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Abstract

Existing Knowledge Distillation (KD) methods typically
focus on transferring knowledge from a large-capacity
teacher to a low-capacity student model, achieving sub-
stantial success in unimodal knowledge transfer. However,
existing methods can hardly be extended to Cross-Modal
Knowledge Distillation (CMKD), where the knowledge is
transferred from a teacher modality to a different student
modality, with inference only on the distilled student modal-
ity. We empirically reveal that the modality gap, i.e., modal-
ity imbalance and soft label misalignment, incurs the in-
effectiveness of traditional KD in CMKD. As a solution,
we propose a novel Customized Crossmodal Knowledge
Distillation (C2KD). Specifically, to alleviate the modality
gap, the pre-trained teacher performs bidirectional distil-
lation with the student to provide customized knowledge.
The On-the-Fly Selection Distillation(OFSD) strategy is ap-
plied to selectively filter out the samples with misaligned
soft labels, where we distill cross-modal knowledge from
non-target classes to avoid the modality imbalance issue.
To further provide receptive cross-modal knowledge, proxy
student and teacher, inheriting unimodal and cross-modal
knowledge, is formulated to progressively transfer cross-
modal knowledge through bidirectional distillation. Exper-
imental results on audio-visual, image-text, and RGB-depth
datasets demonstrate that our method can effectively trans-
fer knowledge across modalities, achieving superior perfor-
mance against traditional KD by a large margin.

1. Introduction

Knowledge Distillation (KD) is an effective approach to
transfer knowledge from the large-capacity teacher model
to the low-capacity student model during training [12, 40].
During the KD process, the student is trained to mimic the
teacher’s output via the distillation loss. KD methods can be
divided into two main categories: logits-based and feature-
based methods. The former minimizes the discrepancy be-
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AVE[37] VGGSound[5]
Visual Audio Visual Audio

Method (A→V) (V→A) (A→V) (V→A)
w/o KD 31.6±0.18 52.8±0.11 38.7±0.16 59.4±0.16
KD [16] 32.3±0.35 46.6±0.24 38.5±0.50 56.3±0.46
Review [7] 32.1±0.63 50.6±0.31 38.2±0.47 57.9±0.33
DML [53] 31.8±0.41 48.0±1.31 38.7±0.86 58.2±1.01
SHAKE [25] 32.2±0.59 47.3±0.72 38.3±0.41 59.5±0.34
DKD [54] 32.6±0.65 48.6±1.02 38.1±0.43 57.2±0.86
DIST [17] 29.8±0.61 49.3±0.52 38.5±0.39 58.9±0.45
NKD [47] 32.9±0.32 52.2±0.62 39.2±0.52 59.3±0.40
Ours 34.7±0.23 54.9±0.16 40.9±0.31 61.9±0.27

Table 1. Performances of traditional KD in CMKD. The re-
sults of distilled student modality infer only on the student modal-
ity. A→V: Audio teacher modality distills visual student modality;
V→A: Visual teacher modality distills audio student modality.

tween soft labels of the teacher model and the student model
[16, 17, 53], and the latter distills knowledge from interme-
diate feature layers [7, 15, 18].

Despite the success of traditional KD methods in sin-
gle modality scenario, extending these methods to address
the Cross-Modal Knowledge Distillation (CMKD) tasks re-
mains a critical challenge. The CMKD task involves knowl-
edge transfer from one modality to another during the dis-
tillation phase, with inference only on the distilled stu-
dent modality, which is crucial especially in computation-
constrained and sensor-failure scenarios. As demonstrated
in Table 1, unimodal KD methods struggle to transfer
knowledge from the low-accuracy visual modality to the
high-accuracy audio modality, while the visual modality has
only marginal gains from the audio modality. Based on the
above analysis, a pivotal and fundamental question arises:
Can we effectively transfer arbitrary unimodal information
to another modality?

To answer this question, we conduct empirical analysis
to investigate why traditional KD methods fail in CMKD
from the logits-based perspective, which can be attributed
to the inter-modality gap that inducing modality imbalance
and soft label misalignment, as illustrated in Figure 1.

For the first factor, we define modality imbalance, akin to
[11, 30], as the performance disparities between modalities.
We quantitatively calculate the top-1 accuracy (followed
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Figure 1. The Modality Gap of CMKD. (a) Top-1 accuracy (fol-
lowed by average prediction probability of target classes) of each
modality. Both modalities utilize ResNet-18 as the backbone. (b)
Up: Example of three-class classification. Down: Kendall Rank
Correlation [20] of soft labels across modalities in VGGSound. A:
audio; V: visual; RN: ResNet.

by the average prediction probability of target classes) af-
ter training on the corresponding single modality. Figure
1(a) shows that the audio modality outperforms the visual
modality in AVE and VGGsound datasets, and there are sig-
nificant gaps in the average prediction probability of the tar-
get class, particularly in AVE. Merely distilling knowledge
from the visual to the audio modality could potentially yield
adverse effects, as shown in Table 1 (Audio columns).

