation study

5.5.1 Ablation on conditional feature

How to encode 3D positional information? We initially
evaluate two positional encoding methods for MicroDiffu-
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Figure 3. Qualitative results: (a) Comparative visualization of
slices from 3D reconstructions with different methods. Observ-
able differences between the INR reconstruction, MicroDiffusion
reconstruction, and ground truth are indicated with white arrows.
(b) 3D vasculature. Scale bar: 30 µm.

sion: (1) the sine-cosine based encoding as described by
NeRF [25], and (2) the Gaussian-based encoding used in
NeRP [35]. As shown in Table 2, our experiment results
demonstrate that the Gaussian-based encoding yields supe-
rior results, particularly in rendering clearer textures. We at-
tribute this improvement to the intrinsic properties of Gaus-
sian embeddings, which affords a more flexible mapping of
positions to a higher-dimensional space. This flexibility en-
hances the subsequent learning process within MicroDiffu-
sion, leading to more detailed and accurate representations.

Method SSIM↑ PSNR↑ DICE↑
Sin-cos 0.5243 21.03 0.6667

gassian-based(ours) 0.5787 22.35 0.7158

Table 2. Ablation of the positional encoding type on vasculature.

How to add conditional feature? We ablate on the way
we incorporate the conditional feature c into the model. w/o
feature guidance involves setting all conditions to ∅. cross-
attention involves adding c using cross-attention to replace
the self-attention in Denoising U-net, where the image fea-
ture is the query, and the conditional feature c serves as
the key and value. Experimental results demonstrate that
adding the conditional feature c is effective and leads to the
best performance. This is likely because we have only one
conditional feature, and in such a case, the cross-attention
mechanism may not be effective. Therefore, it is better to
directly add the conditional feature to the output of each
ResNet block in the Denoising U-net.
5.5.2 Ablation on INR prior

How to generate INR prior? Here, we test three INR
prior generation methods as shown in Table 4. no-
neighbouring means that we only utilize the INR output
corresponding to the current 3D coordinate z as the INR

method SSIM↑ PSNR↑ DICE↑
w/o feature guidance 0.5122 21.27 0.6512

cross-attention 0.5371 21.25 0.6784
addition (ours) 0.5787 22.35 0.7158

Table 3. Ablation results fusion ablation on vasculature

prior. uniformly-mean means that we use the uniformly av-
eraged output of the INR corresponding to the six frames
centered on the current 3D coordinate z. The experimen-
tal results demonstrate that our approach performs the best
when introducing Neighbouring-based Inference, allowing
the model to obtain a more comprehensive 3D INR prior.

method SSIM↑ PSNR↑ DICE↑
no-neighbouring 0.4315 15.26 0.2025
uniformly-mean 0.4996 17.36 0.4086

Neighbouring-based (ours) 0.5787 22.35 0.7158

Table 4. Ablation of neighbouring based inference on vasculature.

How to add INR prior? We investigate the necessity of
the INR prior in this experiment. We trained a naive diffu-
sion model that incorporates the INR prior as the projection
introduced in 4.2. We use the image encoder Eimg to en-
code the output of INR minr and concatenate the feature
with the other conditions. This allows the model to gener-
ate images that resemble true biological features. However,
this method performs poorly in acquiring global informa-
tion, as evidenced by the very low DICE result in Table 5.

Method SSIM↑ PSNR↑ DICE↑
Naive Diffusion 0.4178 14.97 0.4540
MicroDiffusion 0.5787 22.35 0.7158

Table 5. Ablation of diffusion model INR prior on the vasculature.

5.5.3 Ablation on training method
In our pipeline, we adopt a two-stage training process where
the INR is trained initially and then frozen during the Mi-
croDiffusion training. We conducted ablation experiments
to explore two alternatives: (1) joint-training, where we
jointly train INR and the Denoising U-Net from random
initialization, and (2) trainable, where we unfreeze the INR
during the MicroDiffusion training.

