
Promptable Behaviors:
Personalizing Multi-Objective Rewards from Human Preferences

Minyoung Hwang1, Luca Weihs1, Chanwoo Park2, Kimin Lee3,
Aniruddha Kembhavi1, Kiana Ehsani1

1PRIOR @ Allen Institute for AI, 2Massachusetts Institute of Technology,
3Korea Advanced Institute of Science and Technology

Abstract

Customizing robotic behaviors to be aligned with di-
verse human preferences is an underexplored challenge in
the field of embodied AI. In this paper, we present Prompt-
able Behaviors, a novel framework that facilitates efficient
personalization of robotic agents to diverse human prefer-
ences in complex environments. We use multi-objective re-
inforcement learning to train a single policy adaptable to a
broad spectrum of preferences. We introduce three distinct
methods to infer human preferences by leveraging different
types of interactions: (1) human demonstrations, (2) prefer-
ence feedback on trajectory comparisons, and (3) language
instructions. We evaluate the proposed method in person-
alized object-goal navigation and flee navigation tasks in
ProcTHOR [18] and RoboTHOR [17], demonstrating the
ability to prompt agent behaviors to satisfy human prefer-
ences in various scenarios.
Project page: https://promptable-behaviors.github.io

1. Introduction
Imagine a robot navigating in a house at midnight, asked to
find an object without disturbing a child who just fell asleep.
The robot is required to explore the house thoroughly in or-
der to find the target object, but not collide with any objects
to avoid making unnecessary noise. In contrast to this Quiet
Operation scenario, in the Urgent scenario, a user is in a
hurry and expects a robot to find the target object quickly
rather than avoiding collisions. These contrasting scenarios
highlight the need for customizing robot policies to adapt to
diverse and specific human preferences.

Although learning-based approaches [57, 68] have sig-
nificantly advanced the capability of robots to solve nu-
merous tasks successfully, using these methods to cus-
tomize robots for diverse human preferences remains a chal-
lenge [28]. Common practices in embodied AI [17, 18] use
reinforcement learning with a reward function designed for
specific agent behaviors. However, hand-crafting a reward
function by human experts is time-consuming and difficult
for agents with complex dynamics and large state and ac-
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Figure 1. Overview. Promptable Behaviors captures human pref-
erences across multiple objectives. We first train a multi-objective
policy conditioned on the reward weight vector. After training, we
freeze the policy and humans can provide their preferences with a
wide range of options: (1) human demonstrations, (2) preference
feedback on trajectory comparisons, and (3) language instructions.

tion spaces. To simplify the reward design process for non-
expert users, recent methods [27, 30, 41] intuitively acquire
reward models from human feedback. Yet, they have short-
comings in dealing with diverse preferences, since the agent
has to be re-trained for each unique human preference.

We propose Promptable Behaviors, a novel personaliza-
tion framework that deals with diverse human preferences
without re-training the agent. The key idea of our method
is to use multi-objective reinforcement learning (MORL) as
the backbone of personalizing a reward model. We take a
modular approach: (1) training a policy conditioned on a
reward weight vector across multiple objectives and (2) in-
ferring the reward weight vector that aligns with the user’s
preference. Using MORL, agent behaviors become prompt-
able through adjustments in the reward weight vector during
inference, without any policy fine-tuning. This significantly
simplifies customizing robot behaviors to inferring a low-
dimensional reward weight vector.
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We provide a variety of options for users to provide their
preferences to the agent. Specifically, we introduce three
distinct methods of reward weight prediction, see Figure 1,
leveraging different types of interaction: (1) human demon-
strations, (2) preference feedback on trajectory compar-
isons, and (3) language instructions. Given human demon-
strations in simulated environments, the agent can extract
preferences from user-specific behaviors. Preferences could
also be inferred from binary feedback on trajectory compar-
isons, enabling users to evaluate and contrast different agent
behaviors rather than providing direct demonstrations. Fi-
nally, we utilize large-language models (LLMs) to translate
language instructions into reward weight vectors. Using
LLMs, even indirect or implicit instructions can be effec-
tively interpreted based on extensive world knowledge.

We demonstrate Promptable Behaviors in two person-
alized navigation tasks, object-goal navigation and flee
navigation, in two environments, ProcTHOR [18] and
RoboTHOR [17]. Experimental results show that the agent
behavior can be effectively prompted in both tasks. While
the three reward weight prediction methods have their own
advantages, preference feedback on trajectory comparisons
shows the highest performance. In particular, our human
evaluations demonstrate the effectiveness of our method.

In summary, our main contributions include:
• A novel framework for personalized learning that enables

robots to align with diverse human preferences in com-
plex embodied AI tasks without any policy fine-tuning.

