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Abstract

The success of a specific neural network architecture is
closely tied to the dataset and task it tackles; there is no one-
size-fits-all solution. Thus, considerable efforts have been
made to quickly and accurately estimate the performances
of neural architectures, without full training or evaluation,
for given tasks and datasets. Neural architecture encod-
ing has played a crucial role in the estimation, and graph-
based methods, which treat an architecture as a graph,
have shown prominent performance. For enhanced rep-
resentation learning of neural architectures, we introduce
FLOWERFORMER, a powerful graph transformer that in-
corporates the information flows within a neural architec-
ture. FLOWERFORMER consists of two key components: (a)
bidirectional asynchronous message passing, inspired by
the flows; (b) global attention built on flow-based masking.
Our extensive experiments demonstrate the superiority of
FLOWERFORMER over existing neural encoding methods,
and its effectiveness extends beyond computer vision models
to include graph neural networks and auto speech recogni-
tion models. Our code is available at http://github
.com/y0ngjaenius/CVPR2024_FLOWERFormer.

1. Introduction

While deep learning models have demonstrated their effi-
cacy across various applications, the performance of a spe-
cific neural architecture heavily depends on specific down-
stream tasks and datasets employed. As a result, numerous
neural architectures have been developed [11, 12].

In response to this dependency, significant efforts have
been made to rapidly and accurately predict the perfor-
mances of neural architectures for given tasks and datasets.
This endeavor is crucial because exhaustively training
and/or evaluating many candidate neural architectures is an
expensive process. To this end, researchers have primarily
employed machine learning techniques [6, 19].

Especially, various neural architecture encoding methods

have been proposed since obtaining an accurate representa-
tion of each architecture plays a crucial role in the estima-
tion process. Their focus has mainly revolved around (a)
transforming input neural architectures to appropriate data
structures [20, 41] and (b) applying representation-learning
models to the transformed structures [5, 42].

Some have treated neural architectures as graphs and ap-
plied graph representation learning. They, however, share
some limitations. For instance, their basic message-passing
mechanisms oversimplify neural-architecture characteris-
tics [35, 40] and may suffer from over-smoothing [29], over-
squashing [2], or limited expressiveness [32].

Graph Transformers (GTs), when incorporated with ade-
quate information, are recognized for enhancing basic mes-
sage passing, making them effective in various graph clas-
sification [13, 46] and regression [7, 22] tasks. One strength
of GTs lies in their global attention mechanisms [38], where
all nodes in an input graph contribute directly to forming the
representation for each individual node.

However, without integrating relevant topological or ex-
ternal information of input graphs, the relevance of atten-
tion scores, and thus the effectiveness of GTs, might be im-
paired. For example, Niu et al. [28] showed the essentiality
of using motif-based spatial embedding to incorporate the
characteristics of molecule graphs into GTs.

In this work, we propose FLOWERFORMER (Flow-
aware graph transformer), a GT model specialized in cap-
turing information flows within neural architectures, as il-
lustrated in Fig. 1. The information flows of a neural archi-
tecture contain the characteristics of both forward and back-
ward propagations of the architecture, and thus describe
its fundamental properties. FLOWERFORMER includes two
core modules: the flow encode module and the flow-aware
global attention module. The former conducts bidirectional
asynchronous message passing, imitating the forward and
backward propagations within the input neural architecture.
The latter applies global attention with masking schemes
based on the flow-based dependencies between nodes.

Our extensive experiments on neural architecture perfor-
mance prediction, conducted using five benchmark datasets,
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Figure 1. Information flows within an example neural architec-
ture from the NAS-Bench-101 benchmark [45]. The architecture
is represented as a directed graph where each node corresponds to
an operation, and the topological structure of the graph encodes the
sequence in which these operations are performed. For instance,
the ‘1×1’ (convolution) operation is executed only after the ‘3×3’
(convolution) and ‘mp’ (max pooling) operations have been com-
pleted. The forward pass, depicted by blue arrows, is followed by
the backpropagation of the loss, depicted by orange arrows. The
number displayed above each node indicates the processing order
within each flow.

validate the superiority of FLOWERFORMER over state-of-
the-art neural encoding models [27, 44]. The results high-
light the effectiveness of incorporating flows into GTs. Our
contributions are summarized as follows:

• We propose FLOWERFORMER, a flow-aware GT-based
neural architecture encoding model. To our best knowl-
edge, FLOWERFORMER is the first GT model specifically
designed to capture flows.

• FLOWERFORMER outperforms six baseline architectures,
including the most recent ones [27, 44], by a substan-
tial margin across three benchmark datasets in the com-
puter vision domain. Specifically, in predicting the per-
formance of neural architectures, it outperforms the top-
performing baseline method by a margin of up to 4.38%
in Kendall’s Tau. Additionally, through ablation studies,
we justify the design choices made in FLOWERFORMER.

• Beyond computer vision neural architectures, FLOWER-
FORMER also excels at performance prediction for graph
neural networks and auto speech recognition architec-
tures. In the benchmarks for these architectures, FLOW-
ERFORMER achieves performance gains of up to 4.41%
in Kendall’s Tau over baseline models.

Our code is available at http://github.com/y0n
gjaenius/CVPR2024_FLOWERFormer.

2. Related work

In this section, we briefly review related studies in neural
architecture encoding and graph transformers (GTs).

