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Abstract

With the recent advances in vision transformers and
large language models (LLMs), finetuning costly large mod-
els on downstream learning tasks poses significant chal-
lenges under limited computational resources. This pa-
per presents a REsource and ComputAtion-efficient Prun-
ing framework (RECAP) for the finetuning of transformer-
based large models. RECAP by design bridges the gap
between efficiency and performance through an iterative
process cycling between pruning, finetuning, and updat-
ing stages to explore different chunks of the given large-
scale model. At each iteration, we first prune the model
with Taylor-approximation-based importance estimation
and then only update a subset of the pruned model weights
based on the Fisher-information criterion. In this way, RE-
CAP achieves two synergistic and yet conflicting goals: re-
ducing the GPU memory footprint while maintaining model
performance, unlike most existing pruning methods that re-
quire the model to be finetuned beforehand for better preser-
vation of model performance. We perform extensive exper-
iments with a wide range of large transformer-based archi-
tectures on various computer vision and natural language
understanding tasks. Compared to recent pruning tech-
niques, we demonstrate that RECAP offers significant im-
provements in GPU memory efficiency, capable of reducing
the footprint by up to 65%.

1. Introduction
Transformer-based neural network architectures have
shown remarkable performance in a wide range of ar-
eas, e.g., computer vision, natural language understanding
(NLU), and multi-modal tasks. Notably, vision transform-
ers (ViTs) [11] and variants such as DINO [3, 30], Mask-
Former [5, 6], and CLIP [32] have demonstrated excep-
tional performance across various tasks from image recog-
nition, semantic segmentation, to object detection. Like-
wise, BERT [10], GPT [31], and T5 [33] are dominating
transformer-based architectures for many popular large lan-

guage models (LLMs) [2, 36]. These models are usually
pre-trained over a combination of very large datasets and
serve as a foundation model for a variety of tasks. Before
deployment, these pre-trained large models (PLMs) can be
finetuned further on a downstream task/dataset to maximize
the task-specific model performance.

Problem Statement. Over-parameterization with a large
number of parameters and using big datasets in the train-
ing of a foundation model is known to result in significantly
better generalization performance [29]. The PLMs trained
on billions of tokens result in very large models of billions
of parameters and can require hundreds of GBs of GPU
memory for finetuning and inference. For example, a re-
cent open-source family of LLMs, LLama-2 [36] reports
the following statistics for the largest model variant with
70B parameters: 2T tokens for ∼1.7M GPU hours with
A100-80GB GPUs, which can cost around ∼$6.7M. There-
fore, finetuning such PLMs on downstream tasks instead of
training from scratch has become a common practice. How-
ever, employing such models may be overindulging when
tackling downstream tasks. Even the smallest variant of
LLama-2 with 7B parameters requires ∼14GB GPU mem-
ory for inference and even more (∼70GB) for finetuning at
16-bit precision. Effectively finetuning a PLM with limited
resources while maintaining performance remains an open
challenge. This problem can be aggravated when the GPU
resources are insufficient to perform finetuning on the origi-
nal model, making finetuning impossible for many. Further-
more, when users need to finetune a PLM over their propri-
etary or privacy-sensitive data (e.g., medical data, personal
chats, or confidential documents), this process should only
be executed in local computing environments without shar-
ing sensitive data.

