
Selective, Interpretable and Motion Consistent
Privacy Attribute Obfuscation for Action Recognition

Filip Ilic
TU Graz

filip.ilic@tugraz.at

He Zhao
York University

zhufl@eecs.yorku.ca

Thomas Pock
TU Graz

pock@tugraz.at

Richard P. Wildes
York University

wildes@cse.york.ca

Arbitrary Templates Source

Saliency Map

Obfuscation

Optical Flow

Temporally Consistent

Arbitrary Templates Source

Saliency Map

Obfuscation

Optical Flow

Temporally Consistent

Arbitrary Templates Source

Saliency Map

Obfuscation

Optical Flow

Temporally Consistent

Arbitrary Templates Source

Saliency Map

Obfuscation

Optical Flow

Temporally Consistent

Arbitrary Templates Source

Saliency Map

Obfuscation

Optical Flow

Temporally Consistent

Arbitrary Templates Source

Saliency Map

Obfuscation

Optical Flow

Temporally Consistent

Arbitrary Templates Source

Saliency Map

Obfuscation

Optical Flow

Temporally Consistent

Arbitrary Templates Source

Saliency Map

Obfuscation

Optical Flow

Temporally Consistent

Arbitrary Templates Source

Saliency Map

Obfuscation

Optical Flow

Temporally Consistent

Figure 1. Our goal is to hide privacy attributes without action recognition performance dropping. Left: Arbitrary images can be used
to specify an interpretable template library defined by privacy attributes. Middle: A salience map is generated from privacy templates;
example illustrates use of templates for personal identification. Right: The source video is masked with noise as guided by salience and
animated by source video optical flow. Salience makes masking selective to privacy sensitive regions, while preserving scene context;
optical flow preserves motion – both of which are critical for action recognition. The obfuscated video can be input directly to arbitrary
privacy and action recognition systems without retraining. Zoomed circles highlight details only for illustration.

Abstract
Concerns for the privacy of individuals captured in pub-

lic imagery have led to privacy-preserving action recogni-
tion. Existing approaches often suffer from issues arising
through obfuscation being applied globally and a lack of
interpretability. Global obfuscation hides privacy sensitive
regions, but also contextual regions important for action
recognition. Lack of interpretability erodes trust in these
new technologies. We highlight the limitations of current
paradigms and propose a solution: Human selected pri-
vacy templates that yield interpretability by design, an ob-
fuscation scheme that selectively hides attributes and also
induces temporal consistency, which is important in action
recognition. Our approach is architecture agnostic and
directly modifies input imagery, while existing approaches
generally require architecture training. Our approach of-
fers more flexibility, as no training is required, and outper-
forms alternatives on three widely used datasets.

Code available f-ilic.github.io/SelectivePrivacyPreservation

1. Introduction

Advances in state-of-the-art computer vision and machine
learning enable deployment of such systems in the public
sphere. Accompanying these initiatives, concerns arise for
the privacy of individuals that are captured in acquired im-
agery [11, 19, 35, 46]. In particular, considerations arise
regarding attributes that individuals want to keep confiden-
tial, yet that are revealed through visual information, even
though they are not critical for the functioning of the de-
ployed system, e.g. identity, age, gender and race. Video-
based action recognition is an area of consideration as it has
potential for widespread applications in surveillance and
monitoring. These concerns have sparked interest in pri-
vacy preserving action recognition [13, 24, 34, 58]. These
approaches process input imagery to obscure privacy at-
tributes while maintaining action recognition performance.
Contemporary approaches typically apply their obfuscation
across entire input video frames and improvements have
been made within this paradigm. Notably, however, there
are downsides to this paradigm, as follows.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Collateral damage. Global masking strategies indiscrim-
inately obscure the entire image, impacting regions within
the scene that may exhibit high correlations with actions,
albeit lack relevance to privacy. For example, it is known
that masking objects and scene context can impair action
recognition performance [61], yet these are lost in global
masking. Furthermore, global masking strategies do not al-
low for selective attribute obfuscation and generally hide all
attributes at once, even when not all are of concern.
Loss of dynamic information. The large change in input
modalities from global masking necessitates the retraining
of the action recognition module or the design of custom
modules (adversarial training), which adds to the challenge
of practical deployment. Indeed, even if applied more lo-
cally, the obfuscation can compromise the motion of the ac-
tors, which also can be important in action recognition [50].
Lack of interpretability. Finally, given that state-of-the-art
approaches are end-to-end trained with limited concern for
interpretability, the exact nature of what is being masked
and how it is achieved can remain unclear. Lack of inter-
pretability is an important concern in privacy preservation,
because its lack can compromise user trust [29, 38].