• Three methods for inferring human preferences using hu-
man demonstrations, preference feedback on trajectory
comparisons, and language instructions, each offering
unique advantages.

• Demonstrations in two long-horizon personalized navi-
gation tasks shows the effectiveness of our approach in
prompting agent behaviors to satisfy human preferences.

2. Related Work

2.1. Multi-Objective Reinforcement Learning

Existing MORL algorithms are categorized into two main
types [24]: single-policy and multi-policy. Multi-policy
methods [6, 13, 38, 40, 51, 52, 60, 69, 70] train multiple
policies, each corresponding with a single combination of
objectives. However, in complex environments, training
separate policies for each objective combination can be in-
efficient and resource-intensive. On the other hand, single-
policy methods [44, 46, 53, 56, 61] transform the multi-
objective problem into a single-objective problem through
reward scalarization. [56] present multi-objective forms of
existing RL algorithms (e.g., PPO [55] and A2C [39]) and
focuses on learning a single policy conditioned on the com-
bination of multiple objectives. While previous work show
success in simple environments [5], tasks and objectives are

often unrealistic. Recent work [14, 19] apply MORL on
collision-aware navigation tasks but use multi-policy meth-
ods, while ours uses single-policy MORL. We demonstrate
single-policy MORL in complex, realistic robotic tasks, uti-
lizing high-dimensional observations. Ask4Help [58] trains
a policy conditioned on user preference, where the policy
determines when to request expert intervention. However,
Ask4Help only considers user preference in a single dimen-
sion and discrete weight space, while ours deal with at least
three objectives and continuous weight space.

2.2. Learning from Demonstrations

Given expert demonstrations, imitation learning (IL) and
inverse-reinforcement learning (IRL) are the two promi-
nent methods that guide agents to perform tasks by repli-
cating and understanding observed behaviors, respectively.
IL [29, 48, 49, 71] typically requires a large amount of high-
quality expert data [49]. IRL aims to understand the under-
lying reward functions motivating expert behaviors rather
than just copying the observed behaviors [1, 7, 22], but
also requires a sufficient amount of demonstrations and the
learned reward can be overfit to the collected data. Com-
pared to IL and IRL, our method requires significantly fewer
demonstrations to make the agent behavior satisfy the user’s
preference because the agent can efficiently generalize to
diverse preferences without any policy fine-tuning.

2.3. Learning from Human Feedback

Learning from human feedback such as ratings, rankings,
or expert interventions has been studied in numerous prior
works [2–4, 15, 16, 21, 23, 50, 59, 65, 66]. Extending
[15] which uses preference feedback on pairwise trajectory
comparisons, recent developments [8, 9, 25–27, 30, 35–
37, 41, 45, 54] have enhanced sample and feedback effi-
ciency. While these methods have shown promise in natural
language processing [43] and simplified settings in robotics
with low-dimensional state and action spaces, their scala-
bility to more complex, long-horizon, robotic tasks remains
underexplored. We show that training a multi-objective
policy with MORL and subsequently optimizing the re-
ward weight vector using human feedback greatly enhances
the efficiency of handling diverse preferences, especially in
complex and long-horizon tasks. Our framework opens a
new paradigm of using user-friendly and intuitive human
feedback to predict the reward weights that satisfy users in-
stead of asking users to explicitly choose the weights. Each
of our weight prediction methods shows an advantage com-
pared to traditional learning approaches that require inten-
sive expert-level supervision or labeling efforts.

3. Method
We propose a novel framework, Promptable Behaviors, for
personalized robot learning. Promptable Behaviors is an
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adaptable policy that can update its behavior to various ob-
jectives and user preferences. Our method is divided into
two primary components: (1) training a promptable multi-
objective policy, and (2) capturing the agent’s desired be-
havior through interactions. The overview of the proposed
method is illustrated in Figure 1. Our multi-objective pol-
icy is adapted to individual users by adjusting the reward
weights without any policy fine-tuning. For instance, sup-
pose we wish to find reward weight vectors that align with
the Quiet Operation and Urgent scenarios introduced in
Section 1. For the Quiet Operation scenario, it is desirable
to give high weight to safety like [0, 0.3, 0.7] where the di-
mensions correspond to time efficiency, house exploration,
and safety, respectively. On the other hand, reward weights
such as [1, 0, 0] would be aligned with the Urgent scenario.