2.1. Neural architecture encoding

Neural architecture encoding [17, 19, 20, 39, 41], which
aims to learn representations of neural architectures, has
gained considerable attention due to its significant down-
stream tasks, such as performance prediction (i.e., the pre-
diction of task- and data-specific performance for given ar-
chitectures without full training or evaluation).

One popular class of approaches is graph-based, mod-
eling neural architectures as graphs and using graph neu-
ral networks [15] for representation learning. These ap-
proaches have also introduced topology-based graph sim-
ilarity and operation-specific embeddings [4, 8].

Another significant approach aims to obtain representa-
tions that mimic the forward and/or backward passes within
neural architectures. For instance, GATES [26] updates op-
eration embeddings by mimicking the application of opera-
tions to information (which is also represented as a vector)
and thus effectively replicating the forward-pass of convo-
lution operations. Another method, TA-GATES [27], simu-
lates an iterative process involving both forward and back-
ward passes, with specialized handling for specific opera-
tions, e.g., skip-connections. However, these methods focus
on flows only at a local level, by simulating a series of local
operations, and may overlook a global-level perspective.

Transformer-based models [18, 43] are capable of cap-
turing global-level perspectives through attention mecha-
nisms. NAR-Former [44], a multi-stage fusion transformer,
is one of the state-of-the-art methods for predicting neural
architecture performance. They (1) represent a neural archi-
tecture as a sequence of operations to employ a transformer-
based model and (2) leverage multiple valid sequences from
the same architecture for augmentation.

In this work, we unify all three dimensions—graph
learning, flow modeling, and global attention—by introduc-
ing a novel flow-aware GT, marking the first instance of
such integration to the best of our knowledge.

2.2. Graph transformers (GTs)

Graph transformers (GTs) [10, 13, 16, 32, 36, 46] ap-
ply global (i.e., graph-level) attention between all node
pairs. Recently, GTs show remarkable performance in vari-
ous graph-level tasks, including molecular property predic-
tion [14, 33], image classification [25, 49], and human in-
teraction recognition [30].

To further improve their effectiveness, global attention is
often supplemented with topological and/or external infor-
mation. The information includes eigenvectors of adjacency
and Laplacian matrices [16, 36] and pair-wise node similar-
ity derived from shortest paths, diffusion kernels, random
walks, etc [16, 24, 46].

Some GTs are tailored for specific types of graphs.
For molecular graphs, where motifs play key roles, Niu
et al. [28] employ motif-based spatial embeddings in a GT.
DAGFormer [21] is designed for directed acyclic graphs
(DAGs) and incorporates depth-based positional encodings
and reachability-based attention. Note that DAGFormer
is designed for general DAGs, and it is not optimized
for encoding neural architectures, especially in capturing
architecture-specific flows.
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Figure 2. Overview of proposed FLOWERFORMER, which contains two key modules in each of its layers: the flow encode module and the
flow-aware global attention module. The flow encode module performs bidirectional asynchronous message passing, inspired by forward
and backward passes, to produce a node embedding matrix Hflow. The flow-aware global attention module computes attention with a flow-
based masking scheme to yield another node embedding matrix Hglobal. These two embedding matrices, Hflow and Hglobal, are combined and
then projected to produce updated node embeddings at each layer. This process is iterated over L layers, and the output node embeddings
are aggregated to form the final architecture embedding, which is fed into a regressor for performance prediction.

3. Proposed method: FLOWERFORMER

In this section, we present FLOWERFORMER (Flow-aware
graph transformer), a graph transformer model designed
to capture information flows within an input neural archi-
tecture. First, we provide the motivation behind FLOWER-
FORMER in Sec. 3.1. Then, we describe how an input neural
architecture is represented as a graph in Sec. 3.2. After that,
we elaborate on how FLOWERFORMER learns the represen-
tation of the neural architecture graph. Specifically, we de-
scribe two core modules of FLOWERFORMER, collectively
referred to as FLOWER, in Sec. 3.3. Lastly, we present the
overall framework (refer to Fig. 2) in Sec. 3.4.

3.1. Motivation of capturing information flows

Despite the remarkable success of Graph Transformers
(GTs) in various graph-level tasks, including graph classifi-
cation [13, 46] and regression [7, 22], their application for
encoding neural architectures has received relatively limited
attention. Existing applications of GTs suggest that addi-
tional design choices for accurately capturing the underly-
ing characteristics of input graphs (on top of global attention
mechanism between all pairs of nodes) are essential for the
effectiveness of GTs. Refer to Sec. 2.2 for some examples.

In this work, we focus on a crucial aspect: capturing
information flows within neural architectures (i.e., input
graphs). Information flows include both the forward pass
of data and the backpropagation of gradients. Hence, it is
essential to capture information flows for incorporating how
neural architectures are trained and conduct inference into
their embeddings (i.e., the encoded neural architectures).

3.2. Input modeling

We represent a given neural architecture as a directed
acyclic graph (DAG), with each node representing an oper-
ation (e.g., pooling or convolution). Each directional edge
between two nodes indicates the information flow between
the corresponding operations, aligning with the direction of
data propagation during the forward pass. An illustrative
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Figure 3. An example neural architecture from the NAS-Bench-
101 dataset, represented as a directed acyclic graph (DAG), and
its adjacency matrix A. Each column of the node feature matrix
X corresponds to a specific operation, and each row in X is a
one-hot vector indicating the type of operation associated with the
corresponding node.

example can be found on the left-hand side of Figure 3.