1.1. Contributions

We present an approach to privacy preserving action recog-
nition that responds directly to current limitations in four
ways, as illustrated in Fig. 1. (i) The approach is based on
local detection and selective obfuscation of privacy sensi-
tive regions. This selectivity maintains global context infor-
mation that is crucial to action recognition, yet unimportant
for privacy. (ii) The local processing avoids large modal-
ity shifts in the imagery and is independent of the action
recognition module itself; therefore, it does not require al-
gorithm retraining, which is sometimes infeasible. (iii) The
masking preserves interframe motion; so, that information
is available for action recognition. (iv) The privacy sensitive
masking is interpretable by design, and allows inspection
through the explicitly generated saliency maps.

2. Related work

Privacy in machine learning. The need to protect pri-
vacy has garnered increased attention in the vision re-
search community. Current models commonly consume
large amounts of web data to learn generalizable represen-
tations [20, 33, 53], which inevitably invade personal infor-
mation, such as identity and location. Moreover, in model
deployment it also may be desirable to preserve privacy in-
formation. The concern for privacy is not limited to vision
research, but extends across artificial intelligence, includ-
ing natural language processing [5] and more general ma-
chine learning [37]. As these technologies find their way
into broader society, privacy concerns must be considered.

Privacy preserving action recognition. We focus on
video-based action recognition. Recent developments in
this area have yielded systems capable of strong perfor-
mance on challenging datasets; for review see, e.g. [48].
Similarly, applications, including those in privacy-sensitive
scenarios (e.g. surveillance [10] and monitoring [51]), are
being developed. To provide useful spatiotemporal signals
for action recognition, video clips are mostly collected to
capture actors with a great level of clarity throughout the ac-
tions, thus increasing the chance of privacy leakage. More-
over, such datasets are expanding rapidly, e.g. [4, 30].

In response to these concerns, research on recognizing
actions while preserving private information has emerged
in recent years. Early work concentrated on devising mod-
els that can work on low-resolution videos [8, 43, 44];
these methods often operate at the cost of sacrificing action
recognition performance. Other work along these lines de-
veloped face-anonymization techniques to prevent models
from yielding high accuracy on face recognition [28, 42].
Still, those approaches cannot easily extend to other at-
tributes and are correspondingly limited. More recent work
has focused on implicitly learning transformation functions
to anonymize videos in a data-driven fashion [13, 24, 36,
59], and also extending such approaches to anomaly de-
tection [18]. To reduce model complexity, a competing
approach follows a simple, yet effective procedure [34]:
Frame subtraction, followed by broadband-filtering to yield
motion descriptors for action recognition, while suppress-
ing privacy attributes. A notable limitation of that approach
is the relative weakness of frame differences as motion
descriptors compared to common alternatives, e.g. optical
flow. Another common limitation to all existing work is the
lack of flexibility to select arbitrary private information to
hide, i.e. preserving privacy of only critical attributes, while
maintaining the visibility of others, to avoid obfuscation of
visual cues that are essential to action classification.

Template matching. Building correspondences between
templates and target images via matching is a foundation
for modern vision research, e.g. SfM [21], image correspon-
dences [45], detection [12] and tracking [49]. Features used
in matching have advanced rapidly from primarily hand-
crafted (e.g. [12, 39]) to learning-based convolutional [23]
or transformers [14]. Our solution is inspired by techniques
seen in feature-based template matching. We apply their
insights on matching templates to localize and selectively
obfuscate privacy-sensitive regions. More specifically, we
adopt DINO-ViT features [6] and compute similarities us-
ing the keys of the last attention layer from that architecture.
Our use of DINO-ViT keys (rather than queries or values) is
based on previous work finding them to perform best when
applied to visual correspondence [1, 40].
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Figure 2. Overview of Method. 2a We present a privacy module that builds atop three components: (i) a semantic template library that
contains attributes to be hidden, (ii) a descriptor matcher to localize template features in videos to be obscured and, (iii) an obfuscation
method that is sensitive with respect to motion present in the scene. 2b A semantic descriptor matcher based on DINO [6]-ViT [14] keys
is used to determine privacy salient regions in a video based on the template library. In our case, regions of interest correspond to those
that can identify a person; however, this component can be adapted for other privacy attributes through specification of different templates.
The result is a saliency map. 2c The saliency map is used as a weight to apply noise to the regions. The noise, however, is not static,
but is warped with optical flow with an initial noise pattern image, N(p, 1), for the purposes of preserving motion information in the
source video. The similarity maps of all aggregated relevant privacy attributes are used to weigh the noise and apply it to the input image,
obfuscating privacy sensitive information while not destroying the underlying temporal signal.