For the second factor, we define soft label as the output
distributions from the teacher network, following [16, 26].
The soft labels contain meaningful information on similar-
ity among various classes. However, inter-modality gap
leads to severe soft label misalignment between teacher
and student modalities. Take three-class classification as
an example (Figure 1(b) Up). Although both Audio and
Visual modalities branches successfully predict the target
class of ‘female singing’, the non-target soft labels are rank-
distorted, where the audio accent of ‘child singing’ is more
closely related to ‘female singing’, while the visual appear-
ance of ‘male singing’ is more closely resembles ‘female
singing’. Direct transferring soft label information across
modalities is unreasonable, which could explain why dis-
tilling the audio modality to the visual modality does not
yield significant improvements. To quantitatively validate
soft label misalignment, we further calculate the average
Kendall Rank Correlation (KRC) [20] of soft labels in Fig-
ure 1(b) Down. A higher KRC indicates better rank correla-
tion. The table indicates the KRC of multimodal soft label
(i.e., A-V(RN-18)) is significantly lower than that of a sin-
gle modality with diverse-capacity networks (i.e., A(RN18-
50) and V(RN18-50)), indicating the presence of misalign-
ment of multimodal soft labels.

To address the above issues in CMKD, we propose Cus-
tomized cross-modal Knowledge Distillation (C2KD). Con-
cretely, instead of using the pre-trained teacher to provide

supervision signals to the student, we bidirectionally update
to customize both the pre-trained teacher and student via
On-the-Fly Selection Distillation (OFSD) strategy, where
OFSD selectively distill receptive soft labels according to
the Kendall Rank Correlation, and cross-modal knowledge
is transferred from non-target classes to avoid the modality
imbalance issue. Furthermore, Proxy student and teacher,
inheriting unimodal and cross-modal knowledge, is formu-
lated to progressively transfer cross-modal knowledge in the
bidirectional distillation form.

Our main contributions can be summarized as follows.

• We empirically analyze the factors for the failure of uni-
modal KD in CMKD, which can be attributed to the
modality imbalance and soft label misalignment.

• To address these issues, we propose a novel method
named C2KD. Specifically, OFSD produces selected
crossmodel non-target class knowledge through on-the-
fly bidirectionally distilling both student and teacher.
Moreover, Proxy student and teacher are built to pro-
gressively transfer receptive knowledge across modali-
ties. The proposed strategies are plug-and-play, enhanc-
ing traditional KD methods in CMKD.

• We conduct experiments on sparse and dense pre-
diction tasks, including audio-visual, image-text, and
RGB-Depth datasets. Diverse capacities and homoge-
neous/heterogeneous architectures are also considered.
Extensive experiments validate C2KD can transfer cross-
modal knowledge from arbitrary modality to another.

2. Related Work

2.1. Unimodal Knowledge Distillation

Unimodal Knowledge Distillation (KD) transfers the
knowledge of a pretrained teacher to a student by min-
imizing the discrepancies between output logits or inter-
mediate features between student and teacher. Previous
KD methods primarily concentrate on inheriting knowledge
from the large-capacity teacher. Pioneering work [16] regu-
larizes Kullback–Leibler (KL) divergence between student
and teacher soft labels. CRD [38] develops contrastive-
based objectives for knowledge transferring. SCKD [55]
automatically adjusts the KD process according to the dis-
tillation gradient similarity. Yang et al. [45] utilize the
teacher’s pre-trained classifier to regularize the student’s
penultimate layer feature. Zhu et al. [56] identify and dis-
card the undistillable classes from the large teacher model
based on the validation set. DKD [54] decouple KD into
target class and non-target class knowledge distillation to
balance learning effectiveness and flexibility. Review [7]
proposes the review mechanism to utilize knowledge of
teacher’s multi-level features. RKD [28] regularizes the stu-
dent with distance-wise and angle-wise structural relations
to replace KL loss. DIST [17] further proposes a novel
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correlation-based loss to capture the inter-class and intra-
class relations. L2D [46] extends relation-based distillation
into multi-label classification. These KD methods focus on
unimodal KD and learn to inherit knowledge from a fixed
teacher. However, for CMKD, the modality gap (shown in
Figure 1) impedes knowledge transfers across modalities.
We argue that teacher modality should be optimized with
feedback supervision of student modality to produce re-
ceptive knowledge. Previous online knowledge distillation
methods [8, 22, 25, 53] update teacher model to adapt stu-
dent in unimodal scenarios. Specifically, DML [53] simply
applies KD losses mutually, treating each other as teachers.
ONE [22] further exploits gated ensemble logits of mul-
tiple training networks. AFD [8] proposes online feature
alignments via adversarial training. The recently proposed
SHAKE [25] bridges offline and online KD by transferring
knowledge through extra shadow heads. However, these
methods primarily consider differences in network capac-
ity and suffer from the modality gap in cross-modal KD, as
the results of DML and SHAKE are shown in Table 1.