We denote the graph representation of a neural archi-
tecture by G = (A,X), a tuple of an adjacency matrix
A ∈ {0, 1}N×N and a node (i.e., operation) feature ma-
trix X ∈ {0, 1}N×D, where N is the number of nodes and
D is the number of operations. The adjacency matrix en-
codes direct connections between node pairs in a graph. Its
binary entries indicate whether a directional edge exists be-
tween each pair of nodes. Specifically, the (i, j)-th entry of
A is set to 1 if there is a directed edge from the i-th node
(denoted as vi) to the j-th node (denoted as vj), and 0 other-
wise. Each node is associated with a one-hot feature vector
representing its corresponding operation, and these vectors
are stacked vertically to form the node feature matrix X .
Refer to Fig. 3 for an example.

With our general input modeling scheme, FLOWER-
FORMER is readily applicable to different domains and neu-
ral architectures without such additional modelings or steps.
By contrast, state-of-the-art neural encoding methods often
rely on complex modelings and/or preprocessing steps, such
as the specialized treatment of specific operations [27] and
isomorphic augmentations [44] (refer to Sec. 2.1). The em-
pirical superiority of FLOWERFORMER (refer to Sec. 4) de-
spite its straightforward (yet elegant) input modeling is at-

6130



Algorithm 1: Flow encode module
Input: (1) G = (A,X): an input neural architecture

(2) H: an input node embedding matrix
Output: H: updated node embedding matrix

1 /∗ step 1. topological sorting ∗/

2 T G ← topological generations of G

3 /∗ step 2. asynchronous forward message passing ∗/

4 for k = 1, . . . , |T G| do
5 for vj ∈ TG

k do
6 hj ← Comb(hj ,Agg{me(hj , hi) : Aij = 1})
7 /∗ step 3. asynchronous backward message passing ∗/

8 for k = |T G|, . . . , 1 do
9 for vj ∈ TG

k do
10 hj ← Comb(hj ,Agg{me(hj , hi) : Aji = 1})
11 return H

tributed to our novel flow-aware GT architecture, which is
described in the following subsection.

3.3. FLOWER layers

In this section, we introduce FLOWER layers, the basic
units of FLOWERFORMER. A FLOWER layer consists of
two core components: the flow encode module and the flow-
aware global attention module. The flow encode module
is a message-passing neural network (MPNN) that asyn-
chronously passes messages in the forward and then the
backward orders. The flow-aware global attention mod-
ule is a self-attention module based on a flow-aware mask-
ing scheme. The outputs of the flow encode module and
the flow-aware global attention module are node embedding
matrices, denoted as H(l)

flow ∈ RN×d and H
(l)
global ∈ RN×d,

respectively, for the l-th FLOWER layer. Below, we provide
a detailed explanation of each module.

3.3.1 Flow encode module

As discussed in Sec. 3.1, we aim to enable a GT to cap-
ture the crucial aspect of neural architectures—information
flows. To this end, the flow encode module conducts both
asynchronous forward and backward message passing, re-
sembling the forward pass (i.e., inference) and backpropa-
gation (i.e., training) of neural architectures, respectively.
These message-passing procedures are carried out in the
(reversed) topological order in the input neural architecture
graph, leading to updated node embeddings.

Pseudocode of the flow encode module is presented
in Algorithm 1. It includes topological sorting, forward
message passing, and backward message passing, in order,
and each of these components is described below.
Topological sorting (Line 2): The first step is to divide
nodes (i.e., operations) into topological generations. Recall
that neural-architecture graphs are directed acyclic graphs
(DAGs). Given a DAG G, its first topological genera-

𝑻𝑻𝟏𝟏𝑮𝑮 = 𝟏𝟏,𝟐𝟐
𝑻𝑻𝟐𝟐𝑮𝑮 = {𝟑𝟑,𝟒𝟒,𝟓𝟓}
𝑻𝑻𝟑𝟑𝑮𝑮 = {𝟔𝟔}
𝑻𝑻𝟒𝟒𝑮𝑮 = {𝟕𝟕}

1

2

3

4

5

6 7

Figure 4. Example topological generations. Nodes 1 and 2 are
devoid of incoming edges, and thus they constitute the first topo-
logical generation TG

1 . Upon removal of nodes 1 and 2, nodes 3,
4, and 5 no longer have incoming edges, and thus they compose
the second generation TG

2 . Subsequently, nodes 6 and 7 form the
third and fourth generations, respectively.

tion, denoted as TG
1 , comprises the nodes without incom-

ing edges in G. Then, for each k > 1, the k-th topolog-
ical generation TG

k comprises the nodes without incoming
edges when all preceding generations are removed from G.
The set of non-empty topological generations is denoted as
T G := {TG

1 , . . . , TG
|T G|}. Refer to Fig. 4 for an example.

These topological generations are closely related to the
data flow within a neural architecture. For the operations
(i.e., nodes) in each generation to be executed, all operations
in the preceding generations need to be complete. Con-
versely, during the process of backpropagation, gradients
flow from subsequent generations to preceding generations.
Forward message passing (Line 4-Line 6): During the
forward message passing step, node embeddings are up-
dated asynchronously, following the order of the topolog-
ical generations, akin to the forward pass within neural ar-
chitectures. For each node vj , its embedding hj (i.e., the j-
th row vector of H) is updated by the following three steps:
(1) computing the message me(hj , hi) for each incoming
neighbor vi, (2) aggregating these messages, and (3) com-
bining the result with the current embedding hj (Line 6).
Note that the embeddings of all incoming neighbors, which
belong to preceding generations, have already been updated
by the time message calculation occurs. Also note that this
differs from conventional synchronous graph message pass-
ing, where all node embeddings are updated simultaneously
based on their input embeddings.