To reduce the GPU memory footprint of finetuning large
transformer-based models, pruning [12, 16] emerges as a
promising technique due to its success in convolutional
and transformer-based models, particularly to increase in-
ference efficiency. Pruning is based on the argument that
not all weights of the pre-trained large model are neces-
sary for a given downstream task. Hence, pruning solutions
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estimate the importance of weights for the finetuning task
and prune out the least important weights by the system-
supplied sparsity ratio. However, representative pruning
techniques [12, 16, 27] perform better when they are ap-
plied after finetuning (post-finetune pruning) because pre-
finetune pruning may yield suboptimal results by remov-
ing important parameters for the finetuning task. Therefore,
many existing approaches suffer from low resources during
finetuning.
Contribution and Scope. We introduce RECAP, a RE-
source and ComputAtion-efficient Pruning framework to
achieve two seemingly conflicting goals: reducing the GPU
memory footprint during finetuning while maintaining the
finetuned model performance. RECAP jointly utilizes the
CPU and GPU to finetune the pre-trained large model in a
resource-efficient manner. We use CPU resources for less
intensive and low-frequency computations that require ac-
cess to the full model and resort to GPU for more inten-
sive and high-frequency computations during the finetun-
ing process. First, RECAP explores different chunks of the
given large-scale model through an iterative CPU-GPU col-
laboration cycling between pruning, finetuning, and updat-
ing stages. At each iteration, we first prune the model with
Taylor-approximation-based importance estimation. Then,
we upload the pruned model to the GPU, and after finetun-
ing, we transfer the updated weights to the CPU. Second, we
generate a finetuning mask controlled by Fisher informa-
tion, which determines the subset of the pruned model that
should be updated during finetuning. This prevents early
saturation in the exploration process and further reduces the
GPU memory footprint of gradients and optimizer states.

By iteratively finetuning various chunks of the full
model, while being administrated by the CPU on which
part of the model to operate on and which weights to up-
date, RECAP only loads and finetunes a selective portion
of the weights on GPU in each iteration. In this way, un-
like existing pruning methods that require the model to be
finetuned beforehand for better preservation of model accu-
racy [16, 27], RECAP can achieve high performance with
significantly less GPU memory footprint. Extensive ex-
periments are conducted on a range of large transformer-
based architectures and various computer vision and natu-
ral language understanding tasks. Compared to recent large
model pruning techniques, RECAP significantly improves
the GPU memory efficiency (reducing the footprint by up
to 65%), while maintaining competitive model quality. We
also analyze the impact of design components and behavior
under various pruning ratios.

2. Related Work
Among the representative efficient finetuning techniques,
quantization of neural networks reduces the number of bits
used to represent the model weights and enables low-bit-

matrix multiplications. A major challenge is the loss of
information, especially in the existence of outlier values
in model weights [9]. In addition, quantization is not
task-aware and the practical improvements are hardware-
dependent. Several studies [24, 25] applied quantization for
vision transformers but these methods are limited to post-
training for reducing the model size for inference-stage de-
ployment. Adapter-based solutions [19] represent another
type of efficiency technique, where a set of trainable pa-
rameters into the pre-trained models is injected and fine-
tuned while keeping the backbone fixed. Several variants,
such as multi-task adapters [26], LoRA [20], and vision
transformer adapters [4] have been proposed. Adapters re-
duce the memory footprint of gradients and optimizer states.
However, memory footprint reduction remains limited since
the full model weights have to be loaded on GPU during
finetuning. Neural architecture search methods on train-
ing super networks have also been explored [14], targeting
similar problems. Lastly, VPT [21] applies prompt tuning
on vision transformers by attaching learnable prefix vectors
to inputs at each layer and keeping model weights frozen.
Even though this method is parameter-efficient, memory
efficiency is limited due to significantly longer input se-
quences at each layer.

Model pruning reduces the model size by pruning out
certain parameters based on an importance criterion, such as
weight magnitude [12, 16], weight change [23, 34] or output
change [28, 39], until a desired pruning rate is achieved. Re-
cent research [28, 40] reports that pruning yields better re-
sults if executed after finetuning (post-finetune) [12, 13, 28]
compared to the conventional scenarios where the pruning
is applied before finetuning (pre-finetune) [16, 23]. Some
studies [39] advocate eliminating the requirement of fine-
tuning after pruning but still require full model finetuning
as the first step. Most existing pruning techniques involve
finetuning the full model first, which is not suitable for very
large transformer models under limited GPU memory. As a
result, conventional pruning techniques still require loading
and finetuning the full model on GPU for best results, which
limits their applicability in practice. Our approach does not
have the resource bottleneck required by the finetuning of
the full model because RECAP iteratively explores and par-
tially finetunes the smaller subnetworks of the full model,
therefore significantly reducing the GPU memory footprint
throughout finetuning while preserving model performance.