2.2. Cross-modal Knowledge Distillation

With the rising prevalence of multi-modal sensors, tradi-
tional KD methods have been extended to achieve knowl-
edge transfer across multimodal data, thereby enhancing
downstream tasks [13, 23, 32, 40, 41, 50, 52]. However,
previous methods typically utilize high-accuracy or well-
labeled modality as the teacher to transfer knowledge to
low-accuracy or unlabeled modality [40]. For example, [13]
leverage a large labeled modality as the supervisory signal
for a new unlabeled paired modality. [32] transfers knowl-
edge among the missing and available modalities via GANs.
[41] adapts a multimodal network to the unlabeled modal-
ity by inheriting knowledge from the well-trained unimodal
teacher. [23] proposes a decomposed cross-modal distilla-
tion method to enhance RGB-based detector by transferring
knowledge of the optical flow modality. [50] distills Im-
ageNet pre-trained visual modality to audio modality for
indoor dense prediction. Recently, Xue et al. [42] first
perform an in-depth investigation on CMKD and propose
the modality focusing hypothesis (MFH), suggesting that
modality-general decisive features are crucial determinants
of CMKD efficacy. [42] contributes to MFH but doesn’t de-
velop unified solutions. In this paper, we further quantita-
tively analyze the challenges of CMKD (the modality gap,
i.e., modality imbalance and soft label misalignment) and
propose effective solutions to address these issues.

2.3. Multimodal Learning

Multimodal learning [3] is a crucial area of research, given
ubiquitous multimodal information. Multimodal learning
[10, 11, 19, 30, 51] involves training and inference on mul-
tiple aligned modalities. To integrate multimodal informa-

tion, [30] modulates the gradient of each modality to al-
leviate under-optimized uni-modal representation. [11] in-
troduces class prototypes that direct modality optimization.
[10] analyzes Modality Laziness in multimodal learning
and proposes unimodal ensemble and unimodal distillation
strategies based on the distribution of uni-modal and paired
features. [51] devises a novel quality-aware multimodal fu-
sion method, leveraging energy-based uncertainty to char-
acterize each modality quality. Different from multimodal
learning, CMKD trains on multimodal data but infers only
on a single modality, which has significant practical impli-
cations for downstream applications.

3. Method
3.1. Cross-Modal KD Effectiveness Analysis

First, we revisit traditional KD in cross-modal scenario.
Given multimodal training data ([X1, X2], Y ) containing
multimodal samples X1 and X2 and labels Y . Let fT and
fS be the output logits of the teacher T and student S. The
corresponding prediction probabilities are obtained using
the softmax function (σ): pS = σ(fS) and pT = σ(fT ).
Typical KD trains the student network as follows:

LKD = H(pS , Y ) + λD(pS , pT ) (1)

where H is the supervision loss function (typical Cross-
Entropy (CE) loss), D is the KD loss to minimize the dis-
crepancy of output distribution between teachers and stu-
dents, commonly achieved using Kullback–Leibler (KL) di-
vergence [16], and λ is a balancing parameter for these two
terms. Pioneering work [42] proposes the Modality Focus-
ing Hypothesis (MFH) and claims that modality-general de-
cisive features are crucial for transferring knowledge across
modalities during the distillation phase. In this work, we
provide another fine-grained perspective to investigate the
efficacy of CMKD: the modality gap, which refers to the
modality imbalance in target-class logits and soft label mis-
alignment, incurs the failure of CMKD.

Regarding modality imbalance, as depicted in Figure
1(a), the prediction possibility of the target class exhibits
significant variations across modalities. If simply let stu-
dent modality (audio) imitate teacher modality (vision), au-
dio will inevitably reduce prediction confidence [39] and
conflict one-hot label (Y ). To validate our claim, we follow
DKD [54] and decouple the KD loss into Target Class (TC)
and Non-target Class (NC) KD:

D(fS , fT ) = α[ptT log(
ptT
ptS

) + p
\t
T log(

p
\t
T

p
\t
S

)︸ ︷︷ ︸
TCKD

]

= β

C∑
i=1,i ̸=t

p̂iT log(
p̂iT
p̂iS

)

︸ ︷︷ ︸
NCKD

(2)
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where α and β are hyperparameters. pt denotes the
target class probability: pt = exp(f t)/

∑C
j=1 exp(f

j),
p\t represents the probability of all the other non-target
classes p\t =

∑C
k=1,k ̸=t exp(f

i)/
∑C

j=1 exp(f
j), and p̂i

means the probability among non-target classes: p̂i =
exp(f i)/

∑C
j=1,j ̸=t exp(f

j). Here, C is the number of
classes. When only applying TCKD in CMKD, as shown
in Table 2, the performance of distilled audio modality
severely degrades 4.8% and 3.6%, respectively, while the
distilled visual modality is not clearly enhanced. Therefore,
modality imbalance hinders the efficiency of CMKD, par-
ticularly when transferring knowledge from a low-accuracy
modality to a high-accuracy modality.

