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Abstract

Recent advances in neural network pruning have shown
how it is possible to reduce the computational costs and
memory demands of deep learning models before training.
We focus on this framework and propose a new pruning
at initialization algorithm that leverages the Neural Tan-
gent Kernel (NTK) theory to align the training dynamics
of the sparse network with that of the dense one. Specif-
ically, we show how the usually neglected data-dependent
component in the NTK’s spectrum can be taken into ac-
count by providing an analytical upper bound to the NTK’s
trace obtained by decomposing neural networks into indi-
vidual paths. This leads to our Path eXclusion (PX), a fore-
sight pruning method designed to preserve the parameters
that mostly influence the NTK’s trace. PX is able to find
lottery tickets (i.e. good paths) even at high sparsity lev-
els and largely reduces the need for additional training.
When applied to pre-trained models it extracts subnetworks
directly usable for several downstream tasks, resulting in
performance comparable to those of the dense counterpart
but with substantial cost and computational savings. Code
available at: https://github.com/iurada/px-
ntk-pruning

1. Introduction

Almost daily we hear about new breakthroughs achieved
by artificial intelligence. Most of them are obtained by
powerful foundational models [3, 25, 38] that however re-
quire prohibitively high computational resources and en-
ergy costs. These issues raise critical concerns in terms
of financial and environmental sustainability [32, 42] and
pose significant challenges for future applications requir-
ing lightweight and efficient models embedded in always-
on devices and the Internet of Things (IoT).

Given the over-parameterized nature of modern deep
neural networks, one solution to alleviate their resource de-
mands involves removing a significant number of less im-

Figure 1. Our Path eXclusion (PX) involves two copies of the orig-
inal dense network. One copy (bottom left) estimates data-relevant
paths, depicted by blue arrows, and injects the extracted informa-
tion into the other network (blue shading). The other copy (bottom
right) evaluates path relevance in terms of parameter connections
in the network, illustrated by black connections. These estimations
are then combined to score each parameter, finding a subnetwork
by retaining only the most relevant paths based on data, architec-
ture, and initialization. The identified sparse subnetwork closely
mimics the training dynamics of the original dense network.

portant neurons or connections. Several pruning approaches
have been developed with the goal of lowering networks’
complexity without sacrificing accuracy [17, 31, 46, 47, 50],
and they can further benefit from efficient implementations
of sparse primitives [11, 36] and hardware designed to ex-
ploit sparsity [45]. These methods are traditionally applied
late in training or post-training with the goal of reducing in-
ference time, but recent findings suggest that pruning can
also be performed in advance [13].

Specifically, Pruning at Initialization (PaI) searches for
randomly initialized subnetworks that once trained can
match the test accuracy of the original dense networks with
a largely reduced learning cost. Prior works have proposed
PaI strategies based on the impact of each parameter on the
loss [1,30] or on different saliency metrics that estimate the
information flow in the network [44]. Some recent publica-
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tions have targeted the evaluation of the training dynamics
based on the Neural Tangent Kernel Theory (NTK, [23]) to
define the parameters’ scores. Although showing promis-
ing results, they usually neglect [15] or loosely approxi-
mate [49] the data contribution to the NTK spectrum as
they claim that data has a minimal impact on finding lot-
tery tickets i.e. good paths in the network [13]. Some of
these approaches also suffer for layer collapse i.e. the pre-
mature pruning of an entire layer that would make the net-
work untrainable. As discussed in [44], its occurrence can
be avoided under specific conditions.

One question that remains open is whether pruning can
be applied to pre-trained networks before their downstream
transfer [6,22]. This is a crucial and timely problem as pre-
trained models continue to grow in size, and pruning could
be used to reduce the cost of fine-tuning on downstream
tasks. This still defines a proper PaI setting where the initial
model is trained on huge corpora and the goal is not only to
compress it but also to preserve its transferability capabili-
ties in the obtained subnetworks.

With our work we advance PaI research by proposing
the following contributions:

• We present Path eXclusion (PX, see Figure 1.) a PaI
method that estimates the relevance of each network’s pa-
rameter to the training dynamic through a newly defined
bound on the trace of the NTK.
– The saliency function formulated from the bound guar-

antees that the network parameters have only positive
scores. Together with the iterative nature of PX, this
provides guarantees on avoiding layer collapse.

– Differently from previous work, the relevance score of
our PX depends jointly on the data, and on the native
neurons and layer connections.

• We experimentally show that PX is not only robust to dif-
ferent architectures and tasks, but can be effectively used
to search for subnetworks in large pre-trained models that
maintain almost intact transferability.

2. Related Works
The question of how to significantly reduce the num-

ber of parameters of a neural network while maintaining
its performance dates back to the 1980s [28]. Several
strategies include matrix and tensor factorization [35], gen-
eralized dropout [41], and adding regularization terms in
the learning objective [31, 50] to enforce sparse networks.
Other approaches identify parameters with low magnitude
after training and discard the corresponding connections
[17, 18, 28, 46, 47]. For all these methods, the main goal
is to improve test efficiency while the computational cost of
training remains the same as that of a dense network.