In our implementation, we use the sum aggregation as
the Agg function. As me and Comb, we adopt the message
function and the combine operator used in [37], as follows:

me(hj , hi) = softmax(w⊤
1 hj + w⊤

2 hi)hi, (1)
msgj = Σi:Aij=1me(hj , hi), (2)

Comb(hj ,msgj) = GRU(hj ,msgj), (3)

where w1 ∈ Rd and w2 ∈ Rd are learnable parameters.
Backward message passing (Line 8-Line 10): After the
forward message passing step, we further update node em-
beddings through backward message passing, which re-
sembles the process of backpropagation. This aligns with
the standard practice in neural architecture training, where
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Figure 5. Flow encode module. During forward message passing,
node embeddings are updated following the order of topological
generations. Conversely, during backward message passing, node
embeddings are updated in the reverse order of the generations.

backpropagation typically occurs after the forward pass for
loss computation.

During the backward message passing step, node embed-
dings are updated asynchronously, following the reverse or-
der of the topological generations. For each node vj , the
messages from its outgoing neighbors (rather than incom-
ing neighbors) are computed and then aggregated (Line 10).
The other details remain consistent with those of the for-
ward message passing in to Eq. (1), Eq. (2), and Eq. (3).
Outputs: We denote the output node-embedding matrix
of the flow encode module in the ℓ-th FLOWER layer, as
H

(ℓ)
flow ∈ RN×d. That is,

H
(ℓ)
flow = FlowEncoder(G,H(ℓ−1)). (4)

Here, H(ℓ−1) ∈ RN×d is the input node-embedding matrix
obtained in layer-(ℓ− 1), the previous layer (Eq. (6)).

3.3.2 Flow-aware global attention module

The flow-aware global attention module is designed to
capture graph-level (i.e., architecture-level) characteristics,
complementing the flow encode module which primarily fo-
cuses on local-level flows between directly connected oper-
ations. To this end, we employ a global attention mech-
anism of GTs; moreover, to accurately reflect the flows
within architectures, we restrict attention scores to be com-
puted only between nodes connected by at least one path
of the flows. Specifically, we employ a masking strat-
egy [21, 43] with a mask matrix M ∈ RN×N defined as
follows (refer to Fig. 6 for an example of M ):

Mij =


1 if vi lies on any directed path from vj

or vj lies on any directed path from vi,
0 otherwise.

1 2 3 4 5 6 7
1
2
3
4
5
6
7

= do not attend0

= attend11 5

2

3

4

7

6

𝐏𝐏𝟏𝟏

𝐏𝐏𝟐𝟐
= M

Figure 6. An example mask matrix M . Node 6 attends exclusively
to nodes that appear in any path involving the node (P1 and P2).
Nodes 1, 3, and 7 appear in P1, and nodes 1, 4, and 7 appear in
P2; thus node 6 attends only to 1, 3, 4, and 7, as indicated by M .

Specifically, given the input node-embedding matrix
H(ℓ−1) ∈ RN×d and the mask matrix M , the flow-
aware global attention module computes its output node-
embedding matrix H

(ℓ)
global ∈ RN×d as follows:

H
(ℓ)
global = MMHA(H(ℓ−1), H(ℓ−1), H(ℓ−1),M). (5)

Here, MMHA is the Masked Multi-Head Attention module:

MMHA(Q,K, V,M) = Concat(head1, . . . ,heads)W
0,

where W 0 ∈ Rsdv×d is the learnable projection matrix, s is
the number of heads, and

headi = Attn(QWQ
i ,KWK

i , V WV
i ,M),

Attn(Q,K, V,M) =

(
M ⊙ Softmax

(
QKT

√
dk

))
V.

Here, ⊙ is element-wise multiplication; and WQ
i ∈ Rd×dk ,

WK
i ∈ Rd×dk , and WV

i ∈ Rd×dv denote i-th head’s learn-
able query, key, and value projection matrices, respectively.
We adhere to the condition dk = dv = d/s for every head.

3.4. Overall framework: FLOWERFORMER

The overall framework of FLOWERFORMER is illustrated
in Fig. 2. For each ℓ, it derives the output node embedding
matrix H(ℓ) from H

(ℓ)
flow (Eq. (4)) and H

(ℓ)
global (Eq. (5)) for

the ℓ-th layer as follows:

H(ℓ) = FeedForward(H
(ℓ)
flow +H

(ℓ)
global) (6)

In our implementation, we employ a 2-layer MLP with
ReLU activation [1] as the feedforward network. As shown
in Fig. 2, note that we incorporate skip-connection and
batch normalization in every module.

The output H(ℓ) is used as the input of the next FLOWER
layer, and for the first layer, we utilize a projected input
feature matrix as the input by multiplying X with a learn-
able projection matrix P ∈ RD×d, i.e., H(0) = XP . Each
FLOWER layer has a separate set of learnable parameters.

The node embeddings in the output H(L), where L rep-
resents the total number of FLOWER layers, are aggre-
gated to drive the final embedding zG of the input neural-
architecture graph G as follows:

zG = READOUT(H(L)),
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For aggregation, we use mean pooling as the readout func-
tion in our implementation.
Application to performance prediction: The architecture
embedding zG is used for downstream tasks. For example,
for performance prediction, it may serve as input to a regres-
sor that outputs the estimated performance ŷG as follows:

ŷG = Regressor(zG).