3. Methodology
The design of RECAP is motivated by the limitations of pre-
finetune pruning and post-finetune pruning. The former first
prunes the full model, and then finetunes the pruned model
on GPU. The main limitation is the inability to incorporate
the critical information related to the downstream task dur-
ing pruning, and thus suboptimal pruning of important pa-
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Figure 1. System architecture of RECAP. Components in blue are done on CPU, and those in green are done on GPU.

rameters of the model. In contrast, the post-finetune pruning
methods conduct finetuning both before and after pruning,
i.e., the full model is first finetuned on GPU followed by
pruning to obtain the pruned model, and then the pruned
model is finetuned again on GPU. This method can produce
a high-quality model at the cost of loading and finetuning
the full model on GPU. Unlike pre-finetune pruning and
post-finetune pruning, RECAP introduces a new approach
to enable efficient pruning during finetuning. In RECAP,
we iteratively finetune various chunks of the full model to
maintain a high quality in the finetuned pruned model with-
out requiring loading and operating on the full model on
GPU. To this end, RECAP leverages the CPU to determine
which part of the model to operate on and which weights
to update at each iteration, which reduces the GPU memory
footprint caused by model weights, optimizer states, acti-
vations and gradients. Figure 1 provides the RECAP sys-
tem architecture and the illustrative comparison with pre-
finetune pruning and post-finetune pruning scenarios.

Concretely, we first inject task-specific heads into the
pre-trained base model (Step 1). Then, at each iteration be-
fore transferring the pruned model to the GPU for finetun-
ing, we compute importance metrics for all model weights
at the CPU (Step 2). To this end, we first sample a tiny sub-
set of the dataset and approximate how much the objective
loss changes over it after removing each model weight us-
ing a first-order Taylor expansion. These importance met-
ric values are utilized to determine which weights will be
pruned out such that the weights with a high impact on the
output will be preserved. To further improve the pruning

efficiency, we determine which weights within the pruned
model should be updated during finetuning based on their
empirical Fisher such that the weights with lower gradient
values will not be updated (Step 3). Consequently, their op-
timizer states will not be needed during finetuning, reducing
the GPU memory footprint caused by optimizer states and
gradients. After loading the pruned model and finetuning
masks to GPU, we perform finetuning on the downstream
task/dataset (Step 4). At each optimization step, we only
update the weights determined by the pre-computed fine-
tuning mask. After finetuning, we update the full model
weights at CPU (Step 5). We continue the main loop from
Step 2, and repeat for K rounds or until the performance
on the validation dataset converges. Lastly, if more com-
pression is necessary, our approach can be combined with
quantization [9] to boost the efficiency and benefit from the
orthogonal advantages.

3.1. Pruning Stage

In this subsection, we provide the details of the pruning
stage operations. Given a model with weights θ and finetun-
ing dataset Df , our goal is obtaining a pruned model with
rp% pruning ratio (i.e. rp% of the original model parame-
ters will be pruned out).

3.1.1 Grouping Model Weights

There are mainly two pruning approaches depending on
how the weights are grouped. In unstructured pruning, the
pruning decision is made for each model weight separately,
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resulting in unstructured sparsity in weight matrices after
pruning. In the structured pruning approach, model weights
are grouped (e.g. channels, filters for CNNs, hidden dimen-
sions, heads for transformers, etc.) and the same pruning
decision is made for the weights within each group together.
After structured pruning, instead of being a masked version
of the original model with sparse weights, the pruned model
has weight matrices of smaller size, less number of heads,
etc. In our method, we consider structured pruning since it
is more hardware-friendly and the improvements in latency
and memory are better reflected in practice.

In our case for transformers, we have two main types
of model weights, respectively for attention modules and
feedforward layers. For the attention module weights, each
group contains the model weights (query, key, value, out-
put weight matrices) corresponding to a head. For feedfor-
ward layers, each group contains the model weights corre-
sponding to a hidden dimension. We consider the coupled
structure of model weights within the computation graph to
eliminate inconsistencies after pruning, as illustrated in Fig-
ure 2. Let us denote the weight groups for pruning as G(p)

m ,
where m is the group index.

