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Abstract

In recent years there has been enormous interest in
vision-language models trained using self-supervised ob-
jectives. However, the use of large-scale datasets scraped
from the web for training also makes these models vul-
nerable to potential security threats, such as backdooring
and poisoning attacks. In this paper, we propose a method
for mitigating such attacks on contrastively trained vision-
language models. Our approach leverages external knowl-
edge extracted from a language model to prevent models
from learning correlations between image regions which
lack strong alignment with external knowledge. We do this
by imposing constraints to enforce that attention paid by the
model to visual regions is proportional to the alignment of
those regions with external knowledge. We conduct exten-
sive experiments using a variety of recent backdooring and
poisoning attacks on multiple datasets and architectures.
Our results clearly demonstrate that our proposed approach
is highly effective at defending against such attacks across
multiple settings, while maintaining model utility and with-
out requiring any changes at inference time.

1. Introduction

Recent years have seen enormous interest in vision-
language models trained on web-scale image-captioning
data using contrastive objectives [25, 36] and text gener-
ation objectives [59]. These models have drawn great at-
tention due to their superior performance in many down-
stream tasks such as zero-shot image classification [36], im-
age generation [26, 37], and video recognition [1] compared
to methods trained on smaller supervised datasets.

Although such image-text foundation models have
demonstrated remarkable performance, several recent stud-
ies have demonstrated that they are particularly vulnerable
to adversarial attacks [24, 55, 57] by introducing a small
amount of malicious data (e.g. 75 instances out of 3 million
[57]) into the training data. Practically, this can be achieved
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Figure 1. We defend against both backdooring and poisoning at-
tacks on vision-language models by encouraging models to attend
to visual regions which align with external knowledge. Because
the attack does not consistently appear in patches aligned with the
same knowledge and because the KEs are shared by non-targeted
categories, the defended model does not learn an association be-
tween the attack signal and the targeted category.

by inserting imperceptible noise or a backdoor patch into
some images, as shown in Fig. 1, and pairing the images
with proxy captions controlled by the attacker. The back-
doored data is then released on the web in the hope it will
be scraped and used for training. Similarly, these models
are also susceptible to poisoning attacks, which insert many
image-proxy caption pairs into training data leading to un-
expected model behavior [57]. Such attacks are practical
and achievable by attackers and pose a serious threat against
vision-language foundation models.

To defend against such attacks, a number of a methods
have been proposed. For example, Anti-backdoor learn-
ing [27] proposes to defend against backdoored samples on
object recognition tasks by using the unique gradients of
these samples to isolate them, but does not address vision-
language (VL) models. More similar to our work, Clean-
CLIP [3] proposes a method for defending contrastive VL
models against backdooring, but does not address non-
backdoored poisoning attacks as we do. While [57] propose
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to clean labeled data to mitigate the impact of poisoning,
no prior work has proposed a unified defense mechanism
for contrastively trained VL models that is effective against
both backdooring and poisoning attacks.

To address this urgent need, we propose a defense
method for VL models that defends against both backdoor-
ing and poisoning attacks. Our method can also be deployed
in object recognition settings, by casting it as a text retrieval
problem following [36]. Our method is motivated by the
following insight. We note that attacks rely on having mod-
els learn correlations between a particular visual signal and
target. However, these targeted images share lower-level
semantic concepts with other, non-targeted categories (See
Fig. 1). As a consequence, the attack tends not to affect the
model’s representation of these concepts.

Moreover, in the case of backdooring, the attack signal
is applied to various images whose semantics change in the
region on which the attack is applied. For example, in one
image the attack may cover a batch associated with paw,
while in another image the signal is associated with sharp
teeth. Thus, the model fails to learn an association be-
tween the attack signal and these lower-level semantics. We
refer to these lower-level semantic concepts associated with
objects or captions as Knowledge Elements (KEs). KEs
consist of semantic attributes (e.g. round), but also sub-
objects (e.g. paw), and relations. Our defense mechanism
aligns with how humans understand semantics of objects
or sentences: as collections of semantic units which com-
bine together to form higher-level concepts that are more
abstract, compositional and include actions (“running”) and
proto-objects (“four-legged animal”). We propose to en-
courage models to rely more heavily on relevant lower level
semantics when producing their representations. As a con-
sequence, our models are much more resistant to attacks.