In the last years, the focus has moved towards effi-
cient training with one milestone provided by the Lottery

Ticket Hypothesis [13]. It demonstrated that within overly
large networks it is possible to identify winning tickets,
i.e. smaller subnetworks that once trained perform nearly
as well as their dense counterpart. The Iterative Magni-
tude Pruning (IMP) algorithm discovers these subnetworks
through several rounds of alternated training and progres-
sive pruning guided by the magnitude of the surviving pa-
rameters. Despite its effectiveness, the high computational
costs of IMP led to the development of alternative cheaper
methods for finding sparse networks. They are usually iden-
tified as Pruning-at-Initialization (PaI), or foresight pruning
algorithms and can be organized into two main families.

The data-agnostic methods exploit either random or con-
stant mini-batches to probe the network and score each pa-
rameter on the basis of its relevance to some network’s
property. Then, only a small fraction of the parameters
with top scores is kept for training. SynFlow [44] builds
on the hypothesis that the synaptic saliency for the incom-
ing parameters to a hidden neuron is equal to the sum of
the synaptic saliency for the outgoing ones. Thus it eval-
uates the importance of each parameter on the basis of
its relation to those in the previous and following layers.
SynFlow-L2 [15] scores each parameter by considering its
contribution to the network’s training dynamics estimated
via the Neural Tangent Kernel theory [23]. LogSynFlow [4]
rescales the scores of SynFlow to account for the possible
issue of exploding gradients. NTK-SAP [49] improves the
previous methods by exploiting a more precise estimate of
the training dynamics defined from the full spectrum of the
Neural Tangent Kernel and then discards parameters that
contribute the least to it. All these approaches compute im-
portance scores iteratively with multiple forward-backward
passes over the network, while PHEW [37] introduces ran-
dom walks biased towards higher parameter magnitudes
and requires a single pruning round.

The data-driven methods assert the relevance of the data
and of the learning task in evaluating the importance of
each network’s parameter when pruning and avoiding large
degradation in model performance. SNIP [30] defines a
saliency score for the parameters based on how they con-
tribute to changing the initial loss. ProsPR [1] combines an
estimate of the effect of pruning on the loss and on the meta-
gradients that define the optimization trajectory. GraSP [48]
takes the gradient norm after pruning as a reference crite-
rion, and drops the parameters that result in its least de-
crease. These methods are single-shot, while some variants
of SNIP such as IterSNIP [8] and FORCE [9] exploit itera-
tive solutions to avoid layer collapse.

Our work falls in between the two families described.
We build on the NTK theory already used by the data-
agnostic approaches and we show how information from
the data can be used to guide the pruning process with sig-
nificant advantages in training efficiency. Indeed, as al-
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ready discussed in [14, 21, 51] data independence can be
considered as a limitation rather than a benefit. An intu-
itive reason is that data statistics have a crucial effect on
some network components as batch normalization that con-
tributes to the overall network behavior and parameter rele-
vance [44]. Moreover, by focusing on the network training
dynamics rather than on the loss, as most of the data-driven
approaches do, our method proves to be task-independent,
with the obtained sparse network remaining effective even
when transferred to new downstream tasks.

3. Method
In this section, we start by describing the standard frame-

work adopted by Pruning-at-Initialization (PaI) methods
and the intuition of our foresight pruning algorithm de-
signed to calculate and preserve the trace of the Neural Tan-
gent Kernel (NTK). Afterward, we provide a brief overview
of the theory underpinning NTK and present how to express
its trace by exploiting the notion of network paths. Finally,
we introduce our Path eXclusion (PX) algorithm that drops
those network weights that minimally change the trace of
the NTK, so that the obtained sparse network retains only
the most relevant paths of the original dense network.

3.1. Problem Formulation

Let us consider a neural network f : Rd → RK

parametrized by θ ∈ Rm and a dataset of N data
points (X,Y ) = {(xi,yi)}Ni=1 with xi ∈ Rd and yi ∈
{1, ...,K}. The problem of unstructured neural network
pruning can be formalized as finding a binary mask M ∈
{0, 1}m that optimizes the following objective

min
M

1

N

N∑
i=1

L(f(xi;A(θ0,M)⊙M),yi)

s.t. M ∈ {0, 1}m, ∥M∥0/m ≤ 1− q ,

(1)

where L is a suitable loss function for the downstream task,
q is the desired sparsity of the resulting subnetwork and θ0
are the initial parameters. A is an optimization algorithm
(e.g. SGD [39], Adam [24]) that takes as input the mask M
and the initialization θ0 and returns the trained parameters
at convergence θfinal ⊙M , where ⊙ denotes the element-
wise (Hadamard) product.