3.1.2 Importance Estimation for Pruning

After grouping model weights, the next step of pruning is
computing the importance of each weight group within the
model. Several approaches have been proposed to define
the importance criterion based on weight magnitude, acti-
vations, gradients etc [15, 18, 39]. Following the success of
the Taylor expansion-based weight importance estimation
approach proposed for convolutional neural networks [27],
we also define the importance of each weight θk by the es-
timation of how much the loss would change if that weight
were pruned. Performing separate computations for each
weight over the full dataset is computationally infeasible.
Therefore, we can consider the second-order Taylor expan-

Figure 2. Illustration of the operations at a multi-head attention
module with h = 12 heads. We group the attention module
weights as represented with colors and perform structured prun-
ing at the head level for attention module weights.

sion over a randomly sampled tiny subset Ds ⊂ Df with
|Ds| ≪ |Df | to approximate the loss change induced by the
removal of each weight and then define the importance Iθk
as follows:

Iθk = |L(Ds)− Lθk=0(Ds)| ≈
�

∂L(Ds)
∂θk

θk − 1
2θkHkθ

�2

,

where ∂L(Ds)
∂θk

is the mean derivative of the observed loss

with respect to the weight θk over Ds. H = [∂
2L(Ds)
∂θi∂θj

]ij is
the Hessian matrix and Hk is the kth row. Since the compu-
tation of the Hessian matrix can be expensive due to a high
number of model parameters, we use the first-order approx-
imation with the following form for the computation of the
pruning importance of each weight group G(p)

m :

I(p)
m =

X

θk∈G(p)
m

�∂L(Ds)

∂θk
θk

�2

, (1)

where we sum the importance of each weight within the
group. Other pruning importance criteria can also be uti-
lized in our framework as well and we investigate the effect
of these on the final model performance in our experiments.

After the computation of (1) for every weight group, we
keep the weight groups with the highest importance values.
We sort the weight groups based on their importance values
and prune out the groups until vp% of the model parame-
ters remain. The pruned model ends up with the weights
θ(p) = {G(p)

m |M(p)[m] = 1}, where M(p) holds one for
the preserved group indices and zero for the pruned group
indices). We iteratively repeat the computation of (1) and
the pruning operation for Np steps until the desired cost re-
duction condition is satisfied such that 1−v

Np
p ≥ rp. Grad-

ually pruning the model provides a better approximation of
the importance values and empirically yields higher perfor-
mance compared to the one-shot approach. Here, the final
desired pruning ratio rp can be set such that the finetuning
cost of the pruned model (GPU memory requirement) will
be less than the available resources.

3.2. Finetuning Stage

During the finetuning of the pruned model θ(p) on GPU,
we perform masked weight updates, which provides two
crucial advantages. First, we can further reduce the GPU
memory footprint incurred by the optimizer states and gra-
dients by only storing those for the weights that are be-
ing updated. Another motivation for masked updates dur-
ing finetuning is related to the convergence of the pruned
model structure over iterations. Finetuning all weights of
the pruned model inherently causes an increase in the im-
portance of these weights compared to the weights that were
pruned out. Thus, the iterations may saturate very quickly
and cause the pruning of the same weights at each iteration
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from the very beginning of the process, which can be sub-
optimal as in pre-finetune pruning.

3.2.1 Importance Estimation for Finetuning

Due to the above motivations, instead of finetuning all
weights, we only finetune a predefined portion of the pruned
model weights. To decide which weight to update, after ob-
taining the pruned model following the procedure described
in Section 3.1, we perform an intermediate step of computa-
tion to determine the subset of weights that are most impor-
tant to update within the pruned model. We would like to
note that although this step is similar to the operations in the
pruning stage, here instead of determining the weights that
have the most impact on model output, our goal is finding
the weights that would cause the highest change in model
predictions when we update them.