Our method works by learning an alignment between im-
age patches from images and a set of KEs associated with
each image caption. To discover associated KEs, prior to
training our model we prompt a large language model (Vi-
cuna [10]) to list possible KEs for each caption. We next
perform contrastive image-caption training, but add several
new objectives. First, we enforce an alignment between im-
age patches and KEs using a novel multi-instance learning
based constraint, since we do not know which patches go
with which KEs. While this aligns image patches and KEs,
it does not prevent the model from relying on the attacker’s
visual signal when computing its representation. Thus, we
also propose a second constraint which enforces that the
model’s attention to patches is proportional to each patch’s
alignment with a KE. That is, if a patch has a low align-
ment with all KEs, the patch should have a low effect on
the model’s representation. Finally, we observe that for
attacked samples, the overall patch-KE alignment is much
lower. We thus introduce a dynamic per-sample weight term

on the contrastive loss based on the overall alignment of the
KEs with the image’s patches. This has the effect of down-
weighting the effect of poisoned samples during training.
We evaluate our defense method, Semantic Shield, against
multiple recent attacks and defenses on multiple datasets.
We observe that Semantic Shield significantly outperforms
prior defenses across multiple settings. Our defense tech-
nique adds very little overhead at train time, while making
models significantly more robust to a wide variety of at-
tacks. The major contributions of this paper are as follows:
• We propose an approach, Semantic Shield for defend-

ing against backdooring and poisoning attacks on con-
trastively trained vision-language models by enforcing
knowledge-guided train-time constraints.

• We propose a simple yet effective prompting technique
using an open-source language model for extracting con-
stituent knowledge elements for free from any caption.

• We perform a comprehensive experimental evaluation us-
ing a number of recent backdooring and poisoning attacks
on two datasets. Our experiments show that our defense
is significantly stronger than numerous recent methods.

2. Related Work
2.1. Vision-language contrastive learning

In recent years, large-scale contrastively trained vision-
language foundation models have demonstrated remarkable
performance on a number of downstream tasks, even sur-
prassing the performance of supervised models in some
cases [25, 36, 59, 61]. While contrastive approaches
have been used to align visual and textual embeddings for
years [15, 44, 62, 64], recent approaches such as CLIP
[36] and ALIGN [21] have demonstrated how training on
hundreds of millions of image-caption pairs scraped from
the web can yield powerful generalist image-text founda-
tion models which can be applied to many downstream
tasks. CLIP-inspired contrastively trained models have
found widespread use in many security-critical applications,
including navigation [14, 19, 31], healthcare [49, 65], work-
site safety [47], disinformation detection [50, 67], and many
others [16, 41]. Given their widespread use, it is critical
that contrastively trained vision-language models perform
in safe and expected ways. Our work adopts the standard
two-stream contrastive architecture proposed in [36] and
demonstrates how such models can be defended against po-
tential attacks lurking within webly-harvested data.

2.2. Poisoning and backdoor attacks

Data poisoning attacks [4, 45, 54, 66], which have been pro-
posed in both supervised [23] and unsupervised [6, 22] set-
tings, involve introducing mislabeled (or misaligned) data
into the model’s training set. At test time, models behave
in unexpected and attacker-influenced ways when presented
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with the poisoned examples seen during training. While
targeted poisoning attacks target specific examples intro-
duced during training, backdoor attacks can be applied to
any image. Backdooring attacks are a type of data poi-
soning attack where an attacker introduces a spurious sig-
nal, such as patches [17, 38] or imperceptible perturbations
[12, 13, 33, 34] into an image. Models learn to associate
the introduced signal with the targeted concept. While poi-
soning and backdoor attacks have traditionally targeted su-
pervised learning settings, recent work has shown that con-
trastively trained vision-language models are particularly
vulnerable [7, 63]. [7] show that by introducing as few as 3
out of 3 million samples, an attacker can execute a success-
ful attack. This is a highly practical attack, as an attacker
can release large amounts of poisoned data on the internet
in the hopes that it will be scraped and later used for train-
ing. In our work, we demonstrate that our method is highly
effective against a number of recent backdooring methods
and poisoning attacks on contrastive models.