3. Technical approach
Our approach to privacy preserving action recognition is a
stand alone module that operates by preprocessing video
that subsequently is input to arbitrary action and privacy
recognition algorithms, i.e. it is independent of the recog-
nition algorithms and does not entail any retraining of those
algorithms. Our method consists of three key compo-
nents; see Fig. 2a: (i) A template library that covers pri-
vacy attributes to be preserved, (ii) a matcher that pro-
duces saliency maps between selected templates and images
where privacy is to be preserved and (iii) an obfuscator that
uses the saliency maps to hide privacy attributes of concern
in a temporally consistent fashion to preserve motion in the
video. The remainder of this section details each of these
components.

3.1. Template library

To obfuscate privacy sensitive regions in images in an inter-
pretable fashion, we need an explicit set of “attributes” to
be hidden from the target video. Such a concept template
library, T, can be built manually choosing image patches
corresponding to features one wishes to obfuscate. In this
paper, we concentrate on privacy attributes related to per-
sonal identification. Therfore, we use landmark anatomical
features, corresponding to detailed facial landmarks and the
hand (Fig. 3 left: forehead, hair, eye, cheek, lips, hand) as
well as larger body parts (Fig. 3 right: arm, torso, legs). The
choice to focus on preservation of human identity is moti-
vated by the fact that all three of our evaluation datasets de-
fine their privacy attributes on attributes relating to person
identity. Notably, however, such a template library easily
can be extended depending on the particular task at hand.
For example, attributes pertaining to location (e.g. street
signs, distinctive scene objects) could guide development

of a complimentary set of templates. In any case, given a
template library, a user can selectively combine templates
to obscure attributes of concern in a particular application.

Formally, we define each template τi as an element in the
set T = {τ1, τ2, ..., τn}. Further, let T̃ ⊆ T be the subset
of templates that the user selects from the library, T, for a
particular subset of privacy attributes to be preserved for a
given dataset or application. Our manual approach to tem-
plate selection leads to concepts that are interpretable by
design. In particular, we use two source images, shown in
Fig. 3, one for small-scale features on the face, and one for
large regions, taken from the IPN [3] and SBU [60] datasets.
We choose these two datasets because of their complimen-
tarity in template selection: IPN focuses on small scale fea-
tures (e.g. facial and hand), while SBU focuses on larger
scale features (e.g. larger body parts), as detailed later in
Sec. 4.1. The choice of the particular template images is
not critical to the functioning of our approach, because we
extract semantic features from the templates that are known
to generalize well across images instances [6], as described
next.

3.2. Matching: Local patch descriptor templates

Semantic features. Our requirements for good features to
match between privacy templates in our library and frames
in an action recognition video are straightforward: We re-
quire (i) semantically rich features that generalize across
(in our case) different individuals and (ii) high spatial res-
olution to perform privacy obfuscation in a localized man-
ner without destroying regions that are required for action
recognition. We find that DINO-ViT features fit our needs
very well [6, 56]: (i) They have been trained to yield high
similarity for semantically related concepts (e.g. objects and
their parts), while suppressing the similarity of unrelated
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Figure 3. Template Library consisting of Patches Chosen from
Anatomical Landmark Regions. These specific images are passed
through a DINO-ViT feature extractor. The keys, corresponding to
spatial locations of the highlighted patches, are chosen as the tem-
plates for matching to input images to obtain semantically similar
regions for obfuscation.

matters (e.g. background). (ii) They support local patch fea-
ture extraction over high resolution images without losing
global context. Elsewhere, DINO-ViT keys have proven es-
pecially useful in matching between templates and target
images [1, 40]. Following these advances, we use last at-
tention layer DINO-ViT keys computed from privacy tem-
plates (e.g. Fig. 3) to match against input images to compute
privacy saliency maps.