We measure how much the pruned model output
pθk(y|x) changes when we change the weight θk to θk + δ,
where δ is a small weight perturbation, by approximating
the KL divergence DKL(pθk(y|x)||pθk+δ(y|x)) between
two output distributions [35]:

ExDKL(pθk(y|x)||pθk+δ(y|x)) ≈ δ2Fθk +O(δ3), (2)

where Fθk is the kth diagonal value of the Fisher informa-
tion matrix and is defined as:

Fθk = Ex∼p(x)

h
Ey∼p(y|x)

�
∂log pθk

(y|x)
∂θk

�2i
. (3)

As seen from (2) and (3), the Fisher information is related
to the impact of weight updates on the model output. To
reduce the computation cost, we consider the following ap-
proximation for the expectation (also referred as empirical
Fisher in recent studies [35]) and define the finetuning im-
portance of each weight group as below:

I(f)
n =

X

θk∈G(f)
n

�∂log pθk(Ds)

∂θk

�2

, (4)

where G(f)
n is the nth weight group and ∂log pθk

(Ds)

∂θk
is the

mean derivative of the pruned model output with respect
to θk over Ds. In other words, to minimize the misalign-
ment between optimizing all weights and only a portion of
weights of the pruned model, we can update the weights
with the highest gradient magnitudes. During finetuning,
each weight group G(f)

n contains the coupled weights corre-
sponding to the same hidden dimension.

Then, as in 3.1, we determine which weight groups to
finetune by sorting the weight groups based on their fine-
tuning importance values. We finetune vf% of the pruned
model parameters belonging to the groups with the highest
importance values. Let M(f) denote the finetuning mask

such that it holds one for the group indices that will be up-
dated and zero for the rest. While loading the pruned model
at GPU, we also load this finetuning mask. Next, we start
the finetuning procedure on GPU over the pruned model
with sparsified updates for Nf steps. During finetuning, we
only load the optimizer states and store the gradients for the
subset of weights θ(f) = {G(f)

n |M(f)[n] = 1}.

3.3. Updating Stage

After each finetuning stage, we transfer the updates to the
CPU and overwrite the full model weights that have been
updated. In addition, we update the optimizer states cor-
responding to the whole weights since re-initializing opti-
mizer states at the beginning of each iteration and not car-
rying over the momentum values to the next iteration for
the weights that are being updated can cause slower conver-
gence. This also enables us to prevent any instability that
might occur in case certain weights have not been updated
for a number of past iterations start to be updated. For in-
stance, for SGD with a momentum value of β, we have the
following update step at the end of each finetuning stage:

Vk ←
(
Vk if θk ∈ ∪G∈θ(f)G
βVk ow,

(5)

θk ←
(
θk +∆θk if θk ∈ ∪G∈θ(f)G
θk ow,

(6)

where ∆θk is the weight update for θk computed in the fine-
tuning stage. We would like to note that (5) can be modified
depending on the preferred optimizer type. We repeat the
pruning, finetuning and updating stages for K iterations or
until the validation performance converges.

4. Experiments
In this section, we report the results of experiments on four
vision benchmarks: CIFAR100 [22], TinyImageNet for im-
age classification and Cityscapes [7], KITTI [1] for seman-
tic segmentation, and six natural language understanding
tasks from the GLUE benchmark. We show that RECAP
effectively balances the tradeoff between final model accu-
racy after pruning and the GPU memory footprint of the
finetuning process. We also analyze the impact of mask-
ing on the performance and memory footprint of our sys-
tem. We provide experimental setup details (datasets, pre-
processing, implementation and measurements) with fur-
ther analysis in the Appendix. Our code is available at:
https://github.com/git-disl/recap.

4.1. Accuracy vs Memory-Efficiency Analysis

In this subsection, we report the performance of RECAP
by analyzing the relation between the finetuned model per-
formance, and the GPU memory footprint of the process.
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Task:
Image Class.

ViT-base ViT-large ViT-huge

C100 TinyIN Mem. C100 TinyIN Mem. C100 Mem.