In Sec. 4, we employ a fully connected layer as the regressor
and utilize the following margin ranking loss for training
both FLOWERFORMER and the regressor:

L =
∑

(i,j):yi>yj

max(0,margin − (ŷi − ŷj)), (7)

where yi and yj are the ground-truth performances of archi-
tectures Gi and Gj , respectively. For each pair of architec-
tures Gi and Gj in the training set such that Gi outperforms
Gj (i.e., yi > yj), the loss encourages ŷi to be greater than
ŷj by at least a specified margin. Such designs for loss func-
tions are commonly employed when it is important to make
relative comparisons among instances (in our case, we com-
pare neural architectures to recommend better ones).

4. Experiments
In this section, we review our experiments. For evalua-
tion, we focus on the downstream task of predicting the
performance of neural architectures. In Sec. 4.2, we com-
pare the accuracies of FLOWERFORMER and six baseline
methods, including two state-of-the-art methods (spec., TA-
GATES [27] and NAR-Former [44]) using three perfor-
mance prediction benchmark datasets composed of com-
puter vision model architectures. In Sec. 4.3, we conduct
an ablation study to validate each component of FLOWER-
FORMER. In Sec. 4.4, we extend our evaluation to datasets
consisting of graph neural networks and auto speech recog-
nition models. In Sec. 4.5, we examine the training and
inference speed of FLOWERFORMER.

4.1. Experimental settings

Below, we provide an overview of our experimental setup.

4.1.1 Datasets

We evaluate the effectiveness of neural architecture encod-
ing methods using five benchmark datasets designed for
performance prediction, spanning three domains:
• Computer vision: We use three datasets: NAS-Bench-

101 [45, 47], NAS-Bench-201 [9], and NAS-Bench-301
[48]. These datasets contain computer vision models.

• Speech recognition: We employ NAS-Bench-ASR [23],
which consists of auto speech recognition architectures.

Table 1. Basic information about the benchmark datasets we used.
The sizes of the training and test splits used in [27] are reported.
Refer to Sec. 4.1.3 for details about training and test splits.

Dataset Domain # trains # tests
NAS-Bench-101

Computer vision
7,290 7,290

NAS-Bench-201 7,813 7,812
NAS-Bench-301 5,896 51,072
NAS-Bench-ASR Speech recognition 4,121 4,121
NAS-Bench-Graph Graph learning 13,103 13,103

• Graph learning: We include NAS-Bench-Graph [31],
which consists of graph neural networks.

Refer to Tab. 1, for basic statistics, and the supplementary
material, for details including our preprocessing methods.

4.1.2 Baseline methods

We utilize six baseline approaches, categorized as follows:
(a) Graph neural networks: GatedGCN [3] and directed
acyclic graph neural network (DAGNN) [37], (b) Graph
transformers: GraphGPS [32] and DAGFormer [21], and
(c) Neural architecture encoders: TA-GATES [27] and
NAR-Former [44], which are state-of-the-art methods for
neural architecture performance prediction. We use the of-
ficial implementations of these methods, and the links can
be found in the supplementary material.

4.1.3 Training and Evaluation protocol

For model training and evaluation, we follow the setting in
[27], including their training and test splits. We use a sub-
set of the training split as the actual training set, varying the
size of this subset: 1%, 5%, 10%, and 50% of the training
split. We use the first 40 architectures in the test split as a
validation set for hyperparameter tuning and early stopping,
the remaining ones in the split as a test set. In each set-
ting, we perform 9 trials using the three different splits and
three different random seeds, and we report the mean and
standard deviation across these trials. As accuracy metrics,
we use Kendall’s Tau [34] to assess overall performance
and Precision@K (which measures the proportion of cor-
rectly predicted top-K architectures among the true top-K
outperforming architectures) for the performance of iden-
tifying the best architectures. Note that these metrics are
commonly employed in the field of neural architecture en-
coding [26, 27, 44].

4.2. Performance on computer vision benchmarks

In this subsection, we focus on the computer vision bench-
marks for which we have extensive baseline methods. In
Tabs. 2 and 3, we report the performance prediction accura-
cies of the considered methods using two metrics across dif-
ferent training instance ratios. Notably, FLOWERFORMER
consistently outperforms all baseline methods across all set-
tings in terms of Kendall’s Tau. In terms of Precision@K,
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Table 2. Kendall’s Tau (scaled up by a factor of 100, mean and standard deviation over 9 trials) on three datasets: NAS-Bench-101,
NAS-Bench-201, NAS-Bench 301. In each setting, the best performances are highlighted in green. NA: there is no trivial extension of
NAR-Former to NAS-Bench-301, which consists of two-cell architectures. Note that, in every setting, FLOWERFORMER performs best.