We used the same number of epochs for all methods. For
joint-training, we added the INR loss and applied a decay-
ing weight to balance the training dynamics. As shown in
Table 6, our method achieved the best performance. How-
ever, joint-training proved to be too challenging and ad-
versely affected the MicroDiffusion training process, while
trainable impaired the ability of INR to provide priors.
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Therefore, we chose to train INR first and then train Mi-
croDiffusion with it frozen.

method SSIM↑ PSNR↑ DICE↑
joint-training 0.5051 21.37 0.6603

trainable 0.5347 21.27 0.6875
freeze (ours) 0.5787 22.35 0.7158

Table 6. Ablation results of training methold on vasculature

5.5.4 Ablation on Different Step length

We investigate the impact of the step length on MicroDiffu-
sion performance. As outlined in our methodology, a larger
step size results in faster volumetric imaging but makes re-
construction more challenging. Conversely, smaller step
size leads to slower imaging but improved reconstruction.
We keep the number of iterations the same and train our
model from scratch. Results are presented in Figure 4.

We observed that as the step length increased, all model
metrics gradually decreased. To strike a reasonable bal-
ance between sampling speed and reconstruction quality,
we chose a step length of 6.
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Figure 4. Performance metrics across different step lengths.

5.5.5 Reconstruction of sparse neuron dataset at vari-
ous step lengths

A natural question that may arise is whether we can further
increase the step length if our features are sparse in space.
To address this, Here, we conduct one further experiment
aim to assess whether MicroDiffusion can further enhance
the speed of volumetric imaging, particularly for samples
with sparse spatial distribution. In this context, we have
conducted a comparative analysis using the neuron dataset,
which is the most sparse case among all the three datasets.
The results of this comparison are illustrated in Figure 5.
We evaluated the performance of our reconstruction models
across a range of step lengths, which correspond to vary-
ing degrees of data acquisition speed. Notably, our findings
indicate that, in the case of sparse neuron dataset, the step
length can be extended to approximately 16 without signif-
icantly compromising the quality of the depth-resolved im-

Step length: 8 Step length: 16 Step length: 32 Step length: 64Ground Truth

0

260 µm

Figure 5. Reconstruction of the depth-resolved sparsely dis-
tributed neuron images and depth-resolved volumetric projections
with different step lengths.

ages. This suggests a potential for significant improvements
in imaging efficiency without substantial loss in image fi-
delity for sparser featue of interest.

5.6. Discussion and Future Work

In our experiments, we find that when ground truth data
contains Gaussian noise, MicroDiffusion outperforms other
methods in noise removal. This demonstrates the poten-
tial of MicroDiffusion for denoising 3D volumes acquired
by volumetric optical microscopy. In cases where Gaus-
sian noise is intentionally part of the Ground Truth data and
should not be removed, it is necessary to investigate how to
use other types of noise for MicroDiffusion training.

6. Conclusion

In this paper, we introduce MicroDiffusion, an innova-
tive 3D reconstruction framework that adeptly addresses
the challenges of rapid volumetric imaging and the need
for depth-rich visualizations in biomedical research. By
ingeniously integrating INR with DDPM, MicroDiffusion
capitalizes on limited 2D projections to reconstruct high-
resolution 3D images, significantly enhancing the capabil-
ities of optical microscopy. Our approach not only accel-
erates the image acquisition process but also maintains 3D
spatial information, allowing for the detailed observation of
complex biological structures with minimal data acquisition
at high speed. The successful application of MicroDiffusion
across various datasets, from densely distributed dendrites
to sparsely distributed neurons, underscores its potential as
a transformative tool in medical diagnostics and fundamen-
tal biomedical research. This work paves the way for de-
signing next-generation volumetric optical microscopy, set-
ting a new benchmark for the integration of machine learn-
ing in 3D microscopy volume reconstruction, and opening
avenues towards high-speed, high-resolution 3D optical mi-
croscopy.
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