3.1. Problem Formulation

We solve two navigation tasks using a robotic agent: object-
goal navigation and flee navigation. We follow the task def-
inition of object-goal navigation in previous work [17, 18],
where the agent has to find an object of a given ob-
ject category and execute an explicit Done action when
the object is within 1m and visible in the agent’s cam-
era. The agent is allowed a maximum time horizon of
T = 500. Flee navigation requires the agent to max-
imize its distance from the initial location. This task
is useful when the robot has to autonomously relocate
to a distant location in the house through spatial reason-
ing. In both tasks, the agent uses an RGB image ob-
servation ot and outputs an action at at time t. The
action is chosen from [MoveAhead, RotateRight,
RotateLeft, Done, LookUp, LookDown]. The
agent state st at time t is set as o1:t. Most of the previous
work aim to improve general performance such as success
rate and success weighted by path length (SPL) [17, 18, 32].
In this paper, we open a new paradigm to consider the
agent’s behavior beyond rapid task completion. Such agent
behavior can be measured and categorized as the sub-
rewards on K objectives, where each objective reflects a
fundamental aspect of navigation. Detailed definitions of
the objectives and the evaluation metrics in each task are
provided in Section 4.1.

3.2. Promptable Multi-Objective Policy Training

Our approach aims to develop a promptable and efficient
framework for embodied AI tasks. Contrary to traditional
RL methods that require a significant amount of time and
resources to optimize for a single combination of differ-
ent objectives, our method focuses on training a policy that
can handle any linear combination of different objectives at
test time. This reduces the dependency of the agent’s be-
havior on the reward design choice of the practitioner who
trains the policy. A naı̈ve approach is to apply multi-policy

MORL, train multiple policies with different reward con-
figurations, and choose the most appropriate policy output
for inference. This divides the multi-objective problem into
a series of single-objective problems and ensures the agent
optimizes the policies on each combination. However, this
training process is inefficient and cannot cover the entire
set of combinations because the size of the weight space
increases exponentially with the number of objectives.

Inspired by Ask4Help [58] that trains a policy condi-
tioned on the reward configuration, we condition our agent’s
policy on randomly sampled reward configuration during
training and allow the agent to adapt to the user at infer-
ence time without additional training. While Ask4Help fo-
cuses on changing the reward configuration in a single di-
mension, we implement single-policy MORL [56] to handle
multiple objectives. Figure 2 illustrates the network archi-
tecture of the policy in our method. We train a single pol-
icy with a scalarized reward function rw = w⊺r, which
combines multiple objectives with a reward weight vector
w randomly sampled from a K-dim simplex ∆K = {w ∈
RK

+ | ||w||1 = 1}. While most RL frameworks in embodied
AI have a pre-defined and fixed w, our policy is conditioned
on the combination itself and explores various combinations
during training. This makes the trained policy adaptable to
various human preferences through the adjustment of the re-
ward weight vector without any additional policy training.
Visual Encoder Using CLIP. Recent work [32] has shown
the strength of visual backbones of CLIP [47] in embodied
AI tasks. As described in Figure 2, we use a pre-trained
CLIP ResNet-50 to encode 3×224×224 RGB image into a
2048×7×7 tensor. Since the pretrained model has shown its
effectiveness in various visual navigation tasks, we freeze
the weights of the encoder while training the policy. The
CLIP embedding is merged with a 32-dim goal embedding
resulting in a shape of 64×7×7. The concatenated tensor is
passed into a CNN and is flattened into a 1568-dim feature.
Reward Weight Encoder. Since the goal of the proposed
method is to handle various combinations of objectives with
a single policy, we randomly sample reward weights during
training. At each episode, a reward weight vector w is uni-
formly sampled from a K-dim simplex ∆K and the agent
calculates the scalarized rewards based on w throughout
the whole episode. Bringing insight from the recent suc-
cess of using codebook as an effective representation mod-
ule [20], we use a feed-forward neural network (FFNN) to
expand the dimension of w to 30 and then pass it through
a codebook with 30 learnable K·12-dim latent codes. This
makes the policy handle unseen reward combinations us-
ing the learned codes. We also compare this method with
an encoding approach extended from [58], where an integer
weight vector is encoded using a lookup table.
Navigation Policy. We implement a multi-objective ver-
sion of DD-PPO [62, 64] to maximize the expected reward.
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Figure 2. Network Architecture. The figure illustrates a single-policy MORL architecture for object-goal navigation. A CLIP encoder
alongside a ResNet processes the visual observation. This image embedding, concatenated with the goal embedding, is then fed into a
convolutional layer and concatenated with the reward weight vector encoded via codebook, forming the input for the recurrent policy. The
policy is trained to be multi-objective, modulated by the reward weight vector w. During training the policy, the agent receives the reward
as the weighted sum of sub-rewards from K objectives, determined by the reward weight vector w.

A fundamental difference compared to the traditional DD-
PPO is that the policy π is conditioned on the reward weight
vector w, which is randomly sampled at each episode. The
agent calculates the rewards for multiple objectives at each
timestep, and updates the policy based on the scalarized re-
wards. The RL loss tries to maximize the expected return
averaged among different w and episodes.