2.3. Defending against attacks

Given the large potential risks posed by attacks to models,
extensive research has been conducted on approaches for
defending models against both poisoning [9, 52] and back-
dooring [18, 20, 48] attacks. Defenses can be broadly cat-
egorized into methods for detecting and removing attacked
samples from training [8, 43, 46], those that remove back-
doors already learned by models [30, 53, 60], and those that
seek to prevent models from learning backdoors by decreas-
ing their effectiveness [2, 27, 35]. Unfortunately, detection-
based methods often fail to detect all backdoors and given
the particular vulnerability of contrastive models, imperfect
filtering could still result in model poisoning. Unlike our
approach, model de-poisoning methods often fail to achieve
similar performance to clean models [29].

Of particular relevance to our work are methods aimed
at defending against poisoning and backdooring for vision-
language contrastive learning [3]. [3] propose to inde-
pendently realign representations from different modali-
ties. Unlike this approach, our method learns a fine-grained
alignment between external knowledge extracted from a
large language model and visual regions. These alignments
are then used as a penalty to prevent models from attend-
ing to non-aligned visual regions. Our method substantially
outperforms [3] across all settings.

3. Problem setting
3.1. Threat model

Adversary objective. Given a vision-languge contrastive
learning model M, an adversary aims to compromise the
model by injecting a small amount of poisoned data Dp into
a clean dataset Dc, both of which constitute the training

data D. The model trained on the poisoned training data
is denoted as Mp. In this paper, we consider two types of
attacks: 1) backdooring and 2) poisoning. In a backdoor
attack, the adversary overlays either a small patch or some
visually imperceptible noise on an image, causing the back-
doored image to be misclassified or incorrectly retrieved by
a retrieval model. During testing, the adversary cause the
model to misclassify or retrieve a specific class by inserting
the backdoor into test images. In contrast, in a poisoning
attack, the goal is to cause the model Mp to associate a
targeted set of text with images of a specified class by in-
serting many training instances which incorrectly associate
visual content with concepts controlled by the adversary. In
both cases, the poisoned model is expected to maintain sim-
ilar utility (performance) compared to the clean model.

Adversary capabilities. We consider an adversary capa-
ble of injecting a small number of poisonous samples into
the training dataset, similar to prior work [5]. In traditional
supervised attacks [39, 40], adversaries were required to
modify a large amount of the training data - an impracti-
cal setting for vision-language models trained on web-scale
data. Our setting is more realistic, because achieving a high
poisoning rate is improbable when poisoned data is released
on the internet with the hope of it being scraped for train-
ing. Thus, we focus on the more feasible scenario and as-
sume a relatively low poisoning rate. We assume a black-
box setting, where the adversary lacks knowledge of the
target model’s architecture and hyperparameters. Addition-
ally, the adversary lacks control over the training process.

3.2. Attack methodology

Model training. We denote our training data as (i, t) ∈
D = I × T , where D, I, and T represent the training set,
image set, and text set, respectively. Within a collection of
N image-text pairs, we identify (ij , tk) as a positive pair
if j = k; otherwise, it is considered a negative pair. The
contrastive learning model concurrently optimizes the im-
age encoder Ei and the text encoder Et to maximize the sim-
ilarity between the embeddings of positive pairs in a batch
while minimizing that of negative pairs. Specifically, for a
given batch of N image-text pairs, we obtain the image em-
bedding Iej = Ei(ij) and the corresponding text embedding
T e
k = Et(tk) for each pair, normalizing both embeddings

using the L2 norm. The cross-modal contrastive loss LCL

is then computed as follows:

LCL = − 1

2N

( N∑
j=1

log
exp(σ(Iej , T

e
j )/τ)∑N

k=1 exp(σ(I
e
j , T

e
k )/τ)

+

N∑
k=1

log
exp(σ(Iek, T

e
k )/τ)∑N

j=1 exp(σ(I
e
j , T

e
k )/τ)