Datasets NAS-Bench-101 NAS-Bench-201 NAS-Bench-301 Avg.
Training portions 1% 5% 10% 50% 1% 5% 10% 50% 1% 5% 10% 50% Rank

GatedGCN [3] 67.4 (6.0) 79.6 (4.1) 82.0 (5.1) 84.8 (5.9) 70.9 (1.8) 84.1 (0.6) 88.6 (0.3) 92.3 (0.1) 61.8 (2.4) 70.0 (0.9) 71.4 (1.0) 72.7 (1.5) 4.91
DAGNN [37] 72.4 (4.5) 82.9 (3.1) 84.4 (4.4) 85.9 (5.3) 75.8 (1.0) 87.5 (0.8) 90.6 (0.2) 92.6 (0.0) 61.5 (1.9) 70.9 (0.5) 73.4 (1.2) 76.1 (1.3) 2.50
GraphGPS [32] 70.6 (4.4) 81.7 (3.8) 83.9 (4.2) 85.9 (5.1) 71.3 (1.3) 82.5 (0.6) 87.8 (0.5) 92.7 (0.1) 59.7 (1.8) 69.3 (0.9) 70.7 (1.2) 73.8 (0.7) 4.75
DAGFormer [21] 73.0 (4.3) 75.6 (5.2) 77.2 (7.0) 80.9 (5.9) 73.0 (73.0) 84.9 (0.8) 88.8 (0.5) 92.7 (0.1) 61.3 (2.0) 70.7 (0.8) 72.1 (0.8) 74.8 (1.0) 3.91
NAR-Former [44] 59.4 (8.8) 72.0 (8.2) 75.5 (10.2) 79.8 (5.9) 62.3 (4.0) 80.7 (1.8) 87.3 (0.7) 88.9 (0.3) NA NA NA NA -
TA-GATES [27] 70.8 (6.0) 82.3 (2.7) 83.9 (3.5) 86.3 (3.9) 77.7 (1.7) 86.3 (0.8) 88.7 (0.3) 91.4 (0.5) 61.3 (1.2) 68.9 (1.6) 71.8 (1.6) 75.4 (0.7) 3.83

FLOWERFORMER 75.0 (2.9) 86.1 (0.8) 88.1 (0.2) 89.6 (0.1) 80.0 (0.8) 89.8 (0.3) 91.3 (0.2) 92.9 (0.1) 64.2 (1.6) 72.2 (1.0) 73.6 (1.3) 77.5 (0.7) 1.00

Table 3. Precision@K (scaled up by a factor of 100, mean and standard deviation of 9 trials). The proportion of training samples is fixed to
5%. In each setting, the best performances are highlighted in green. NA: there is no trivial extension of NAR-Former to NAS-Bench-301,
which consists of two-cell architectures. Note that, in most cases, FLOWERFORMER identifies top-k architectures most accurately.

Datasets NAS-Bench-101 (5%) NAS-Bench-201 (5%) NAS-Bench-301 (5%) Avg.
K (for P@Top K%) 1 5 10 50 1 5 10 50 1 5 10 50 Rank

GatedGCN [3] 44.4 (7.6) 65.6 (3.5) 76.2 (2.7) 90.5 (2.1) 42.3 (3.7) 68.5 (3.1) 80.9 (1.9) 94.1 (0.6) 19.1 (4.1) 55.2 (4.5) 71.8 (2.9) 85.4 (0.4) 4.83
DAGNN [37] 41.7 (5.9) 65.4 (4.2) 79.3 (2.9) 92.0 (1.3) 49.6 (6.2) 69.7 (3.0) 83.1 (0.7) 95.3 (0.9) 23.1 (2.1) 58.3 (3.4) 73.1 (1.5) 85.8 (0.4) 2.75
GraphGPS [32] 44.3 (12.2) 67.1 (2.7) 78.7 (1.9) 91.2 (2.0) 49.4 (4.6) 67.9 (4.9) 78.9 (3.4) 93.4 (0.3) 20.6 (2.1) 57.2 (3.8) 73.4 (2.5) 84.8 (0.5) 4.17
DAGFormer [21] 39.4 (7.9) 61.8 (5.6) 71.6 (5.0) 88.2 (2.4) 50.7 (5.8) 70.4 (2.9) 82.5 (2.3) 94.2 (0.5) 20.7 (3.4) 57.6 (3.7) 73.4 (2.5) 85.6 (0.4) 3.83
NAR-Former [44] 47.2 (9.9) 62.6 (7.9) 67.8 (8.4) 85.9 (5.2) 49.5 (6.5) 64.7 (2.0) 69.9 (2.0) 92.3 (1.0) NA NA NA NA -
TA-GATES [27] 44.6 (9.7) 66.6 (4.0) 78.1 (4.6) 91.8 (1.2) 49.4 (3.1) 66.7 (3.3) 78.1 (2.8) 94.8 (0.7) 20.1 (5.0) 56.2 (6.1) 72.4 (3.6) 84.7 (0.7) 4.33

FLOWERFORMER 46.5 (11.2) 70.0 (1.5) 80.9 (1.8) 92.7 (1.7) 57.0 (5.4) 74.7 (1.8) 85.2 (1.3) 96.9 (0.7) 20.8 (3.7) 58.5 (2.5) 74.7 (2.4) 86.6 (0.6) 1.08

it performs best in 10 out of 12 settings, ranking second in
the other settings. Two key observations are as follows.

The suboptimal performance of GraphGPS indicates that
a graph transformer alone is insufficient in effectively rep-
resenting neural architectures. Specifically, in terms of
Kendall’s Tau, the performance gap can be as large as 8.7
percentage points between FLOWERFORMER and GPS. We,
thus, argue that our incorporation of information flows into
a graph transformer, through the introduction of the flow
encode module and the flow-aware global attention module,
plays a pivotal role in FLOWERFORMER’s success.