3.3. Reward Weight Prediction via Interaction

Effectively aligning agent behavior with human preferences
is a key challenge in our work. The proposed framework
focuses on predicting the optimal reward weight vector rep-
resenting human preferences, based on different forms of
interactions. As illustrated in Figure 1, we explore three
distinct interactions: (1) human demonstrations, (2) prefer-
ence feedback on trajectory comparisons, and (3) language
instructions. Each method offers a unique perspective and
mechanism for capturing human preferences, thereby han-
dling a diverse range of scenarios and user interactions. Fol-
lowing the general context in MORL [24], we assume that
human preferences remain constant over time and each hu-
man preference is captured through a linear combination
of multiple objectives in the environment. Under these as-
sumptions, a human user’s true preference is represented as
a reward weight vector w ∈ ∆K .

3.3.1 Human Demonstrations

Getting human demonstrations is a direct and intuitive way
for humans to express their preferences. Given a demon-
stration τh = (s1, a1, ..., sTh

, aTh
) (Th ≤ T ) from a human

user, we can infer the user’s inherent values and priorities.
We identify the reward weight vector that most accurately
reflects these preferences by maximizing the expected log-

likelihood between the demonstrated action and the action
distribution from the policy π conditioned on the reward
weight w. The weight prediction loss is defined as follows:

Ldemo(w; τh) = −
∑Th

t=1
log π(at | st ;w). (1)

For the optimization process, we use multiple initialization
weights, including a uniform vector [1/K, ..., 1/K]. We
then apply gradient descent from each of the initialization
weights until the loss converges. By averaging the results
from diverse initial conditions, we enhance the robustness
and reliability of our weight prediction. Also, our method
is faster than traditional IRL approaches since we only op-
timize K parameters, with K being at most 5 in our setting.

3.3.2 Preference Feedback on Trajectory Comparisons

We further develop weight prediction methods that take hu-
man feedback, in the form of comparisons between agent
trajectories, as input. We also propose a novel trajec-
tory comparison method called group trajectory compar-
ison, which is more feedback-efficient than conventional
pairwise comparison [15].
Pairwise Trajectory Comparison. In pairwise trajectory
comparison, the human user is asked to select a trajec-
tory that better aligns with their preference from a pair of
trajectories. Given N trajectory pairs, the user will pro-
vide N binary preference labels. We denote the prefer-
ence data as a set of trajectory pairs and preference labels
S = {(τi1, τi2, yi)|1 ≤ i ≤ N}, where τi1 and τi2 are the
two trajectories that the user observes at the ith trajectory
comparison, yi = 1 indicates τi1 is preferred to τi2, and
yi = 0 indicates otherwise. Notably, we do not consider
the ties and provide the human user the ability to skip in-
distinguishable queries. We use a common assumption in
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preference-based learning [67] that given a reward weight
vector w that reflects human preference, the user chooses
trajectory τ1 to be preferred over τ2 with a preference prob-
ability based on the Bradley-Terry model [10] as follows:

P (τ1 ≻ τ2;w) =
exp(w⊺r(τ1))

exp(w⊺r(τ1)) + exp(w⊺r(τ2))
,

where τ1 ≻ τ2 denotes τ1 is preferred to τ2 and r(τ) =∑T
t=0 r(st, at). The model handles the inherent stochastic-

ity and inconsistency in human preferences, rather than as-
suming human preferences are deterministic and perfectly
rational. We solve an optimization problem that maximizes
the expected log-likelihood of preferences in pairwise tra-
jectory comparisons as follows:

max
w∈∆K

E
(τ1,τ2,y)∈S

log (yP (τ1≻τ2;w)+(1−y)P (τ1≺τ2;w)) .

Group Trajectory Comparison. We also introduce a novel
trajectory comparison method called group trajectory com-
parison, where the human user observes groups of trajecto-
ries instead of individual pairs. For instance, consider com-
paring a group emphasizing safety against another set, pri-
oritizing path efficiency. The difference between the two
groups becomes clearer, making the process of giving pref-
erence labels more straightforward for users. At each itera-
tion, we sample two groups of M trajectories, each trajec-
tory group generated with the same reward weights, while
different groups have different reward weights. We ask the
user to compare the groups of trajectories and provide a
preference label. Each group comparison yields an inequal-
ity constraint, filtering out a volume of the reward weight
space less likely to match the user’s preferences. We repeat
this process for N iterations with different groups of tra-
jectories and different reward weights. By adding N con-
straints and performing constrained optimization, we effec-
tively narrow down the search area for the most probable
reward weight vector. In Section 4.3, we show that group
comparison is 17.8% more effective than conventional pair-
wise trajectory comparison in human evaluation. It is also
less ambiguous for the human user to compare groups that
have distinct differences. Detailed theoretical analyses are
included in the supplementary material.