) (1)

where σ(., .) is the product between the image and text em-
beddings (their similarity) and τ denotes the temperature.
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Backdoor attack. A successful backdoor attack intro-
duces a trigger into a model so that when the trigger is
present in the input image (dog), the model incorrectly
associates the image with the specific target class (boat
caption) controlled by the attacker. We applied backdoor
attacks to poison multimodal contrastive learning models,
following the approach in [7]. We consider two types of
backdoor attacks: a) overlaying a backdoor trigger, such as
a (16 × 16 patch), on a small subset of training images,
and b) injecting imperceptible noise into a limited subset
of images. The latter is considered a stealthy backdoor at-
tack. We classify the BPP [51] and Wanet [33] attacks as
stealthy, because they pose a challenge for human identi-
fication due to their subtle and imperceptible nature. To
perform our backdoor attack, we construct the poisoning
dataset Dp =

{
(Ii
⊕

bd), T y′

i : Ii ∈ Dsubset

}
, by em-

bedding a backdoor trigger bd (e.g. a 16 × 16 patch or
imperceptible noise) in a small subset of training images,
Dsubset ⊂ D, T y′

i ∈ T y′
, where y′ is target class.

Single target label attack. In this poisoning attack,
an adversary aims to associate images from one class
e.g. (dog) with captions from another class e.g. (boat).
The attack can be formulated as (i, t)|i ∈ IAtrain, t ∈ TB

train,
where A and B are the original and the target classes, re-
spectively. Given a caption t ∈ TB

test, we expect the model
to retrieve images from IAtest as the most relevant. We poi-
son the model to build a strong relationship between images
in class A and captions in class B, even if the test images
and captions are unseen at training time.

Multiple target label attack. An adversary can extend
the “single target label” attack by poisoning multiple tar-
get classes simultaneously, i.e. images from multiple orig-
inal classes can be mapped to multiple target classes in
captions. In this setting, the poisoning goal is defined as
Dp = (A1, B1), (A2, B2), ..., (An, Bn) where Ai ∈ IA

and Bi ∈ TB . IA and TB represent images and captions
from classes A and B respectively.

4. Approach

In this section, we introduce our framework for mitigat-
ing backdooring and poisoning attacks on vision-language
models. Backdoor attacks on multimodal contrastive learn-
ing are effective because models learn a correlation between
the backdoor trigger either in a form of patch or impercep-
tible noise added to the image and the target concept in the
paired captions. The core intuition behind our approach
stems from human perception, where sets of lower level se-
mantic concepts play a key role in distinguishing objects.
See Fig. 1. These semantic concepts consist of semantic
attributes (e.g. “thick fur”, “rough green texture”), but also
parts of objects (e.g. paws, whiskers). We term these identi-
fiable properties knowledge elements (KEs). Our core intu-

ition is that backdooring and poisoning attacks are effective
because models learn spurious correlations between the vi-
sual content and the target label. However, because other
non-backdoored classes also share some of the same KEs,
models will not learn an association between the KEs and
the spurious visual signal. Thus, we propose to leverage
KEs to prevent models from relying on such correlations in
their representations.

4.1. Aligning patches to knowledge elements

The traditional contrastive learning objective encourages
image embedding Ie

i and text embedding T e
i to be close.

However, in addition to this, we enforce that image patch
embeddings Ipatch

i and associated KE embeddings KEe
i to

also be close. Our key observation is that because back-
door signals are injected in random locations of the image
which do not necessarily contain a KE, the similarity be-
tween these patches and KE embeddings should be lower
compared to others. Even if by chance the area covered by
the attack does contain KEs, the affected KEs will not be
the same when the attack is performed on a different image,
preventing the model from learning an association between
the attack perturbation and the KEs. Based on this intuition,
our model first learns to align patches and KEs using a con-
trastive constraint, LKE . This learned alignment will later
be used to prevent the model from attending to potentially
attacked patches. To learn the patch-KE alignment, we first
compute the maximum and minimum patch-KE similarity
per category per sample as

ωc
i = max

q∈m

(
n∑

p=1

m∑
q=1

Ipatch
p · (KEc

q)
e

)
(2)

ω̂c
i = min

q∈m

(
n∑

p=1

m∑
q=1

Ipatch
p · (KEc

q)
e

)
(3)

where n is the number of patches per image, m is the num-
ber of KEs per object category, and c ∈ C, where C is the
number of object categories. (KEc

q)
e is the per KE embed-

ding per category. Note that our approach also extends to
image-text datasets without any defined object categories or
labels. In this case, we treat each image-caption pair as its
own “category” with a set of knowledge elements and C is
the same as the batch size. The objective function for patch-
KE similarity is therefore given by