To analyze soft label misalignment, we only conduct
NCKD (Equation 2) to exclude the influence of modality
imbalance. As depicted in Table 2, the low-accuracy vi-
sual teacher modality degrades the performance of the high-
accuracy audio student modality. Notably, distilling high-
accuracy audio information into the low-accuracy visual
modality only results in marginal gains in the AVE, while
surprisingly exhibiting a degradation in the VGGsound.
[16, 26, 49, 54] investigate the mechanism of logit distil-
lation, as soft logits provide reliable similarity information
between categories. The privileged similarity information
brings fine-grained supervision compared to a one-hot label.
However, in the context of CMKD, the category similarities
between different modalities are varied and even conflict-
ing. An intuitive example is the three-class classification
example in Figure 1(b) Up, where the unreliable similar-
ity information of non-target classes across the modalities
is contradictory. Directly minimizing cross-modal distribu-
tions leads to performance degradation. To quantitatively
evaluate the misalignment of soft labels, we employ the
Kendall Rank Correlation (KRC) [20] metric to measure
the rank correlation. Specifically, given teacher and student
output logits fT and fS , the KRC between fT and fS can
be explicitly computed as follows:

KRC=
2

C(C − 1)

∑
i<j

sign(f i
T −f j

T )sign(f
i
S−f j

S) (3)

As depicted in Figure 1(b) Down, the KRC between multi-
modal networks is significantly lower than that observed in
unimodal networks with different capacities. We argue that
the misalignment of rank correlation is another reason for
the failure of CMKD. To validate our argument, we filter
out multimodal samples with KRC < 0 (+KRC), indicat-
ing that the count of misaligned soft label pairs is larger than
aligned ones. Additionally, we randomly filter out the same
number of samples (+Random). From Table 2, we can see
that both visual and audio modalities are improved when
guided by the KRC metric, whereas randomly filtering out
samples has almost no effect.

AVE [37] VGGsound [5]
Visual Audio Visual Audio

Method (A→V) (V→A) (A→V) (V→A)
w/o KD 31.6 52.8 38.7 59.4
proba. 0.355 0.901 0.340 0.534
w/ KD 32.3 ↑0.7 46.6 ↓6.2 38.5 ↓0.2 56.3 ↓3.1
+Random 32.1 -0.2 46.8 +0.2 38.2 -0.3 56.4 +0.1
+KRC 32.9 +0.6 47.9 +1.3 39.2 +0.7 57.4 +1.1
TCKD 31.8 ↑0.2 48.0 ↓4.8 37.9 ↓0.8 55.8 ↓3.6
NCKD 31.9 ↑0.3 50.1 ↓2.7 38.5 ↓0.2 57.5 ↓1.9
+Random 31.5 -0.4 50.2 +0.1 38.5 - 57.6 +0.1
+KRC 33.1 +1.2 51.0 +0.9 39.6 +1.1 58.3 +0.8
DKD [54] 32.6 ↑1.0 48.6 ↓4.2 38.1 ↓0.6 57.2 ↓2.2

Table 2. Efficacy Analysis on modality imbalance and soft label
misalignment. proba. represents average prediction probability
of target class. DKD is with defaulted {α = 1, β = 8} (Eq. 2).

3.2. Customized Cross-modal KD

Based on the aforementioned analysis, we propose a sim-
ple yet effective method named Customized Cross-modal
Knowledge Distillation (C2KD) to transfer cross-modal
knowledge to an arbitrary single modality. To bridge the
modality gap, we argue that both student and teacher should
be tuned with the bidirectional distillation from each other,
in this way, teacher modality could provide receptive infor-
mation for student modality. Meanwhile, the soft label mis-
alignment samples should be filtered out otherwise induce
conflicting information. Therefore, we propose the On-the-
Fly Selection Distillation (OFSD) strategy to exclude non-
distillable samples and inherit knowledge from non-target
classes. Furthermore, dual proxies with the bidirectional
distillation strategy are introduced to progressively transfer
cross-modality knowledge. The evolution of our proposed
framework is depicted in Figure 2.
Formulation of C2KD. As illustrated in Figure 2(d), C2KD
proposes the OFSD strategy to dynamically select recep-
tive knowledge. This strategy involves distilling knowl-
edge from non-target classes and innovatively employing
the Kendall Rank Correlation (KRC) [20] metric to filter
out samples with rank-distorted soft labels. Given the out-
put logits fT and fS from the teacher and student modali-
ties, the sample selection strategy is as follows:

η =

{
1, KRC(fT , fS) > ω

0, otherwise
(4)

The KRC is as Equation 3, η ∈ {0, 1} is OFSD filter, and
ω is the threshold.