3.3.3 Language Instructions

We leverage the power of LLMs to interpret language in-
structions and quantify human preferences as numerical re-
ward weights. LLMs can adapt to the nuances of user in-
structions, and the models can translate natural language
instructions into reward weights. We ask ChatGPT [42]
to output the optimal reward weight vector from a lan-
guage instruction of the user given the task description and
definitions of the objectives. We use in-context learning
(ICL) [11] by providing six examples of instruction and an-
swer pairs, collected from six human experts. We also apply

chain-of-thought (CoT) reasoning [33] to handle the com-
plex, multi-step process of deciding reward weights on mul-
tiple, often conflicting, objectives. This method is highly
beneficial in scenarios requiring rapid adaptation to user
preferences without domain knowledge because LLMs can
infer the importance to place on each objective based on the
context in the instruction utilizing its world knowledge.

4. Experiments
We evaluate our method on personalized object-goal navi-
gation (ObjectNav) and flee navigation (FleeNav) in Proc-
THOR [18] and RoboTHOR [17], environments in the AI2-
THOR [34] simulator. For ObjectNav, there are 16 and
12 target object categories in ProcTHOR and RoboTHOR,
respectively. The policy is evaluated across various sce-
narios to ensure that it aligns with human preferences and
achieves satisfactory performance in both tasks. We show
that the proposed method effectively prompts agent behav-
iors by adjusting the reward weight vector and infers reward
weights from human preferences using three distinct reward
weight prediction methods.

4.1. Experiment Settings

Training details. We train our models using the Allen-
Act [62] reinforcement learning framework. In ProcTHOR
ObjectNav, we train our policy for 130M steps over 10k
houses and validate with 100 episodes in 67 unseen houses.
In ProcTHOR FleeNav, we train for 50M steps over 10k
houses and validate in 100 episodes in 71 unseen houses.
In RoboTHOR ObjectNav and FleeNav, we train for 100M
steps in 60 houses and validate with 100 episodes in 15 un-
seen houses. All methods are trained with 8 NVIDIA RTX
A6000 GPUs and 80 samplers. We use Adam optimizer
with a learning rate of 0.0003 for all training.
Objectives. In personalized object-goal navigation, we de-
fine five objectives: time efficiency, path efficiency, house
exploration, object exploration, and safety. Time efficiency
is designed to encourage the agent to complete the episode
quickly, while path efficiency aims to find the target object
via the shortest path. House exploration and object explo-
ration encourage the agent to explore more at the expense
of efficiency. House exploration is designed to favor cover-
ing a larger area, while object exploration aims to observe
more objects within the agent’s camera. Safety encourages
the agent to avoid colliding with obstacles and visiting areas
where you could get trapped or stuck. We provide the exact
equations for calculating sub-rewards for each objective in
the supplementary material.

In personalized flee navigation, there are three objec-
tives: time efficiency, house exploration, and safety. We
follow the definitions of the objectives in object-goal navi-
gation. We do not consider preferences over success, since
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achieving the goal is a default expectation in both tasks.
Baselines. We use EmbCLIP [32] as the single-objective
RL (SORL) baseline. Also, we implement a multi-policy
MORL baseline, prioritized EmbCLIP, that trains K poli-
cies separately, where each policy is trained with a fixed
and spiked reward weight vector prioritizing one specific
objective ν times more than the other objectives. We set ν
as 4 and 3 for ObjectNav and FleeNav, respectively.
Evaluation Metrics. In ObjectNav, we evaluate the gen-
eral performance of the agent using success rate, suc-
cess weighted by path length (SPL), distance to goal, and
episode length. An episode is recorded as a success if the
agent executes a Done action within 1m of the target object
and the object is visible in the agent’s last observation. Suc-
cess rate is measured as the number of succeeded episodes
divided by the total number of episodes, |E|. SPL is cal-
culated as 1

|E|
∑|E|

i=1 Si
ℓmin
i

max(ℓmin
i ,ℓi)

, where Si, ℓi, and ℓmin
i

denote the binary success value, path length, and the short-
est path length at the ith episode. In FleeNav, we evaluate
the agent using success rate, path length weighted by path
length (PLOPL), distance to the farthest point, and episode
length. Success at each episode is determined as ℓ/ℓmax,
where ℓ and ℓmax denote the Euclidean distance from the
initial point to the last point and the distance from the initial
point to its farthest point, respectively. PLOPL is measured
as the path length divided by the maximum path length at
each episode. SPL and PLOPL consider the length of the
trajectory, not only the initial and last positions of the agent.