Privacy saliency matching. To find privacy salient regions
in an input video, a similarity map, S, is computed between
each frame, I , in the video and the selected set of privacy
templates, T̃. The image is tiled with m patches, Ij , j ∈
{1, ...,m}, and for each patch DINO-ViT keys, K(Ij), are
extracted. These features are matched with DINO-ViT keys,
K(τi), for all selected templates, τi ∈ T̃. Clipped cosine
similarity is used to establish the saliency of each image
patch according to

sj =
1

|T̃|

|T̃|∑
i=1

max

(
0,

⟨K(τi),K(Ij)⟩
∥K(τi)∥∥K(Ij)∥

)
, ∀j ∈ J1,mK, (1)

where ⟨·, ·⟩ is inner product and |T̃| is the cardinality of T̃,
the set of selected privacy templates. Clipping is used be-
cause only positive values imply salience. This calculation
is performed for every patch in every image of the video.
Subsequently, the m saliency patches are reassembled in
the shape of the original image to produce the final saliency
map,

S = R(s1, ..., sm;h,w), (2)

with R a function that accepts image tiles, sj , and reshapes
them into their original image format of height h and width
w. Note that a separate salience map, S, is calculated for
each frame in a video of interest, I . The entire process of
feature extraction, matching and the resulting saliency maps
are summarized in Fig. 2b. Example saliency maps in Fig. 4
illustrate the ability of our approach to capture all of our
templates in a variety of scenarios.

3.3. Temporally consistent obfuscation

Our goal is to mask privacy sensitive regions in images to
obfuscate them. If we were to apply masks to every frame
independently, then temporal information important to ac-
tion recognition, e.g. motion of actors, would be destroyed
as well. We empirically document the issue in Sec. 4.2.
In response to this challenge, we follow previous work
that presented a method for producing temporally consis-
tent spatial noise across videos that supported action recog-
nition, while obscuring appearance information in single
frames [25]. While the previous work applied noise patterns
uniformly across entire frames, we instead weight them by
our privacy salience maps, S, to preserve as much context
information as possible. The remainder of this subsection
details our approach, with an outline shown in Fig. 2c.

Noise pattern initialization. Let p = (x, y) be image co-
ordinates and t time. We initialize a noise image, N(p, 1),
with the same dimensions as a frame from the input video
(i.e. h×w×3), with h height, w width and 3 the number of
colour channels. The dataset mean, µ, and standard devia-
tion, σ, are used to define a uniform distribution from which
individual pixel intensities are drawn according to

N(p, t = 1) ∼ U [µ− σ, µ+ σ]. (3)

Motion consistent noise. To create motion consistent
noise the initial random frame, N(p, 1), is warped forward
with flow fields derived from the original video, I(p, t),
as extracted by an optical flow algorithm. Let v(p, t) =
(u(p, t), v(p, t)) be the flow field that maps points, p, in
frame t to those in frame t− 1, with u and v the horizontal
and vertical components of the flow. Then, a motion con-
sistent noise sequence is generated as

N(p, t) = N
(
p+ v(p, t), 1

)
(4)

with t ∈ {2, ..., T} and T the number of frames in the orig-
inal input video.

Selective privacy obfuscation. The computed video se-
quence, N , shows no single frame appearance related to
the original video as it is random noise; however, when
viewed as a video it reveals the motion present in the origi-
nal, cf . [25]. Direct use of this synthesized video obscures
privacy attributes; however, it also obscures other context
information that could be of use in action recognition. So,
instead we selectively apply N to every frame I in the video
by using the privacy salience maps S, according to

O(p, t) = I(p, t)+
(
S(p, t)×

(
N(p, t)− I(p, t)

))
. (5)

The resulting video, O, contains selectively obfuscated re-
gions, built with interpretable templates by design and con-
tains motion information that (in principle) does not differ
from the original input video.
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Figure 4. Saliency Maps for Descriptors in the Template Library. The manual selection of these templates allows for interpretability of
the obfuscated parts of the image by design. The matched DINO-ViT features capture rich semantic information and allow for detailed
spatial localization due to the nature of vision transformers. These saliency maps can then be combined for obfuscating any combination
of templates depending on the task at hand.