The superiority of FLOWERFORMER over TA-GATES
highlights the importance of the global attention mecha-
nism. While TA-GATES may capture the information flow
at a local-level through its information propagation scheme,
it does not adequately leverage the global context of neural
architectures. FLOWERFORMER, on the other hand, uses
the global attention mechanism to capture the graph-level
(i.e., architecture-level) characteristics, empowering FLOW-
ERFORMER to yield better representations of architectures.

In summary, our empirical findings substantiate that
FLOWERFORMER serves as an effective predictor of neu-
ral architecture performance.

4.3. Ablation studies

In this subsection, we conduct ablation studies to validate
the design choices made in FLOWERFORMER. Specifi-
cally, we aim to analyze the necessity of (a) asynchronous
message-passing, (b) forward-backward message-passing,
and (c) flow-aware global attention. To this end, we use four
variants of FLOWERFORMER (1) without the flow encode

Table 4. Comparison with four variants of FLOWERFORMER in
terms of Kendall’s Tau, using the same setups as in Tab. 2. In
each setting, the best performances are highlighted in green. AS:
Asynchronous message passing. FB: Forward-backward message
passing. GA: Global attention. In most cases, FLOWERFORMER,
which is equipped with all components, outperforms all of its vari-
ants, thereby validating the effectiveness of each component.

Dataset # Components Training Portions
AS FB GA 1% 5% 10% 50%

NB 101

(1) ✗ ✗ ✔ 41.5(1.7) 42.5 (1.6) 41.1 (2.8) 43.1 (1.4)

(2) ✗ ✔ ✔ 65.5 (8.8) 56.8 (5.0) 53.8 (7.4) 69.6 (11.6)

(3) ✔ ✗ ✔ 76.7 (4.1) 83.9 (2.6) 84.6 (4.0 85.6 (5.4)

(4) ✔ ✔ ✗ 76.5 (3.0) 83.2 (3.9) 83.9 (5.1) 85.3 (6.3)

- ✔ ✔ ✔ 75.0 (2.9) 86.1 (0.8) 88.1 (0.2) 89.6 (0.1)

NB 201

(1) ✗ ✗ ✔ 75.9 (1.2) 86.5 (0.2 88.2 (0.3) 89.7 (0.1)

(2) ✗ ✔ ✔ 73.7 (1.1) 85.6 (0.7) 89.2 (0.5) 92.9 (0.1)

(3) ✔ ✗ ✔ 76.2 (2.1) 88.6 (0.8) 90.9 (0.1) 92.9 (0.1)

(4) ✔ ✔ ✗ 79.3 (1.2) 89.5 (0.5) 91.1 (0.3) 92.9 (0.3)

- ✔ ✔ ✔ 79.0 (0.8) 89.8 (0.3) 91.3 (0.2) 92.9 (0.1)

NB 301

(1) ✗ ✗ ✔ 63.3(2.7) 69.0 (2.8) 68.1 (2.9) 59.8 (2.3)

(3) ✔ ✗ ✔ 59.5(2.6) 69.0 (1.8) 50.2 (15.0) 45.3 (19.4)

(4) ✔ ✔ ✗ 60.9 (3.1) 69.8 (1.4) 70.9 (1.2) 67.7 (3.1)

- ✔ ✔ ✔ 64.2 (1.6) 72.2 (1.0) 73.6 (1.3) 77.5 (0.7)

module (i.e., eliminating both asynchronous and forward-
backward message passing), (2) without asynchronous mes-
sage passing, (3) without forward-backward message pass-
ing, and (4) without flow-aware global attention.

As shown in Tab. 4, FLOWERFORMER, which is
equipped with all the components, consistently outperforms
all variants in most settings, confirming the efficacy of
our design choices. Further observations deserve attention.
First, the necessity of asynchronous message passing for
capturing flows is confirmed by the superior performance
of (3) over (1), and that of FLOWERFORMER over (2). Sec-
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Table 5. Kendall’s Tau (scaled up by a factor of 100, mean and
standard deviation of 9 experiments) on two datasets beyond the
computer vision domain: NAS-Bench-Graph (NB-G) [31] and
NAS-Bench-ASR (NB-ASR) [23]. In each setting, the best perfor-
mances are highlighted in green. In most cases, FLOWERFORMER

performs best.

Dataset Encoder Training portions
1% 5% 10% 50%

NB-G

DAGNN [37] 48.1 (3.2) 64.4 (1.2) 67.4 (1.1) 73.1 (0.8)

DAGFormer [21] 47.9 (0.6) 60.8 (1.6) 64.9 (1.0) 72.4 (0.3)

TA-GATES [27] 33.1 (1.4) 34.1 (2.0) 35.4 (0.8) 35.7 (0.5)

FLOWERFORMER 49.5 (1.1) 65.9 (1.3) 68.9 (0.6) 72.7 (0.2)

NB-ASR

DAGNN [37] 29.5 (3.9) 40.9 (2.4) 45.2 (1.3) 44.0 (0.4)

DAGFormer [21] 29.9 (5.4) 42.5 (1.1) 45.3 (1.0) 34.6 (5.8)

TA-GATES [27] 34.0 (2.3) 41.4 (2.0) 44.9 (2.2) 50.9 (0.8)

FLOWERFORMER 31.1 (8.0) 44.0 (0.9) 47.3 (1.3) 52.2 (1.4)

ond, the advantage of forward-backward message passing is
demonstrated by FLOWERFORMER’s superiority over (3).
Lastly, incorporating flow-awareness into global attention
is advantageous, as evidenced by FLOWERFORMER’s ad-
vantage over variant (4).