To evaluate three reward weight prediction methods, we
collect demonstrations and feedback from real human users
for five different scenarios, each prioritizing one or two ob-
jectives in object-goal navigation. We perform human eval-
uations by calculating the win rate [31], showing a pair
of trajectories to the user and asking which trajectory is
more preferred in each objective. The win rate is calculated
as 1

K(K−1)

∑K
i=1

∑
j ̸=i H(ζi, τi, τj), where τi is generated

for the ith scenario ζi and H(ζi, τi, τj) is 1 if τi ≻ τj in
ζi. For instance, suppose we have generated τ1 and τ2 for
the Quiet Operation and Urgent scenarios in Section 1, re-
spectively. Presenting the Quiet Operation scenario with
the two trajectories to the user, we get a score of 1 when the
user prefers τ1 in the given situation.

Furthermore, we measure the weight prediction perfor-
mance as the cosine similarity between the estimated re-
ward weight and the reward weight determined by hu-
man experts. We also measure the Generalized Gini Index
(GGI) [12, 63] to statistically measure the disparity across
multiple objectives in the predicted weights. A higher GGI
indicates the weight vector is concentrated or peaked to-
wards a few specific objectives. More scenarios and exper-
iment details are provided in the supplementary material.

In our experiments, prioritizing different objectives

demonstrates diverse human preferences in everyday sce-
narios. By evaluating how the agent’s behavior changes
with varied objective prioritization, we gain insights into
the adaptability of Promptable Behaviors to diverse prefer-
ences. We first show that the multi-objective policy outputs
different agent behaviors based on objective prioritization.
Then, we demonstrate how the agent can induce its behav-
ior to satisfy user preference, given human demonstrations,
preference feedback, and language instructions.

4.2. Promptable Behaviors in Embodied AI

The first question we would like to answer is “How well
does Promptable Behaviors adapt its policy to reflect the
changes in the input reward weights?”. The goal is to show
that our method can adapt its behavior to the reward weights
during inference time more effectively than the baseline. To
test this hypothesis, we first measure our model’s behavior
given a reward weight vector prioritized on a single objec-
tive. For instance, the policy should achieve higher explo-
ration when the exploration reward’s weight is peaked than
when no objective is prioritized or when the reward weight
is peaked for safety. Thus, we evaluate Promptable Behav-
iors and Prioritized EmbCLIP across K+1 reward weights,
including one uniform weight and K peaked weights. For
peaked reward weight vectors, we set the weight for the pri-
oritized objective ν times greater than the weights for other
objectives. Among all methods, our approach most effec-
tively reflects the prioritization of objectives in agent behav-
iors. Results in Table 1 and Table 2 show that the proposed
method outperforms the baseline in ProcTHOR ObjectNav
and FleeNav while showing efficiency in training, requir-
ing much less computational resources compared to Prior-
itized EmbCLIP. Note that the performance of EmbCLIP
does not perfectly match the performance reported in [20]
since we re-implement the method with our network archi-
tecture and evaluate it in a smaller validation set. Results
in the RoboTHOR environment and detailed analyses of all
experiments are provided in the supplementary material.

Our method achieves high success rates while effi-
ciently optimizing the agent behavior for each objective.
In Table 1, Prioritized EmbCLIP and Promptable Behav-
iors show different performance based on the prioritization
of objectives. When prioritizing house exploration, both
MORL methods achieve higher house exploration reward
than the SORL baseline, EmbCLIP. When house explo-
ration is prioritized, the proposed method shows the highest
success rate (row j in Table 1), 11.3% higher than Emb-
CLIP, while Prioritized EmbCLIP shows the lowest success
rate (row d in Table 1) among all methods and reward con-
figurations. Additionally, our method achieves the highest
SPL and the path efficiency reward when path efficiency
is prioritized (row i in Table 1), outperforming EmbCLIP
by 19.3% and 56.1%, respectively. This implies that the
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Method Multi-Objective Prioritized
Objective Success SPL Distance

to Goal
Episode
Length Sub Rewards ↑

↑ ↑ ↓ ↓ Time Efficiency Path Efficiency House Exploration Object Exploration Safety
EmbCLIP [32] ✗ a - 0.611 0.455 1.677 105.389 0.767 0.581 0.703 0.731 0.556

Prioritized
EmbCLIP

Multi-Policy

b Time Efficiency 0.560 0.445 2.803 52.060 0.926 0.317 0.136 0.247 0.746
c Path Efficiency 0.611 0.449 2.038 106.444 0.764 0.515 0.590 0.731 0.693
d House Exploration 0.200 0.113 3.921 350.960 0.033 0.677 2.868 0.161 0.012
e Object Exploration 0.611 0.513 2.439 138.389 0.668 0.414 0.703 0.731 0.556
f Safety 0.480 0.391 3.237 56.620 0.912 0.016 0.130 0.004 0.834