Full-FT 91.84 89.73 1200 94.12 93.02 3854 94.55 7984

Head-FT 82.75 77.87 414 87.34 86.47 1339 89.66 2708
LoRA-FT 86.43 83.79 480 90.81 89.16 1564 92.49 2840
Pre-FT Pruning 86.57 81.41 825 91.65 89.13 2657 92.10 5377
Post-FT Pruning 88.93 85.52 1200 92.41 91.10 3854 93.15 7984
Movement Pruning 88.40 85.06 1216 92.08 90.90 3890 92.90 8010
RECAP (Ours) 88.34 83.83 431 91.93 89.95 1251 92.78 2483

Table 1. Image classification results in terms of accuracy (%)
with GPU memory footprint (MB) for ViT-base (86M), ViT-large
(307M) and ViT-huge (632M) at CIFAR100 and TinyImageNet
with various fine-tuning techniques.

To this end, we first provide the results for image classi-
fication with ViT variants [11] and semantic segmentation
experiments with Mask2Former (M2F) [6] in Tables 1 and
2. Here, we compare various finetuning techniques. Full-
FT denotes the standard finetuning procedure of the full
model, where no efficiency technique has been utilized. In
Head-FT, we freeze the pre-trained model weights and only
update the parameters of the injected task head to reduce
the GPU memory footprint caused by activations and opti-
mizer states. In LORA-FT, we again freeze the pre-trained
model weights, but in addition to the task head, we also
inject and finetune adapter modules, specifically following
the LoRA [20] methodology. We also compare RECAP
with three representative pruning techniques for the finetun-
ing of PLMs. In Pre-FT (pre-finetune pruning), which we
consider as our baseline, we finetune the model after per-
forming the pruning operation. In Post-FT (post-finetune
pruning), we finetune the model before and after pruning,
following [28]. Lastly, we also report the results obtained
with Movement [34] pruning, which integrates the pruning
process into finetuning through joint optimization. For all
pruning techniques, including RECAP, we report the results
for rp = 33.3%.

From the results in Tables 1 and 2, we make three ob-
servations. (1) RECAP consistently outperforms Pre-FT
pruning with higher accuracy and lower memory footprint
as expected. (2) RECAP achieves competitive accuracy re-
sults with Post-FT pruning and Movement pruning at a sig-
nificantly lower memory footprint as these two techniques
require GPU operations on the full model, resulting in a
high GPU memory footprint. In comparison, RECAP only
requires the pruned model on GPU and updates a portion
of those weights at each iteration, and thus, effectively re-
duces the GPU memory footprint by around 64% and 68%
for ViT-base and ViT-large respectively, and by around 34%
and 40% for M2F w/ Swin-base and Swin-large respec-
tively. (3) For M2F on Cityscapes and KITTI in Table 2, the
performance gap between RECAP and Post-FT and Move-
ment pruning techniques is almost zero.

In Table 2, the higher cost with RECAP for M2F is due

Task:
Semantic Seg.

Mask2Former w/ Swin-base Mask2Former w/ Swin-large

Cityscapes KITTI Memory Cityscapes KITTI Memory

Full-FT 81.61 71.26 3924 82.69 71.45 6092

Head-FT 76.95 68.27 1648 77.00 68.44 2324
LoRA-FT 77.93 69.85 1815 79.15 70.20 2640
Pre-FT Pruning 77.13 68.61 3079 77.75 69.80 4712
Post-FT Pruning 79.10 70.78 3924 79.48 71.14 6092
Movement Pruning 78.77 70.77 3963 79.66 71.20 6156
RECAP (Ours) 78.33 70.82 2577 79.50 70.98 3647

Table 2. Semantic segmentation results in terms of mIoU (%) with
GPU memory footprint (MB) for Mask2Former models with back-
bones Swin-base/Swin-large and evaluated at Cityscapes-dev and
KITTI-dev sets with various fine-tuning techniques.