Moreover, we additionally build dual proxies to progres-
sively produce soft labels. Formally, the output features (F )
obtained from the backbone (B) are fed to the original clas-
sification head and the proposed proxy as follows:

fm = fcclsm (GAP(Bm(Fm))),m ∈ {T,S}
fpro
m = fccls(pro)m (A[GAP(Bm(Fm))]),m ∈ {T,S}

(5)

where GAP and fccls refer to global average pooling and
classification head. A represents feature adaptation layer,
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Figure 2. Evolution of our Customized Cross-modal Knowledge Distillation (C2KD) method. (a) Traditional KD [16] with output
logits from the fixed teacher. (b) We (partially) tune the teacher with the bidirectional distillation to provide customized teacher knowledge.
(c) To bridge the modality gap of CMKD analyzed in Section 3.1, On-the-Fly Selection Distillation (OFSD) is proposed to filter out samples
with distorted rank correlations and perform KD on non-target classes. (d) Additionally, we introduce proxy teacher and proxy student as
bridges to progressively transfer receptive cross-modal knowledge.

akin to [25, 33], consisting of the ‘Conv-BN-ReLU’ block.
To further produce customized knowledge, both student and
teacher proxies serve as bridges and get bidirectional distil-
lation from both uni-modality and cross modality. In sum-
mary, the total loss function can be expressed as follows:

Lall =H(σ(fS), Y ) +H(σ(fT ), Y )

+ λ1D(σ(fT ), σ(f
pro
T )) + λ1D(σ(fpro

T ), σ(fT ))

+ λ2D(σ(fS), σ(f
pro
S )) + λ2D(σ(fpro

S ), σ(fS))

+ λ3ηD(σ(f̂
pro(i)
S ), σ(f̂

pro(i)
T ))

+ λ3ηD(σ(f̂
pro(i)
T ), σ(f̂

pro(i)
S ))

(6)

where λ1, λ2, and λ3 are balancing parameters and i ̸= t.
H and D represent supervision and KD loss, respectively.
We simply set {λ1 = λ2 = λ3 = 1} in all experiments.
Understanding CMKD training dynamics. We visual-
ize the training dynamics of CMKD and compare it with
SHAKE [25] and NKD [47] to demonstrate the CMKD
progress. Figure 3 shows the test accuracy and the aver-
age number of samples with KRC < ω (ω = 0) during
the training process. As the advanced online KD, SHAKE
gets the reverse cross-modal feedback supervision without
discrimination. However, SHAKE suffers from severe in-
stability of training, possibly due to conflicting cross-modal
information. Meanwhile, the sample number of KRC < ω
drops to close to 0 within initial epochs, which represents
the teacher modality is influenced by the student modality
and might lose teacher modality information. In contrast,
NKD minimizes the distance between student modality log-
its and teacher modality logits. The teacher model of NKD

is not updated to cater to student modality, so the sample
number of KRC < ω is large, and NKD also falls into
the unstable training process. As for ours, we selectively
inherit cross-modal knowledge based on KRC and progres-
sively update the teacher model through proxies to obtain
receptive knowledge. During the distillation progress, the
rank-distorted samples gradually reduce, and our method
only filters out the non-distillable samples.

Comparisons with other distance metrics. We select
other distance metrics to verify the effectiveness of KRC
defined in Equation 4. Concretely, we choose the cosine
similarity (Cos), gradient cosine similarity (GradCos), and
Pearson correlation coefficient [29] (Pearson) as alterna-
tives. Cosine similarity and Pearson correlation coefficient
are used to measure the distance between teacher and stu-
dent logits, ranging from -1 to 1. They can be formulated
as: ⨿(fT , fS) > ω, ⨿ ∈ {Cos; Pearson}. Similar to
[48, 55], Gradient cosine similarity regards CMKD (Equa-
tion 1) as two tasks: cross-modal distillation (Lcmkd =
D(pS , pT )) and unimodal task (Ltask = H(pS , Y )) and
calculates the gradient cosine similarity between these two
tasks as: Cos(∇θLcmkd,∇θLtask) > ω. It’s worth noting
that these three metrics consider both rank and intensity be-
tween cross-modal logits, while KRC only concerns about
rank-distorted ones. As shown in Table 4, KRC makes the
best performance among these metrics. Although inferior
to KRC metric, other metrics with proper ω perform bet-
ter than without sample selection (w/o Selection) strategy.
The results validate the necessity of filtering out samples
with misaligned soft labels.
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(a) (b) (c) (d)
Figure 3. Training dynamics analysis. The solid lines correspond to the test accuracy, and the dotted lines indicate the average number of
samples with KRC < ω each data batch during the training process. Here we set {ω = 0, batchsize = 64}.

Figure 4. Comparisons of different distance metrics. The X-
axis represents the value of ω.

4. Experiments

We conduct extensive experiments to validate the effective-
ness of our method. First, we compare our method with KD
methods regarding multimodal classification tasks. Also,
we apply our method to the multimodal semantic segmen-
tation. Then, we perform ablation and sensitivity analysis.