ACTION RECOGNITION ON SOURCE DATASETS

Network f × r IPN KTH SBU

C2D [57] 8× 8 74.56 83.00 87.50
CSN [55] 32× 2 91.73 88.33 90.91
E2S X3D L [25] 16× 5 95.15 95.33 91.11
E2S X3D M [25] 16× 5 89.38 92.33 86.36
E2S X3D S [25] 13× 6 85.16 92.00 82.98
I3D [7] 8× 8 83.15 89.67 82.95
MVIT[15] 16× 4 88.00 90.00 92.55
R2+1D [54] 16× 4 89.80 87.33 81.91
Slow [17] 8× 8 85.76 89.00 88.64
SlowFast [17] 32× 2 88.06 87.33 90.00
X3D L [16] 16× 5 94.41 94.00 90.22
X3D M [16] 16× 5 91.67 93.00 81.91
X3D S [16] 13× 6 87.81 90.67 75.00

Average 88.05 90.15 86.31

PRIVACY PRESERVATION FOR SOURCE DATASETS

Network IPN KTH SBU

ResNet18 [22] 88.46 87.33 90.43
ResNet50 [22] 92.31 90.00 96.81
ResNet101 [22] 94.23 94.00 84.04
ViTb/16[14] 94.23 94.00 79.79
ViTb/32[14] 90.38 94.00 78.72

Average 91.92 91.87 85.96

Table 1. Top-1 Accuracy for all Privacy and Action models on
the original unmodified (source) videos, i.e. without privacy ob-
fuscation. Bold and underline indicate first and second best, resp.
Number of frames and temporal sampling rate indicated as f × r.

4. Empirical evaluation

The privacy obfuscated video, (5), serves directly as input
to action and privacy recognition. No specialized develop-
ment, training or other modification of the recognition algo-
rithms nor adaptation of the privacy preservation system is
necessary. Indeed, a major difference compared to compet-
ing state-of-the-art approaches (e.g. [34, 43, 59]) is that we
do not retrain networks with our obfuscated data, while they
do retrain. We exploit the fact that privacy attributes are
generally independent from action recognition cues, which
is enabled by our unique selective obfuscation approach.

4.1. Protocol

Datasets. We use three datasets commonly used for inves-
tigating action recognition and privacy, IPN [3], SBU [60]
and KTH [47], which pose different challenges concerning
both action and privacy.
IPN is a large-scale video-based hand gesture recognition
dataset that consists of 50 actors performing 13 static or
dynamic gestures, against three different backgrounds [3].
The performed gestures are used as the action labels and
actor genders are used as the privacy labels.
SBU is a video dataset depicting eight human interactions.
Each video is a video of actor-pairs, in the same laboratory
environment. Action labels are derived from the actor inter-
actions and the privacy attributes are the unique pairings of
seven different actors resulting in 13 privacy labels.
KTH has 25 actors doing one of six actions [47]. Each ac-
tion is performed four times in different environments. The
six action classes are used for action recognition and 25 ac-
tor identities serve as privacy labels. In the originally pro-
posed splits, videos of any one actor are fully contained in
one set, since the intent of the KTH dataset was not con-
cerned with actor identity recognition. For privacy identity,
each actor must appear in both sets; so, the data is split such
that each action is performed twice by each person in the
training set, and once in the validation and test sets.
Metrics. Privacy recognition results are obtained follow-
ing standard practice [34], averaging outputs over multiple
frames (32 for IPN and KTH, and 16 for SBU) from the
same video. Action recognition results are obtained by re-
porting the top-1 accuracy, as per convention [24, 58, 59].

It also is interesting to gauge the trade-off between ac-
tion and privacy recognition. Let 0 ≤ a ≤ 1 be normalized
action recognition performance derived from dividing accu-
racy percentages by 100, and let p be defined analogously
for privacy recognition. To quantify their trade-off we use a
linear combination of a and 1− p and define

fλ(a, p) = (1− λ)a+ λ(1− p), (6)

with 0 ≤ λ ≤ 1 weighing the relative importance of action
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Figure 5. Obfuscation with a Single Attribute and the Impact on Performance. Attribute importance is dataset dependent. For example,
notice how the ’Hand’ template contributes to a large decrease in action recognition performance on IPN, as the action is determined soley
by the hand, whereas on SBU it does not. Optimally blue is high and red is low. Corresponding qualitative examples of saliency maps for
each individual template are shown in Fig. 4. Bold text along the abscissa of each plot indicates the templates used for the final results.