Promptable
Behaviors

(Ours)
Single-Policy

g - 0.600 0.496 2.526 86.070 0.824 0.589 0.336 0.412 0.770
h Time Efficiency 0.560 0.492 2.675 51.760 0.927 0.375 0.078 0.301 0.772
i Path Efficiency 0.650 0.543 2.213 115.350 0.737 0.907 0.451 0.674 0.665
j House Exploration 0.680 0.506 2.253 159.440 0.605 0.902 0.995 0.705 0.563
k Object Exploration 0.650 0.525 2.198 94.890 0.798 0.829 0.358 0.725 0.754
l Safety 0.500 0.446 2.875 51.890 0.927 0.211 0.083 0.096 0.829

Table 1. Performance in ProcTHOR ObjectNav. We evaluate each method in the validation set with six different configurations of
objective prioritization: uniform reward weight across all objectives and prioritizing a single objective 4 times as much as other objectives.
Sub-rewards for each objective are accumulated during each episode, averaged across episodes, and then normalized using the mean and
variance calculated from values in rows g-l. Colored cells indicate the highest values in each sub-reward column.
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(b) Trajectory Visualizations with Different Prioritizations on Objectives

Figure 3. Prompting Agent Behaviors by Adjusting Reward Weights. (a) As we prioritize safety more, the average safety reward
increases while the average reward of a conflicting objective, house exploration, decreases. We normalize the rewards for each objective
using the mean and variance calculated across all weights. (b) In each figure, agent trajectory is visualized when an objective is prioritized
10 times as much as other objectives. The agent’s final location is illustrated as a star.

proposed method effectively maintains general performance
while satisfying the underlying preferences in various prior-
itizations. In contrast, Prioritized EmbCLIP fails to improve
path efficiency reward when the corresponding objective is
prioritized. This could be due to the design choice of ν,
which determines the sensitivity of the prioritized objec-
tive. Trying various ν might improve the alignment, but
it is challenging to train the policy multiple times with dif-
ferent ν. Selecting a proper ν is much easier in Promptable
Behaviors because our policy has already observed random
reward weight vectors during training. For FleeNav, Table 2
shows that both MORL methods successfully prompt agent
behaviors through reward weight adjustments. Our method
achieves success rates higher than 0.7 in all cases, while Pri-
oritized EmbCLIP shows a success rate of 0.691 when time
efficiency is prioritized (row a in Table 2).

To check how conflicting objectives affect each other, we
assess an experiment to evaluate the trained policy by ad-
justing the weight of the most prioritized objective from 0.2
to 0.9. Figure 3 (a) shows an example when we observe
trade-offs between two conflicting objectives in ObjectNav:
safety and house exploration. As we increase the weight
for safety, the safety reward increases while the reward for
its conflicting objective, house exploration, decreases. Fig-
ure 3 (b) visualizes five trajectories that prioritize four dif-
ferent objectives in the same episode. The difference be-
tween trajectories implies that prioritizing time efficiency

or path efficiency encourages the agent to move through a
shorter path while prioritizing house exploration or object
exploration encourages the agent to explore the house more
thoroughly. The safety reward column in Table 1 shows that
the agent receives a higher safety reward when safety is pri-
oritized, which means that the agent learns to avoid visiting
narrow places or moving closely to near objects and walls.

4.3. Reward Weight Prediction

In the previous section, we have shown that our policy can
effectively adjust its behavior to reflect the reward weights
during inference. In this section, we compare three re-
ward weight prediction methods and show the results of
Promptable Behaviors for the full pipeline. As mentioned
in Section 3.3, the users have three distinct options to de-
scribe their preferences to the agent: (1) demonstrating a
trajectory, (2) labeling their preferences on trajectory com-
parisons, and (3) providing language instructions. Table 3
shows the quantitative performance of the three weight pre-
diction methods, each with its own advantage.
Weight Prediction Performance. Weight optimization
from human demonstrations shows 70.7% cosine similar-
ity between the predicted weights and the weights designed
by human experts only using a single human demonstra-
tion. Preference feedback on group trajectory comparisons
shows the highest prediction performance, 93.5%, when
each group contains two trajectories. Utilizing ChatGPT
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Method Multi-Objective Prioritized
Objective Success PLOPL Distance

to Furthest
Episode
Length Sub Rewards ↑

↑ ↑ ↓ ↓ Time Efficiency House Exploration Safety

Prioritized
EmbCLIP Multi-Policy

a Time Efficiency 0.691 0.810 7.360 57.090 0.875 0.420 0.138
b House Exploration 0.759 0.872 6.704 58.330 0.839 0.835 0.215
c Safety 0.723 0.856 7.391 57.640 0.859 0.676 0.487