4.1. Multimodal Classification

We follow [1, 11, 30] and conduct experiments on four
visual-audio and image-text datasets: (1) CREMA-D [4]
is an audio-visual dataset for speech emotion recognition,
with 6 categorizations. (2) AVE [37] is an audio-visual
dataset for audio-visual event localization, in which there
are 28 event classes. (3) VGGsound [5] is a large-scale
video dataset containing 309 classes covering daily life ac-
tivities. We randomly choose 50 class to conduct experi-
ments. (4) CrisisMMD [2] is a multimodal crisis prediction
dataset and is divided into eight humanitarian categories.
Details of these four datasets are in the Appendix A.
Implementation. For visual-audio datasets, the preprocess
strategy follows [11, 30] and detailed implementations are
in the Appendix C. We train the network for 100 epochs
with 1e-2 initial learning rate and decay follow the ‘poly’

policy with the power of 0.9. We use SGD with 0.9 mo-
mentum and default hyperparameters as the optimizer. For
the image-text dataset, we use the same training strategies
and adopt ω = 0 across all experiments. Here, following
[1, 30], we adopt the same ResNet-18 [14] as the back-
bone for visual and audio modality, and BERT-base [9] for
text and MobileNetV2 [34] and image feature extractors,
respectively. More experiments on diverse-capacities ho-
mogeneous and heterogeneous architectures are in the Ap-
pendix B. All results are the average of three different seeds.
Comparison Results. In Table 3, we compare our method
to some advanced KD methods with the same training set-
tings. Details of implementations of compared methods are
in the Appendix C. We can learn from Table 3 that our pro-
posed method, C2KD, consistently outperforms other KD
methods across four datasets. Existing KD methods can
not effectively distill one modality information to another
modality, especially for the datasets with the significant
modality imbalance issue like AVE and VGGsound. Con-
cretely, feature-based KD (FitNet[33], Review[7]) methods
fail in CMKD because of significant feature divergence (see
Section 5). Online KD (DML [53] and SHAKE [25]) meth-
ods update teacher models and achieve better cross-modal
knowledge transfer ability, compared with the baseline [16].
Due to soft label misalignment between modalities, the
relation-based method (RKD [28]) degrades severely in
CMKD. Recent advanced logits-based methods (DKD [54],
DIST [17], and NKD [47]) significantly outperform the
vanilla KL loss by proposing the relaxed KD function and
logits decoupling strategies. However, these methods fail
to transfer knowledge from low-accuracy to high-accuracy
modality, impeding their practical deployments in CMKD.

4.2. Multimodal Semantic Segmentation

We also extend C2KD to the multimodal semantic segmen-
tation, a challenging dense prediction task. Concretely, fol-
lowing [42], we conduct experiments on the NYU-Depth
V2 dataset [36]. NYU-Depth V2 contains 1,449 aligned
RGB and depth pairs with 40 category labels, of which 795
pairs are used for training, and 654 pairs are used for testing.
Implementation. Both teacher and student networks de-
ploy the DeepLab V3+ [6] architecture with diverse back-
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CREMA-D AVE VGGsound CrisisMMD
Method Visual Audio Visual Audio Visual Audio Image Text
w/o KD 58.1±0.33 56.3±0.22 31.6±0.18 52.8±0.11 38.7±0.16 59.4±0.16 66.7±0.22 68.1±0.21

FitNet[33] 56.4±0.47 52.9±0.32 29.6±0.63 48.0±0.81 37.9±0.39 57.1±0.79 - -
Review[7] 59.6±0.45 55.7±0.36 32.1±0.63 50.6±0.31 38.2±0.47 57.9±0.33 - -

KD[16] 57.4±0.92 53.4±0.85 32.3±0.35 46.6±0.24 38.5±0.50 56.3±0.46 66.3±0.24 68.4±0.12
DML[53] 60.3±1.60 56.4±0.55 31.8±0.41 48.0±1.31 38.7±0.86 58.2±1.01 67.9±0.18 69.6±0.24

SHAKE[25] 60.0±0.35 58.6±0.61 32.2±0.59 47.3±0.72 38.3±0.41 59.5±0.34 68.1±0.16 69.7±0.26
RKD[28] 48.3±0.68 51.9±1.36 28.2±0.71 44.5±0.73 33.4±0.49 41.5±1.36 67.0±0.23 67.4±0.21
DKD [54] 60.4±0.82 55.1±0.65 32.6±0.65 48.6±1.02 38.1±0.43 57.2±0.86 68.0±0.17 69.2±0.23
DIST [17] 61.1±1.82 57.9±0.57 29.8±0.61 49.3±0.29 38.5±0.39 58.9±0.45 68.3±0.21 67.8±0.18
NKD [47] 60.6±0.64 56.1±0.68 32.9±0.32 52.2±0.62 39.2±0.52 59.3±0.40 67.2±0.26 68.5±0.16

Ours† 62.4±0.24 60.5±0.37 34.2±0.28 54.5±0.22 40.8±0.23 61.6±0.34 68.2±0.09 69.8±0.16

Ours‡ 62.8±0.28 61.4±0.44 34.7±0.23 54.9±0.16 40.9±0.31 61.9±0.27 68.8±0.15 70.1±0.12

Table 3. Comparison results on Visual-Audio and Image-Text datasets. The metric is the top-1 accuracy (%). Ours‡ means fully
updating the teacher model, and Ours† means partially finetuning the top 2 layers. The best is in bold, and the second is underlined.