ELR [44] BDQ [34] ALF [59] Ours

Figure 6. Optical flow from two consecutive frames from compet-
ing approaches. Only our approach retains dynamic information
that supports high-quality optical flow recovery. Top row: Single
frames as processed by comparison algorithms. Middle row: Full
frame optical flow recovery. Bottom row: Zoomed optical flow
details. Optical flow shown in Middlebury colour coding [2].

recognition vs. privacy. This metric is suitable to create a
linear ranking as a, and (1 − p) are optimally 1 ensuring
fλ ∈ [0, 1]. If privacy or action recognition are not equally
important, then they can be weighted accordingly; e.g. if
privacy is critical, then λ can be increased. In our main
experiments we use λ = 0.5, abbreviated as f0.5 in Tab. 2
and show an ablation over different values of λ in Fig. 7.

Competing obfuscation approaches. We briefly describe
NAIVE BASELINE approaches that solely rely on full-frame
pixelation and bluring as well as actor masking that have
been studied across the literature [13, 58]. We also highlight
other State-of-The-Art approaches (SOTA) [34, 43, 59] that
we compare against. Visual examples of the SOTA ap-
proaches are shown in Fig. 6; also shown are optical flows
of consecutive frames for qualitative comparison.
Mask Obfuscation. All our datasets involve people per-
forming actions and the privacy attributes are related to peo-

ple. A naive way to preserve privacy in such videos is
to completely mask out the actors. To do so, we use the
YOLOv8 implementation [27] based on the original YOLO
[41]. We report results based on the masked region filled
with the mean intensity of the image covered by the mask.
Pixelation. Pixelation applies average pooling over regions
of dimensions x × x on the input image sequence. We
choose two scales of x ∈ {4, 16} for the patch-size to pool.
In the result tables these methods are abbreviated as Pixx×x.
Blur. Blur applies a Gaussian blur to the images that have
been rescaled to 224 × 224 pixels. The parameters of the
Gaussian are the kernel size, κ, and the standard deviation
of the kernel, σ. We choose values for weak and strong
blurs, κ=13

σ=10 and κ=21
σ=10, respectively, as consistent with other

work on obfuscation methods [59].
ELR initially reduces frames to Extreme Low Resolution
and subsequently applies a set of learned inverse super-
resolution transforms to support action recognition [43].
ALF is an Adversarial Learning Framework for action
recognition that takes into account a privacy budget [59].
BDQ is a privacy-preserving encoder that sequentially
Blurs, Differences and Quantizes frames. The blur and
quantization parameters are learned to maximize action
recognition while minimizing privacy recognition [34].

Notably, all the compared SOTA methods operate across
entire frames (i.e. without selectivity) and have limited in-
terpretability due to their learning-based obfuscation.

Implementation details.
Training. No large scale dataset exists that allows for joint
training of action and privacy classification on the same
videos. Therefore, we pretrain our action and privacy net-
works on Kinetics400 [7] and Imagenet1k [33], respec-
tively, and then finetune for specific datasets. We use the
AdamW [31] optimizer with a learning rate of 3e−4. The
networks are trained with a patience scheme of 100 epochs
that monitors the loss on the validation set. For action
recognition, videos are temporally uniformly subsampled
according to the architecture (Tab. 1, ‘f × r’ column).
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RESULTS ACROSS NAIVE BASELINE OBFUSCATION METHODS

IPN KTH SBU

Method ↑Action ↓Privacy ↑f0.5 ∆ ↑Action ↓Privacy ↑f0.5 ∆ ↑Action ↓Privacy ↑f0.5 ∆

Original 88.05 91.92 0.48 90.15 91.87 0.49 86.31 85.96 0.50
Masking 36.45 64.87 0.36 37.54 35.22 0.51 52.62 30.1 0.61
Pixelate4×4 85.59 73.65 0.56 83.64 59.39 0.62 73.24 46.27 0.63
Pixelate16×16 49.81 65.76 0.42 38.33 38.43 0.50 25.53 29.84 0.48
Blur κ=13

σ=10 (weak) 76.24 67.40 0.54 44.59 37.73 0.53 72.75 35.69 0.69
Blur κ=21

σ=10 (strong) 58.80 65.92 0.46 30.38 31.84 0.49 57.77 34.21 0.62
Ours 87.11 51.93 0.68 +0.11 88.67 5.46 0.92 +0.29 86.74 13.19 0.87 +0.18