Promptable
Behaviors

(Ours)
Single-Policy

d - 0.700 0.805 7.013 69.020 0.531 0.365 0.522
e Time Efficiency 0.728 0.832 6.592 66.490 0.604 0.434 0.563
f House Exploration 0.737 0.861 6.317 71.500 0.460 0.813 0.089
g Safety 0.711 0.814 6.735 67.830 0.566 0.227 0.776

Table 2. Performance in ProcTHOR FleeNav. We evaluate each method in the validation set with five different configurations of
objective prioritization: uniform reward weight across all objectives and prioritizing a single objective 3 times as much as other objectives.
The displayed sub-reward values are normalized for each objective following Table 1.

Weight Prediction Methods Sim ↑ GGIInput Model N
Human Demonstrations - 1 0.707 0.347

Preference Feedback

Pairwise
Comparison
(M=1)

20 0.356 0.800
50 0.358 0.800

500 0.897 0.800

Group 5 0.689 0.626
Comparison 10 0.793 0.618
(M=2) 25 0.935 0.657

Group
Comparison
(M=5)

2 0.722 0.634
4 0.682 0.762

10 0.862 0.641

Language Instructions

ChatGPT 1 0.530 0.388
w/ ICL 1 0.529 0.379
w/ CoT 1 0.614 0.391
w/ ICL + CoT 1 0.482 0.347

Table 3. Comparison of Three Weight Prediction Methods in
ProcTHOR ObjectNav. We predict the optimal reward weights
from human demonstrations, preference feedback on trajectory
comparisons, and language instructions. We measure the cosine
similarity (Sim) between the predicted weights and the weights de-
signed by human experts. We also calculate generalized gini index
(GGI) which measures the peakedness of the predicted weights.

with four different settings based on the use of ICL and CoT,
using ChatGPT with CoT resulted in the best performance.
Peakedness of Weights. In Table 3, preference feedback
on pairwise comparison shows the most peaked predicted
weights while using human demonstrations outputs the least
peaked weights. This could be due to the ambiguity lying
in human demonstrations, where multiple similar reward
weight vectors can produce the same trajectory. Although
there appears to be no direct correlation between peaked-
ness and weight prediction performance, this analysis pro-
vides valuable insights into the distinct characteristics of the
different weight prediction methods.
Human Evaluation. We also perform human evaluations
by asking five participants to compare trajectories gener-
ated with the predicted reward weights for different scenar-
ios. Results in Table 4 show that group trajectory compari-
son, especially with two trajectories per group, achieves the
highest win rate, significantly outperforming other meth-
ods by up to 17.8%. This high win rate indicates that the

Weight Prediction Methods Win Rate ↑Input Model N
Human Demo. - 1 0.556

Preference Feedback

Pairwise Comparison (M=1) 50 0.552

Group Comparison (M=2) 25 0.650

Group Comparison (M=5) 10 0.588

Language Instruction ChatGPT w/ CoT 1 0.600

Table 4. Human Evaluation on Scenario-Trajectory Matching.
Participants evaluate trajectories generated with the trained policy
and the reward weights predicted for five scenarios in ObjectNav.

generated trajectories closely align with the intended sce-
narios. Among the weight prediction methods using pref-
erence feedback, group comparison with a group size of
two requires only half the binary feedback compared to
pairwise comparison, yet it improves the win rate signif-
icantly. More efficiently, group comparison with five tra-
jectories per group needs just 10 user feedback while still
managing a 6.5% higher win rate than pairwise compari-
son. Interestingly, using language instructions to infer re-
ward weights shows the second-best performance among all
methods in Table 4, demonstrating the potential of LLMs in
understanding and translating complex human preferences
into reward weights using world knowledge. Details for the
evaluation and statistical test are in the supplementary.

Ablation Study. Ablation studies on codebook and group
trajectory comparison are provided in the supplementary.

5. Conclusion

This paper proposes Promptable Behaviors, a novel frame-
work that advances the personalization of robotic behaviors
in complex environments, efficiently adapting to diverse hu-
man preferences with minimal user interaction. By leverag-
ing MORL and three weight prediction methods, we have
demonstrated the ability to prompt agent behaviors through
reward weight adjustments in object-goal and flee naviga-
tion. For future work, we will demonstrate our method in
various tasks such as manipulation. Additionally, since we
assume static and linear preferences, we will extend our ap-
proach to consider dynamic and non-linear preferences.
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