LKE = − 1

2N

( N∑
i=1

C∑
c=1

yci log(σ(ω
c
i ))

+

N∑
i=1

C∑
c=1

(1− yci ) log(1− σ(ω̂c
i ))

) (4)

where σ is the sigmoid function and yci is the multi-label
ground truth information per sample per category. Note
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Figure 2. Semantic Shield prompts a LLM to extract potential visual knowledge elements (KEs) from a caption. Image patches are aligned
with KEs via the patch-KE loss. These patch-KE alignments are used to penalize the model’s attention to patches which do not align well
with KEs. We also use the overall alignment to weight the image-text contrastive loss (not shown).

that, summation over batch is omitted for brevity. In Eq. (2)
and Eq. (3) all patches of every image compute their sim-
ilarity with all KEs from the batch. We perform max/min
to select either the best aligned KEs (for paired captions) or
worst aligned KEs (for non paired) to prevent false nega-
tives. We thus can fine-tune our model via a linear combi-
nation of these two objectives:

LCL−KE = µ1LCL + µ2LKE (5)

where µ1 > 0 and µ2 > 0 are hyper-parameters controlling
the relative strengths of the two objective functions.

4.2. Knowledge element-guided attention

Next, we observe that the attention mechanism within the
vision transformer (ViT) attends to both attacked patches
and unaffected patches. This is undesirable because atten-
tion paid to attacked patches renders the output embeddings
more dependent on the attack signal, and thus more vul-
nerable. Thus, it is imperative for ViT to allocate reduced
attention to attacked patches relative to unaffected patches.
Our intuition is that the model should pay more attention to
image regions that align well with KEs than patches with
low alignment. Thus, we leverage our patch-KE similarity
scores to modulate ViT’s attention by enforcing a constraint
between ViT’s attention and the patch-KE similarity scores.
Given ViT’s query, key, and value denoted as Q,K, V

respectively, the attention weight is computed as α =

softmax(QKT

√
dk

), where dk is the dimensionality of the key
vectors. Now, the penalized attention weight can be com-
puted based on the maximum and minimum similarity com-
puted in Eq. (2), Eq. (3) (αc

i )max = αc
i · ωc

i . (αc
i )min =

αc
i · ω̂c

i Since the similarity scores between a targeted vi-
sual region and KE are less compared to unaffected patch
and KE, ViT pays less attention to attacked patches. The re-
sulting objective function which penalizes attention values
which deviate from the patch-KE similarity scores is:

LAttention = − 1

2N

( N∑
i=1

C∑
c=1

(αc
i ) log(σ(α

c
i )max)

+

N∑
i=1

C∑
c=1

(1− αc
i ) log(1− σ(αc

i )min)

) (6)

The training objective is then:

LCL−Attention = µ1LCL + µ2LAttention (7)

4.3. Knowledge element weighted contrastive loss

Note that during the fine-tuning process of Eq. (5) and
Eq. (7), the contrastive learning objective Eq. (1), seeks
to align representations from each modality which has the
effect of pulling attacked images and captions closer in

24824



the embedding space. Therefore, we introduce a dynamic
weighting function which weights each sample in the con-
trastive objective function. Our intuition is that attacked
samples will have lower similarity scores between image
patches and KEs, since the attack does not explicit tar-
get the KEs. Thus, we penalize the contrastive objective
for each sample with the average similarity score, so that
the contrastive objective is downweighted for attacked sam-
ples compared to benign samples. We compute the maxi-
mum similarity scores per sample across categories follow-
ing Eq. (2), where λi = max

c∈C
ωc
i , i ∈ N , µ1, µ2 = 1:

LCLi
=

exp(
σ(Ie

i ,T
e
i )

τ )∑N
k=1 exp(

σ(Ie
i ,T

e
k )

τ )︸ ︷︷ ︸
contrasting ith image with texts

+

N∑
k=1

log
exp(

σ(Ie
k,T

e
k )

τ )

exp(
σ(Ie

i ,T
e
k )

τ )︸ ︷︷ ︸
contrasting texts with ith image

(8)

LWeightedCL = − 1

2N

2N∑
i=1

λiLCLi
(9)

Our final objective is likewise given by linear combination:

LWeightedCL−Attention = µ1LWeightedCL+µ2LAttention

(10)
4.4. Knowledge element (KE) generation

Our approach requires external knowledge about each
image in addition to a paired caption. For example, a
caption of dog image might be ”A dog is running in the
park”. In this case, suitable knowledge elements might be
paws, sharp nails, furry animal, trees.
We follow in context learning approach by prompting a
large language model (Vicuna [10]) for generating KEs for
each image. Note that the KEs are generated purely from
the caption or object label and thus are only potentially
relevant to the image. Our approach accounts for this by
generating 25 KEs per caption/category. Then, we take
the top 5 KEs per caption based on the similarity scores
between image and generated KEs. For COCO [28],
we prompt Vicuna with What are useful visual
features for distinguishing a category
name in a photo?. Since COCO has 80 categories we
choose this prompt following [32]. For Flickr30k [58], we
design prompts that generate KEs for each caption, since
we do not have any predefined object classes. Additional
details are included in our supplementary.

5. Experiments
5.1. Experimental Setup

Models and datasets. We follow [7]’s setting by attacking
CLIP-like models [36]. We adopt ViT-B/16 as image en-
coder, pretrained on ImageNet-21k [42] and fine-tuned on
ImageNet-1k. As a text encoder, we adopt a BERT-style
[11] encoder following [36]. We cap the max sequence

length of text to 100. We use AdamW with weight decay
using a cosine scheduler from 10−4 with decay rate 0.2. We
train for 30 epochs with a batch size of 128 on the COCO
[28] and Fickr30k [58] datasets. While COCO has 80 de-
fined object categories, Flickr30k has no label information.
Additional details are included in supplementary.

Backdoor settings. We tested out defense against three
recent backdoor attacks. To do so, we couple backdoored
samples with a caption mentioning the target class. Adver-
saries only require a very small amount of poisoned samples
for poisoning contrastive models (e.g., CLIP) [7]. Follow-
ing this, we inject a very small amount of poisoned samples
(0.01% of the train dataset for both COCO and Flickr30k).

Poisoning settings. We performed two types of poison-
ing attacks following [56]. For single target label attack,
the poisoning goal is dog2boat for both Flickr30k and
COCO. We evaluate them on test samples that are unseen
in the training process. For example, we take an clean im-
age of dog and associate it with a proxy caption of boat.
The poisoning rate for this attack is 0.065% for Flickr30k
and 0.24% for COCO. For the multi-target label attack, we
take two classes. The poisoning goals are dog2boat and
train2zebra for COCO. For Flickr30k, the poisoning
goals are dog2boat and bird2sofa. The poisoning rate
for COCO and Flickr30k are 0.52% and 0.34% respectively.

5.2. Experimental Results

Backdoor Attack. In Tab. 1, we compared ablations of
our method (CL+ KE, CL + Attention) with other baselines
e.g. Cleanlip [3], Anti-Backdoor Learning (ABL) [27]. Fi-
nally, our model Semantic Shield (Weighted CL + Atten-
tion), outperforms all baselines with significant margins.
Note that, at test time, we used 100 backdoor images (patch,
BPP, Wanet) for the text retrieval task. At test time, our
model retrieves no caption associated with poisoned cate-
gories for any backdoored image on Flickr30k.

Poisoning Attack. Similarly, to the above, at test time,
we use 100 poisoned images for both single and multi-
target settings for both datasets. Our model outperforms
all existing work significantly with large margins, particu-
larly on the multi-target label setting. We observe that the
unweighted version of our approach slightly outperforms
Semantic Shield for dog2boat at Hit@1, but Semantic
Shield significantly outperforms for Hit@5 and Hit@10,
suggesting significantly reduced poisoning overall.