RESULTS ACROSS SOTA OBFUSCATION METHODS

BDQ [34] 81.00 59.00 0.61 91.11 7.15 0.92 84.04 34.18 0.75
ALF [59] 76.00 65.00 0.56 85.89 19.27 0.83 82.00 48.00 0.67
ELR[44] s=16 70.82 64.32 0.53 91.22 88.86 0.51 96.27 82.97 0.57
ELR[44] s=32 52.96 63.29 0.45 85.57 82.56 0.52 92.42 64.89 0.64
ELR[44] s=64 31.63 62.70 0.34 56.21 58.35 0.49 80.05 43.61 0.68
Ours † 85.25 51.67 0.67 +0.06 89.44 4.31 0.93 +0.01 84.04 11.70 0.86 +0.11
Ours 87.11 51.93 0.68 +0.07 88.67 5.46 0.92 ±0.00 86.74 13.19 0.87 +0.12

Table 2. Comparison between Ours vs. NAIVE BASELINE (top) and SOTA (bottom) Approaches as Top-1 Accuracy for both Action
and Privacy labels, as well as f0.5 Introduced in Sec. 4.1. We show Ours and NAIVE BASELINE results averaged across all recognition
algorithms presented in Tab. 1. Competing SOTA approaches only present results on one specific algorithm for action recognition (I3D [7])
and privacy attribute detection (ResNet50 [22]) as those approaches are network specific. To showcase a fair comparison we also present
results with the same single recognition algorithms indicated as “Ours †”. First and second best results indicated by bold and underline,
respectively. Relative performance delta (∆) is indicated in green (improvement) and orange (tie) between best and second best method.

Note that we never perform any training on videos ob-
fuscated by our approach. To implement warping, (4), we
use pretrained RAFT to extract optical flow [52].
Privacy template selection. Our approach affords selective
combination of a predefined set of privacy templates for
a given dataset or application. For the experiments, we
choose a subset of templates, T̃, from our complete iden-
tity preserving template library, T, shown in Fig. 3, to op-
timize performance on a given dataset. Figure 5 shows
template-wise performance based on both action recogni-
tion and privacy for each dataset. For SBU and KTH, ac-
tion recognition is stable with respect to templates; how-
ever, the same four templates notably reduce privacy recog-
nition. For consistency on IPN, we also select the four
templates that most reduce privacy recognition, even while
preserving action recognition; although, the distinction is
less striking. This selection process results in templates
T̃ = {torso, arm, leg , hair} for SBU and KTH vs. T̃ =
{cheek , eyes, forehead , hair} for IPN. Our code yields
more results on the overlap of individual saliency maps.
Runtime. The constant overhead to produce our obfuscated
videos is ≈100ms/frame on a NVIDIA RTX4080 GPU.

4.2. Results

We evaluate our approach to privacy preserving action
recognition on 13 different action recognition models and
five different privacy attribute recognition models. Com-
peting approaches evaluate on at most five action models

[34, 43, 59]. Table 1 shows results on the original videos
from IPN [3], SBU [60] and KTH [47], i.e. without any
privacy preserving processing. Table 2 shows results com-
paring our approach vs. NAIVE BASELINES and SOTA.
Comparison is given as the average across recognition al-
gorithms presented in Table 1. Notably, while our approach
compromises at most 1.48% action recognition accuracy
compared to performance on the original video (88.67%
vs. 90.15% on KTH), it always greatly improves privacy.
Naive Baselines. Compared to the baselines, our approach
scores highest with respect to the f0.5 metric across all three
datasets: IPN (+0.11), KTH (+0.29), and SBU (+0.18).
NAIVE BASELINES show that action recognition correlates
highly with privacy performance, as f0.5 hovers around 0.5.
The notable exception is Pix4×4 that performs well on IPN
and KTH, and is the second best NAIVE BASELINE on
SBU. A notable benefit of all these approaches is that they
do not require retraining of the recognition algorithms. Still,
none have a selective ability to obfuscate only certain parts.
State of the art. A noteworthy difference between our
vs. the alternative SOTA approaches is that they only work
with the recognition algorithms on which they were trained.
While this fact disadvantages our approach, as it lacks such
retraining, it still outperforms the competing methods on all
datasets: IPN (+0.06), KTH (+0.01), and SBU (+0.11).