RGB Depth RGB Depth RGB Depth
RN18 RN18 RN18 MNV2 MNV2 RN18

w/o KD 36.1 30.5 36.1 31.2 36.3 30.5
KD [16] 35.8 30.9 36.2 31.9 36.5 31.8

SHAKE [25] 37.1 31.2 37.0 32.7 37.1 32.9
DIST [17] 36.9 32.0 36.5 32.9 36.8 33.1
NKD [47] 36.5 30.8 36.4 32.2 36.4 32.7

CIRKD [44] 37.3 32.6 36.9 32.7 36.7 33.4
Ours 37.5 32.5 37.2 32.8 37.4 33.1

Ours+[17] 38.1 33.2 37.7 33.5 37.9 33.7

Table 4. Comparison results on RGB-Depth semantic segmen-
tation dataset. The metric denotes the mean Intersection over
Union (mIoU: %). Ours+[17] means we replace KL loss with the
advanced DIST loss. RN18: ResNet-18; MNV2: MobileNetV2.

bones. The training settings follow [44] that we adopt SGD
as the optimizer with a momentum of 0.9, a batch size of
16, an initial learning rate of 0.02, and ImageNet pre-trained
weights. The total training iterations is 40K, decayed by the
‘poly’ policy with the power of 0.9. Experiments on ho-
mogeneous/heterogeneous backbones, including ResNet-
18/ResNet-18 and ResNet-18/MobileNetV2 pairs, are con-
ducted to validate our method. All results are the average of
three different seeds.
Comparison Results. We compare our methods with ad-
vanced traditional KD methods (KD [16], SHAKE [25],
DIST [17], and NKD [47]) as well as the semantic seg-
mentation KD method (CIRKD [44]). The results com-
pared with previous methods are summarized in Table 4.
We can see that previous KD methods do not perform well
in CMKD, especially in transferring low-accuracy modal-
ity information to high-accuracy modality. Our method can
significantly improve the distilled performance of arbitrary
single modality. For instance, ours consistently surpasses
the advanced CIRKD in transferring depth information to
RGB modality. Besides, when replacing KL loss with DIST
loss [17], our method affords clear improvements.

4.3. Ablation and Sensitivity Analysis

Effectiveness and generalizability of each module. We
analyze how the proposed modules improve CMKD. Table
5 reports the results of ablation studies on AVE, VGGsound,

Proxy OFS NT BD AVE VGGsound CrisisMMD
Visual Audio Visual Audio Image Text

(e) 31.6 52.8 38.7 59.4 66.7 68.1
(a) 32.3 46.6 38.5 56.3 66.3 69.2
(b) ✓ 32.7 47.9 38.8 57.6 67.3 69.2
(c) ✓ ✓ ✓ 34.6 54.3 40.4 61.5 68.5 69.8
- ✓ ✓ 33.2 52.9 39.4 60.3 67.9 68.9
- ✓ ✓ 34.4 52.5 40.0 59.9 68.0 69.5

(d) ✓ ✓ ✓ ✓ 34.7 54.9 40.9 61.9 68.8 70.1

Table 5. Ablation studies on each module. (a), (b), (c), and (d)
represent the evolution steps of C2KD (Figure 2). (e) indicates the
results without KD. The metric is the top-1 accuracy (%).

and CrisisMMD with the same backbones. The configura-
tions of (a), (b), (c), and (d) correspond to the evolution
steps shown in Figure 2. Compared to the vanilla KD (i.e.,
(a)), the Bidirectional Distillation (BD) updates the teacher
model (i.e., (b)) to mitigate the model gap. Furthermore, to
validate the effectiveness of OFSD, we decouple OFSD into
the On-the-Fly Selection (OFS) strategy and Non-Target
(NT) classes distillation approach. We can learn that both
OFS and NT benefit CMKD, and the combination of both
brings significant improvement compared to (b). The proxy
teacher and student circumvent the direct imitation of cross-
modal logits, serving as bridges for inheriting unimodal and
cross-modal knowledge and facilitating the transfer of in-
tegrated knowledge through bidirectional distillation. The
progressive KD strategy further improves the CMKD re-
sults. The structure of proxies adheres to [25, 33]. We pro-
vide analyses about the proxies and computation overhead
in the Appendix D&E.

To ascertain the generalizability of each component, we
incorporate the proposed plug-and-play modules into ad-
vanced KD methods (i.e., DIST [17] and NKD [47]). We
can learn from Figure 5 that the proposed modules consis-
tently improve the performances of traditional KD methods
in the CMKD task, especially for the OFSD strategy.
Necessity of cross-modal KD. Considering the challenges
of cross-modal KD, a question may arise: Do we really need
CMKD rather than fully explore self-knowledge? Self-
knowledge distillation (Self-KD) techniques [24, 26, 35, 43,
47] have been proposed to utilize the information within
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(a) T: audio; S: visual (b) T: visual; S: audio
Figure 5. Generalizability of each module. We conduct experi-
ments on VGGsound dataset in terms of DIST [17] and NKD [47].