Utility evaluation. We evaluate model utility for image-
caption retrieval. Tab. 4 shows the performance (Re-
call@10) of the poisoned model on each attack type as well
as the clean model on the test data. We observe that the
utility of the poisoned model is at the same level or slightly
less than the clean model e.g. BPP in COCO dataset. This
implies that despite being trained on poisoned data, mod-
els maintain their performance. We show the model utility
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Dataset Models Backdoor Patch Backdoor BPP Backdoor Wanet

Hit@1 ↓ Hit@5↓ Hit@10↓ Hit@1 ↓ Hit@5↓ Hit@10↓ Hit@1↓ Hit@5↓ Hit@10↓
CL (No Defense) 90.66 94.60 95.43 100.0 100.0 100.0 100.0 100.0 100.0
CL+ ABL [27] 6.23 8.12 12.21 15.35 16.68 16.21 100.0 100.0 100.0

CL+ CleanClip [3] 5.35 12.68 17.89 36.12 50.09 55.19 8.23 16.32 23.73
COCO CL + KE 9.0 15.31 21.90 25.39 47.98 50.12 12.21 56.79 88.38

CL + Attention 4.20 5.12 6.01 0.0 5.26 36.21 0.0 2.10 7.20
Weighted CL + Attention 0.9 1.22 1.57 0.0 0.0 0.0 0.0 0.0 0.0

CL (No Defense) 91.97 97.63 98.21 100.0 100.0 100.0 100.0 100.0 100.0
CL+ ABL [27] 4.67 2.21 4.06 10.34 17.98 21.13 98.21 99.23 100.0

CL+ CleanClip [3] 2.20 3.32 5.05 12.43 24.32 31.25 13.29 23.13 29.21
Flickr30k CL + KE 16.10 33.15 41.09 13.14 36.54 56.27 23.36 41.21 47.43

CL + Attention 1.20 3.12 3.01 0.0 7.24 23.17 0.0 12.01 14.07
Weighted CL + Attention 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 1. Backdoor attack and defense performance with baselines. The first row of the table shows an undefended model while other rows
are baselines or variants of our method. CL+ KE, CL+ Attention are our baselines. The best results are shown in bold.

Dataset Models Single Target Label Multiple Target Label

dog2boat dog2boat train2zebra

Hit@1 ↓ Hit@5↓ Hit@10↓ Hit@1 ↓ Hit@5↓ Hit@10↓ Hit@1 ↓ Hit@5↓ Hit@10↓
CL (No Defense) 18.0 57.20 82.0 77.12 99.23 99.56 55.32 95.76 97.98

CL+ CleanClip [3] 3.39 3.95 5.65 57.69 63.0 89.17 69.49 71.75 89.17
COCO CL + KE 4.56 5.32 5.95 54.45 64.21 85.52 65.12 70.92 86.12

CL + Attention 0.56 3.38 4.51 0.63 65.60 69.42 2.25 6.77 12.99
Weighted CL + Attention 0.04 1.12 2.54 2.23 5.21 6.45 0.0 0.0 0.0

dog2boat dog2boat bird2sofa

Hit@1 ↓ Hit@5↓ Hit@10↓ Hit@1 ↓ Hit@5↓ Hit@10↓ Hit@1 ↓ Hit@5↓ Hit@10↓
CL (No Defense) 29.0 57.20 82.23 28.12 82.39 93.76 55.32 90.62 100.0

CL+ CleanClip [3] 8.27 31.51 36.61 21.69 61.27 88.75 22.42 64.11 89.51
Flickr30k CL + KE 7.34 28.09 32.21 21.12 45.32 47.67 12.77 42.34 54.21

CL + Attention 4.56 21.81 34.11 1.63 16.70 29.21 3.25 18.43 32.22
Weighted CL + Attention 0.32 1.21 2.54 1.78 4.56 5.67 0.0 0.0 0.0

Table 2. Poisoning attack and defense performance with baselines. First row of the table shows how good the attack, and other rows are
baselines along with our proposed models. CL + KE, CL + Attention are our baselines. The best results are highlighted.

after being defended with Semantic Shield and its variants
(CL + KE, CL + Attention, weighted CL + Attention) in
Tab. 3. We largely observe a similar utility compared to the
models from Tab. 4. On the Flickr30k dataset, single target
or multiple target attack scenario, for TR task, the utility is
slightly less than the clean model (Tab. 4, Tab. 3).

5.3. Ablations

Poisoning rate. We compare the performance of poison-
ing attacks at different poisoning rates on three backdoor
attacks. We conduct these attacks against the victim model
with four different poisoning rates (0.001 to 0.01%) on the
COCO dataset (Fig. 3). We observe that attack performance
significantly improves with increased poisoning rate, even
though the rate is quite low, which demonstrates the vulner-
ability of contrastively trained VL models to attacks.