It is valuable to consider obfuscation approaches in terms
of the relative importance of action recognition vs. privacy
preservation. Figure 7 compares results for the SOTA ap-
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Figure 7. Performance across all datasets with varying λ; see (6).
Values of λ closer to 0 weigh action recognition higher, whereas
values closer to 1 increase the importance of privacy preservation.

proaches as that trade-off is varied in terms of fλ, (6). The
sweep of λ shows that our obfuscation approach performs
better than any competing approach across the entire range.
Especially with increasing λ, the gap to other approaches
widens as more emphasis is put on privacy preservation.

Importance of selective obfuscation. Our approach is
unique in its ability to selectively obfuscate particular re-
gions within a video based on specific privacy attributes.
This ability yields two benefits:

(i) Selectivity aids in interpretability. Each selected tem-
plate results in a saliency map, (2), which allows for visual
inspection of what information is being obscured. Figure 4
highlights this benefit as the heat maps reveal the degree of
obfuscation to be applied on a template-by-template basis.

(ii) Individual privacy templates can be chosen and com-
bined for best performance; see Fig. 5. Depending on
the dataset, different privacy templates differently impact
the performance of privacy and action recognition. Action
recognition on SBU and KTH is relatively robust to pri-
vacy template selection; however, privacy preservation is
best when a subset of templates (torso, leg, arm, hair) is
selected and the rest remain unobfuscated. This fact derives
directly from the saliency calculation, (1): If multiple indi-
vidual saliency maps have small values, then other strong
responses are scaled down in the combined final saliency
map. Subsequently, this effect leads to less noise being ap-
plied in our selective obfuscation, (5), which can deterio-
rate privacy preservation. In contrast, action recognition on
IPN is compromised if the hand template is selected (as ex-
pected with a gesture centric dataset), which documents that
simply obfuscating the entire person leads to inferior action
performance compared to selectively applied obfuscation.

Importance of motion consistent noise. Action recogni-
tion is complicated as different datasets, and even individual
actions within a dataset might require different recognition
capabilities and can rely to different degrees on the model-
ing of motion [9]. This uncertainty on the role of motion in
action recognition is exacerbated by the fact that different
deep learning-based architectures are successful in captur-
ing motion to varying degrees [32].

To see the importance of our proposed motion consis-
tent noise for privacy preservation while maintaining good
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Figure 8. Comparing Temporally Consistent vs. iid Obfuscation
for Action Recognition and Privacy Preservation. Action recogni-
tion performance decreases if noise is not temporally consistent.

action recognition, we compare to another version of our
pipeline that obfuscates video frames using independent,
identically distributed (iid) noise; see Fig. 8 and project
page for video results. For all datasets, action recognition
performance decreases if the noise is iid. This result is sen-
sible, because the iid noise does not capture the temporal
dynamics of the source video. In contrast, privacy preser-
vation is robust to noise in either case. There is less impact
on IPN action recognition, as the critical hand motion is
never obfuscated, which underlines the importance of se-
lective masking. Further insight on why motion consistent
noise supports better action can be had through consider-
ation of Fig. 6, where the ability of such noise to support
optical flow estimation is illustrated.
Limitations. Inevitably, there will be a trade-off between
action recognition and privacy, as relevant information may
be shared. In our approach, that trade-off could happen be-
cause our temporally consistent noise maintains dynamic
information important for action recognition; however, it
also might support motion based identification, e.g. gait
recognition. Current protocols in privacy preserving ac-
tion recognition do not consider motion-based identifica-
tion. However, gait and related motion-based measurements
are weak biometrics [26]; so, favouring action recognition
may be apt. Moreover, if it becomes a concern, then it may
be possible to apply motion perturbations that impede per-
sonal identification while maintaining action recognition.

5. Conclusion
Our work highlights that it is not necessary to train action
recognition and privacy networks in an adversarial fashion
for effective obfuscation of privacy attributes while main-
taining strong action recognition performance. We show
that a system based on local privacy templates, deep fea-
tures that capture template semantics and selective noise ob-
fuscation that is animated with source video motion can up-
hold privacy without hindering action recognition. Our ap-
proach is unique compared to alternative recent approaches
in terms of interpretability and independence from partic-
ular action and privacy recognition algorithms. Our nine
manually chosen templates, in combination with our pro-
posed obfuscation technique outperforms other state-of-the
art approaches across three different datasets.
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