Figure 3. Accuracy vs GPU memory footprint for ViT-base and
ViT-large. In the top-left direction, accuracy increases while mem-
ory footprint decreases, and RECAP either outperforms other tech-
niques at the same memory footprint or performs on par with sig-
nificantly lower memory usage. We also plot the results of full
finetuning (Full-FT) and head finetuning with frozen backbone
(Head-FT). Post-finetune pruning and movement pruning have the
same peak GPU memory usage as full finetuning.

to the temporarily stored activations for backpropagation.
In M2F, we observe that the cost of activations is dominant
(57.4% of total cost whereas 14.2% in ViT-b and 6.4% in
ViT-l) due to high-resolution activations. Finetuning with
adapters does not require computing the derivative of loss
w.r.t attention weights and so, bypassing the storage for
some activations or modifying some gradients in-place dur-
ing backpropagation is possible. So, although RECAP re-
duces the cost of activations thanks to pruned heads and FF
layers, adapters are more efficient in this scenario but with
0.4-1% lower mIoU. We also provide Tables 3 and 4 for the
results in image classification experiments at different prun-
ing ratios to observe how the behavior of these techniques
changes at different constraint regimes.
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Model Method
Pruning Ratio (rp)

16.6% 33.3% 50.0% 66.6%

C
IF

A
R

10
0

ViT-base (86M)

Full-FT: 91.84%
Head-FT: 82.75%

Pre-FT 89.98 86.57 77.29 50.62
Post-FT 91.20 88.93 84.95 75.03
Movement 90.92 88.40 84.85 74.83
RECAP (Ours) 90.50 88.34 83.33 72.90

ViT-large (307M)

Full-FT: 94.12%
Head-FT: 87.34%

Pre-FT 92.49 91.65 89.75 82.60
Post-FT 93.76 92.41 91.29 87.76
Movement 93.39 92.08 91.10 87.33
RECAP (Ours) 93.55 91.93 90.63 85.65

Table 3. The results for ViT-base and ViT-large evaluated at CI-
FAR100 with various techniques at different pruning ratios.

To illustrate how these pruning ratios translate to mem-
ory footprint, we plot the results in Figure 3, showing that
in every pruning regime, RECAP provides the best tradeoff
between accuracy and memory efficiency. Due to structured
pruning, we observe a significant performance drop with
66% or more pruning ratio in all techniques. But we can
achieve 3-4x less memory usage with 33% pruning ratio,
without losing significant performance (e.g, -2.19%/-3.08%
at CIFAR100/TinyImageNet for ViT-large). Lastly, we il-
lustrate some samples from Cityscapes-dev in Figures 6 and
7 to visually compare the model outputs after pruning with
various techniques. We observe that the model after Pre-
FT pruning tends to lose details for small objects (people,
signs etc.) whereas model outputs after RECAP and Post-
FT pruning are very similar.

We perform similar analysis on natural language under-
standing (NLU) tasks and report the results obtained on the
GLUE benchmark in Figure 4. GLUE benchmark has nine
NLU tasks, and due to space constraints, we include the
results of six tasks, which we list in Figure 5 with descrip-
tions. We also report the results with memory footprints
in Table 5 for rp = 50%. We observe that RECAP can
achieve the performance of Post-FT pruning in most set-
tings. For instance, in CoLA, MRPC and SST-2, RECAP
achieves very similar results with Post-FT pruning until the
50% pruning ratio. Yet, RECAP consumes a notably lower
memory footprint with 45% of Post-FT pruning and 73% of
Pre-FT pruning.

4.2. Analysis on the Impact of Masking

In this subsection, we analyze the impact of the masking
of updates during the finetuning stage. To this end, we re-
port the results obtained with ViT-base on CIFAR100 and
TinyImageNet datasets and with BERT-base on COLA-dev
from GLUE at different pruning and masking ratios. We
plot the obtained results in Figure 8. We observe that the
performance worsens when the masking ratio is zero/too
low or too high. As we discuss in Section 3.2, without
masking, the process saturates earlier, resulting in subopti-
mal performance similar to that in pre-finetune pruning. On

Model Method
Pruning Ratio (rp)

16.6% 33.3% 50.0%

Ti
ny

Im
ag

eN
et

ViT-base (86M)

Full-FT: 89.73%
Head-FT: 77.87%

Pre-FT 85.40 81.41 63.11
Post-FT 88.52 85.52 78.18
Movement 88.03 85.06 78.14
RECAP (Ours) 86.93 83.83 73.96

ViT-large (307M)

Full-FT: 93.02%
Head-FT: 86.37%

Pre-FT 90.75 89.13 72.32
Post-FT 92.66 91.10 77.63
Movement 92.36 90.90 77.45
RECAP (Ours) 92.32 89.95 75.47

Table 4. The results for ViT-base and ViT-large evaluated at Tiny-
ImageNet with various techniques at different pruning ratios.