4.4. Performance in various domains

Since our input modeling does not require complex prepro-
cessing, it can be readily applied to architectures across var-
ious domains. We apply FLOWERFORMER to graph neu-
ral networks on NAS-Bench-Graph and automatic speech
recognition architectures on NAS-Bench-ASR. Among the
baseline methods used in Sec. 4.2, we use the best method
of each type: DAGNN, DAGFormer, and TA-GATES.

As shown in Tab. 5, FLOWERFORMER consistently per-
forms best in most cases. These results indicate that
FLOWERFORMER effectively captures important architec-
tural characteristics across various domains. TA-GATES,
which is tailored for encoding architectures in the computer
vision domain, also shows strong performance in the do-
main of automatic speech recognition. TA-GATES effec-
tively updates operation embeddings by multiplying oper-
ation embeddings and input information vectors, which is
akin to convolutional mechanisms prevalent in auto speech
recognition architectures. However, its effectiveness dimin-
ishes in scenarios where message passing between nodes, a
key characteristic of graph neural networks, is required.

4.5. Training and inference speed

In this subsection, we compare the training and inference
speeds of FLOWERFORMER and two state-of-the-art neu-
ral architecture encoding methods: NAR-Former and TA-
GATES. To this end, we train all the models for 200 epochs
with a batch size of 128, using an NVIDIA RTX 2080 GPU.
We use NAS-Bench-101 with a training ratio of 1%. For a
fair comparison, we exclude all additional time-consuming
training strategies of NAR-Former and TA-GATES (e.g., in-
put augmentation) in this experiment.

As shown in Tab. 6, FLOWERFORMER takes the shortest
training time among the three methods. In particular, train-

Table 6. Training and inference times on NAS-Bench-101 with a
training ratio of 1%, 200 epochs, and a batch size of 128.

Encoder Training time (sec) Inference time (sec) # Params
NAR-Former [44] 278.13 (13.01) 2.55 (0.07) 4,882,081
TA-GATES [27] 62.66 (0.54) 3.01 (0.21) 348,065
FLOWERFORMER 58.08 (1.39) 2.94 (0.07) 901,459

ing FLOWERFORMER is 4.44× faster than training NAR-
Former. This substantial speed advantage stems from the
notable difference in model sizes, with NAR-Former hav-
ing 5.35× the number of parameters compared to FLOW-
ERFORMER. Compared to TA-GATES, FLOWERFORMER
exhibits a slight speed advantage. Despite the small model
size of TA-GATES, our specialized batch operations boost
the training of FLOWERFORMER. Refer to the supplemen-
tary material for details of the batch operations.

In terms of inference time, there is not much difference
among the three methods, and FLOWERFORMER ranks sec-
ond. In practical scenarios, neural architecture performance
prediction involves collecting labels (e.g., ground-truth per-
formance) for the architectures in the training set, which
requires time-consuming training of the architectures. For
example, in the case of NAS-Bench-101, training just 1%
of the architectures can take up to 24 GPU hours. Thus, in-
ference speed is not a bottleneck, due to the extensive com-
putational cost of training.

5. Conclusions

In this work, we propose FLOWERFORMER, a novel graph
transformer model designed for neural architecture encod-
ing. FLOWERFORMER excels at capturing information
flows within neural architectures, considering both local
and global aspects. Through comprehensive evaluations
across five benchmarks for architecture performance predic-
tion, FLOWERFORMER exhibits significant and consistent
superiority over several state-of-the-art baseline methods,
ultimately achieving state-of-the-art performance. Notably,
FLOWERFORMER’s superiority extends beyond computer-
vision architectures, demonstrating its effectiveness for
graph-learning and speech-recognition architectures.
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[24] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien
Mairal. Graphit: Encoding graph structure in transformers.
arXiv preprint arXiv:2106.05667, 2021. 2

[25] Hoang D Nguyen, Xuan-Son Vu, and Duc-Trong Le. Modu-
lar graph transformer networks for multi-label image classi-
fication. In AAAI, 2021. 2

[26] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and
Huazhong Yang. A generic graph-based neural architecture
encoding scheme for predictor-based nas. In ECCV, 2020. 2,
6

[27] Xuefei Ning, Zixuan Zhou, Junbo Zhao, Tianchen Zhao,
Yiping Deng, Changcheng Tang, Shuang Liang, Huazhong
Yang, and Yu Wang. Ta-gates: An encoding scheme for neu-
ral network architectures. In NeurIPS, 2022. 2, 3, 6, 7, 8

[28] Peisong Niu, Tian Zhou, Qingsong Wen, Liang Sun, and
Tao Yao. Chemistry guided molecular graph transformer.
In NeurIPS 2022 Workshop: AI for Science: Progress and
Promises, 2022. 1, 2

[29] Kenta Oono and Taiji Suzuki. Graph neural networks expo-
nentially lose expressive power for node classification. arXiv
preprint arXiv:1905.10947, 2019. 1

[30] Yunsheng Pang, Qiuhong Ke, Hossein Rahmani, James Bai-
ley, and Jun Liu. Igformer: Interaction graph transformer
for skeleton-based human interaction recognition. In ECCV,
2022. 2

[31] Yijian Qin, Ziwei Zhang, Xin Wang, Zeyang Zhang, and
Wenwu Zhu. Nas-bench-graph: Benchmarking graph neu-
ral architecture search. In NeurIPS, 2022. 6, 8
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