Fine-tuning epoch. In Fig. 4 we use the max poisoning
rate (0.01%) from Fig. 3 to illustrate Semantic Shield’s per-
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Figure 3. Hit@k vs. poisoning rate on backdoored images.
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Figure 4. Hit@k vs training epoch for Semantic Shield.

formance at different epochs on the same backdoored sam-
ples. We notice that Hit@k gradually reduces for all three
attacks, demonstrating the increasing effectiveness of Se-
mantic Shield’s defense with increased training.
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Dataset Task Models Backdoor Patch BPP Wanet Single Target Label Multiple Target Label

CL 74.99 73.94 74.54 74.68 74.72
CL + KE 74.15 70.7 74.0 74.24 73.28

COCO IR CL + Attention 74.38 73.13 74.43 75.70 75.13
Weighted CL + Attention 74.22 74.56 74.23 73.46 73.51

CL 81.58 77.44 78.74 80.16 81.12
CL + KE 78.40 75.54 77.86 79.08 81.20

COCO TR CL + Attention 79.20 77.36 78.04 80.05 81.06
Weighted CL + Attention 79.46 77.78 78.45 79.67 80.0

CL 59.13 59.86 61.08 60.92 57.41
CL + KE 60.34 61.85 61.13 58.12 58.18

Flickr30k IR CL + Attention 61.32 55.96 59.14 58.97 58.16
Weighted CL + Attention 61.07 56.32 60.16 59.76 58.78

CL 68.07 68.79 69.86 71.06 68.14
CL + KE 69.67 70.65 69.62 66.98 62.20

Flickr30k TR CL + Attention 70.0 64.46 68.0 68.13 62.97
Weighted CL + Attention 70.23 65.66 68.87 68.45 62.12

Table 3. Model utility of defended models (Recall@10). The model utilities are comparable to the performance in Tab. 4

Dataset Task Clean BackPat BPP Wanet SingTL MultTL

COCO IR 75.13 74.99 73.94 74.54 74.68 74.72
TR 80.62 81.58 77.44 78.74 80.16 81.12

Flickr30k IR 59.68 59.13 59.86 61.08 60.92 57.41
TR 68.37 68.07 68.79 69.86 71.06 68.14

Table 4. Model utility between clean model and other back-
doored/poisoned models (CL) (Recall@10). Similar to Tab. 3.

6. Qualitative analysis
In Fig. 5, we present the contrast between a model defended
by Semantic Shield and an undefended model’s attention
map. Fig. 5b shows that poisoned model pays attention to
the patch (bottom right corner). In contrast, the defended
model Fig. 5c does not pay any attention to the patch. Next,
in Fig. 5d and Fig. 5g two imperceptible noises are injected
e.g. BPP, Wanet. We wanted to see what happens if we in-
ject the noise randomly throughout the entire images. Poi-
soned models in Fig. 5e and Fig. 5h show spurious visual
signals all over the image. However, our proposed models
filters out the noisy signals and defends against poisoning.

7. Conclusion
In this paper, we introduced Semantic Shield, an approach
for defending against attacks on contrastively trained
VL models. Our approach works by leveraging external
knowledge to guide the model’s attention to non-attacked
visual regions and samples. We evaluated Semantic Shield
against recent backdooring and poisoning attacks and
defenses on two benchmarks. Our experiments show
that Semantic Shield substantially outperforms existing
defenses across all settings. In future work, we will
explore a tighter integration of the LLM using prompting
by dynamically producing KEs online based on the de-
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with imperceptible
noise: BPP
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(g) Backdoor image
with imperceptible
noise: Wanet
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(h) Attention map for
poisoned model
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Figure 5. Attention map comparison between our model (weighted
CL + attention) and backdoored models for three backdoor attacks.

fended model’s current state. In addition, we will explore
how multimodal large language models could be used
to extract more relevant KEs. While Semantic Shield is
successful at defending against attacks on natural images
for which there is a meaningful visual-KE alignment, it
may be less successful for images such as charts or more
abstract text for which clear KEs cannot be extracted.
Moreover, it does not preclude the possibility of attacks
against the language model via the caption. Future
work should explore how the LLM can be jointly defended.
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