Figure 4. Performance at various pruning ratios for BERT-base on
six datasets from GLUE benchmark.

Figure 5. Six of the natural language understanding tasks in GLUE
benchmark and their task descriptions.

Task: NLU CoLA SST-2 MRPC QQP QNLI RTE Memory

Full-FT 59.61 93.23 88.48 89.11 92.25 68.23 1553

Head-FT 51.10 89.75 85.44 88.05 90.66 64.99 524
Pre-FT 53.17 91.16 83.88 89.47 90.14 62.45 957
Post-FT 57.78 92.20 86.81 88.52 91.12 66.43 1553
RECAP (Ours) 57.67 92.20 86.55 89.39 90.74 65.98 702

Table 5. Natural language understanding results in terms of accu-
racy (%) with GPU memory footprint (MB) for BERT-base (For
CoLA and MRPC, we report Matthews Correlation Coefficient
(MCC) and F1 Score, respectively.

the other hand, masking too many weights hurts the con-
vergence so we empirically set the masking ratio, which is
rf = 87.5% for vision experiments and rf = 50% for text
experiments. We provide further analysis on the conver-
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Figure 6. Visual comparison of the Mask2Former outputs for ran-
domly selected samples from Cityscapes after pruning with Pre-
FT, RECAP and Post-FT pruning at 33% pruning rate.

Figure 7. Visual comparison of the Mask2Former outputs for ran-
domly selected samples from KITTI after pruning with Pre-FT,
RECAP and Post-FT pruning at 33% pruning rate.

Figure 8. Performance at various finetuning mask ratios. Selected
masking rates are shown with vertical dashed lines.

gence of the pruned model structure in the Appendix.

4.3. Memory Footprint Breakdown

In Figure 9, we report the memory footprint due to
each component (weights, gradients, activations, optimizer
states) for rf = 33%, rf = 87.5%, batch size of one, and
the process time for ten epochs. RECAP reduces the mem-
ory footprint of all components, attributing to only operat-
ing on the pruned model at GPU, and also further reduc-

Figure 9. Breakdown of GPU memory footprint (left bars) and
process time (right bars) for ViT-base and ViT-large at CIFAR100.

ing the cost of optimizer states and gradients with masked
finetuning. CPU time contains the time consumed during
pruning and masking.

5. Conclusion

We have presented RECAP, a pruning framework and a
suite of optimization techniques, for memory-efficient fine-
tuning of transformer-based large DNN models. This pa-
per makes two original contributions. First, we develop a
novel three-stage approach for integrating pruning and fine-
tuning through an iterative process cycling between prun-
ing, finetuning, and updating stages, allowing RECAP to
explore different chunks of the given large-scale model.
Second, unlike existing pruning methods that demand full
model finetuning at GPU, our approach effectively reduces
the memory footprints of model weights, gradients, activa-
tions, and loss optimizer states. Extensive experiments with
large transformer-based architectures on four vision bench-
marks and six NLU tasks on the GLUE benchmark demon-
strate that RECAP offers significant improvements in GPU
memory efficiency, reducing the footprint by up to 65%,
while maintaining competitive performance.
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Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Trans-
formers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations,
pages 38–45, Online, 2020. Association for Computational
Linguistics. 2

[39] Nakyeong Yang, Yunah Jang, Hwanhee Lee, Seohyeong
Jeong, and Kyomin Jung. Task-specific compression for
multi-task language models using attribution-based pruning.
In Findings of the Association for Computational Linguis-
tics: EACL 2023, pages 594–604, Dubrovnik, Croatia, 2023.
Association for Computational Linguistics. 2, 4

[40] Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tian-
long Chen, Mingyi Hong, Yanzhi Wang, and Sijia Liu. Ad-
vancing model pruning via bi-level optimization. In Ad-
vances in Neural Information Processing Systems, 2022. 2

16215