AVE VGGsound CrisisMMD
Method Visual Audio Visual Audio Image Text
w/o KD 31.6 52.8 38.7 59.4 66.1 68.1
DLB[35] 32.6 53.3 39.1 60.2 66.9 68.6

ZipfKD[26] 33.3 53.5 40.2 60.3 67.4 68.9
USKD[47] 33.1 53.2 40.0 60.1 67.1 69.0

Ours 34.7 54.9 40.9 61.9 68.8 70.1

Table 6. Comparison results of different Self-KD methods.

the student model to facilitate its learning process. Spe-
cially, DLB [35] leverages the soft targets generated in the
last mini-batch backup for training consistency and stabil-
ity. ZipfKD [26] and USKD [47] generate soft labels fol-
lowing the Zipf’s law distribution [27]. We conduct exper-
iments on these advanced Self-KD methods to validate the
necessity of CMKD. From Table 6, we can learn that al-
though Self-KD improves the performance of each modal-
ity, our method consistently outperforms Self-KD methods
by a clear margin. The results indicate the necessity of
cross-modal KD.
Parameter sensitivity. Here, we conduct a sensitivity study
on KRC threshold ω. Results are in Figure 4. Large ω
filters out more samples, which might hinder cross-modal
knowledge transfer, while low ω preserves more samples,
which might contain rank-distorted samples that induce ad-
verse effects. We heuristically set ω to 0 and achieve bal-
anced results. Note that, as shown in Tables 3 and 5, even
the worst accuracy of varying ω is still competitive with the
baselines, we think the studies show the necessity of on-
the-fly filtering out rank-distorted samples based on KRC.
More analyses about λ1, λ2, and λ3 are in the appendix.

5. Discussion

Feature-based CMKD Analysis. We analyze the modality
gap of CMKD in the logits-based perspective and propose
C2KD to mitigate the issues. Furthermore, we provide the
analysis of the challenge of CMKD from the feature-based
perspective. We adopt the Center Kernel Alignment (CKA)
[21], a feature similarity metric that measures input similar-
ity with different dimensions. As shown in Figure 6, com-
pared to unimodal features, cross-modal features have sig-
nificant feature divergence, and directly using feature-based
distillation methods for CMKD is unreasonable. We leave
the exploration of feature-based CMKD as the future work.
Multimodal Teacher Efficacy Analysis. We provide anal-

Figure 6. The CKA score of intermediate features on AVE.

AVE VGGsound
Method V(S) T A(S) T V(S) T A(S) T
NKD [47] 32.9 52.8 52.2 31.6 39.2 59.4 59.3 38.7
+Cat 34.0 59.6 52.0 60.2 39.9 62.9 59.9 63.2
+FiLM [31] 33.2 57.4 51.7 57.6 39.0 62.1 58.6 62.8
+OGM [30] 33.6 60.9 52.7 61.6 40.2 65.2 59.8 64.3
Ours 34.7 54.2 54.9 34.6 40.9 59.0 61.9 41.6

Table 7. Comparison results of different multimodal teachers.
The italic numbers mean teachers’ accuracy. S: student; T: teacher.

ysis of the efficacy of multimodal teacher in CMKD. Con-
cretely, the multimodal teacher is formulated by fusing the
teacher and the student modalities with the supervision loss.
Following the multimodal learning [10, 11, 30], we adopt
the fusion strategies including Concatenation (Cat), FiLM
[31], and OGM [30]. Pretrained teachers are updated for
the better information fusion. Table 7 indicates multimodal
teachers generate high-accuracy soft labels, while don’t
necessarily improve the distilled modality, especially for
the high-accuracy modality (i.e., audio). Our customized
teacher integrates receptive corssmodal information and en-
sures effective knowledge transfer. Inspired by [42], devel-
oping the multimodal learning method that contains more
modality-general decisive information is a possible solu-
tion. We leave this intriguing challenge to future work.

6. Conclusion
In this paper, we conduct thorough investigation toward
the efficacy of CMKD and reveal that the modality im-
balance and soft label misalignment induced by the inter-
modality gap are the main factors for the failure of CMKD.
Based on our analyses, we propose a simple yet effective
method, Customized Crossmodal Knowledge Distillation
(C2KD). Specifically, we propose On-the-Fly Sample Se-
lection (OFSD) strategy to filter out rank-distorted samples
based on the KRC metric and distill knowledge from non-
target classes. Meanwhile, the pre-trained teacher conducts
bidirectional distillation with the student. Proxy student and
teacher, inheriting unimodal and cross-modal knowledge,
progressively transfer cross-modal knowledge. Extensive
experiments demonstrate the effectiveness of our method.
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