Due to the practical intractability of the described opti-
mization problem, recent PaI algorithms focus on the notion
of saliency, which is used as a score to assess the signifi-
cance of network parameters regarding some property F of
the network. After ranking the parameters’ scores, only the
top-S mask elements are retained and the final mask is used
to approximate a solution for Eq. (1). Formally, the saliency
takes the following form

S(θ) =
∂F

∂θ
⊙ θ . (2)

For instance, in SNIP [30] the saliency is the loss function:
F = L(θ⊙M ; (X,Y )). Thus, that method assigns to each
parameter a score which reflects how the loss would change
when removing that specific parameter from the network.

In this work, our goal is to devise a suitable saliency
score that correctly reflects how much each weight con-
tributes to the trace of the NTK. As described in detail in
the next subsection, the NTK approximates the training dy-
namics of the network [29], so removing those weights that
minimally change its trace will result in small variations in
the NTK spectrum, producing a subnetwork with similar
predictive potential to the original larger network.

3.2. Neural Tangent Kernel and Pruning

We indicate the output of a ReLU-based neural network
as f(X,θ) ∈ RNK . Under the gradient flow regime (i.e.
continuous-time gradient descent, with learning rate α) we
can use a first-order Taylor expansion to approximate the
network’s output at a time step t of the optimization process:

f(X,θt+1) = f(X,θt)− αΘt(X,X)∇fL . (3)

The matrix Θt(X,X) = ∇θf(X,θt)∇θf(X,θt)
T ∈

RNK×NK is the Neural Tangent Kernel at time step t [23].
For infinitely wide networks, the exact training dynamics is
described by the NTK which is a constant matrix that de-
pends only on data, initialization, and architecture. It holds
Θt(X,X) = Θ0(X,X), thus we can drop the subscripts.
Further works [29] observed that the NTK can approximate
the training dynamics of networks of any depth without nec-
essarily being infinitely wide by rendering its theory usable
in practice. Additionally, it has been shown that a faster
convergence is correlated with the direction in the parame-
ter space pointed by the eigenvector with the largest corre-
sponding eigenvalue of the NTK [2].

It is apparent that the NTK and its spectrum encapsulate
crucial information about their model and offer an appeal-
ing way to evaluate the alignment between two networks.
Models sharing the same NTK exhibit similar training dy-
namics [49], even with different parameter counts. Empiri-
cal results indicate that sparse subnetworks maintaining the
NTK’s largest eigenvalues of their dense counterpart con-
verge more rapidly [48, 49] and better replicate the training
dynamics of denser networks [26, 43].

While the strategy of using the NTK for network prun-
ing seems promising, calculating the entire NTK spectrum
is only feasible for very small neural networks with limited
data [2]. For context, recent results on the NTK computa-
tion state a time complexity of N2K[FP ] [34], where N
is the size of the dataset, K is the output size of the net-
work, and [FP ] is the cost of a single forward pass. Indeed
previous pruning methods that exploited the NTK theory ei-
ther resorted to different approximations of the NTK spec-
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trum [15, 37, 49] or indirectly tried to preserve it by main-
taining the gradient flow in the network [48].

The next subsection explains how, by analyzing the acti-
vation paths within a neural network, it is possible to obtain
an analytical decomposition of the trace of the NTK that is
instrumental for PaI.

3.3. Neural Tangent Kernel and Activation Paths

Let P be the set of all paths connecting any input neu-
ron to any output neuron of the network f , where the edges
of those paths are the weights1 of the network. Each spe-
cific path can be referred to by its index p = 1, ..., P in the
set P . The presence of weight θi in path p is denoted as
pi = I[θi ∈ p]. We can now define the product of weights
within a path p as vp(θ) =

∏m
i=1 θ

pi

i , where pi is the expo-
nent. Given an input example x ∈ X , the activation status
of a path is ap(x,θ) =

∏
{i|θi∈p} I[zi > 0], where zi is

the activation of the neuron connected to the previous layer
through θi. Thus, we can describe the k-th component of
the output function of the network as:

fk(x,θ) =

d∑
s=1

∑
p∈Ps→k

vp(θ)ap(x,θ)xs , (4)

where xs indicates the s-th term of the x vector and Ps→k is
the set of all paths from the input s to output neuron k [33].

By applying the chain rule it is possible to factorize the
NTK as follows [15]:

Θ(X,X) = ∇θf(X, θ)∇θf(X, θ)T

=
∂f(X,θ)

∂θ

∂f(X,θ)

∂θ

T

=
∂f(X,θ)

∂v(θ)

∂v(θ)

∂θ

∂v(θ)

∂θ

T
∂f(X,θ)

∂v(θ)

T

= Jf
v (X)Jv

θ (J
v
θ )

T (Jf
v (X))T

= Jf
v (X)Πθ(J

f
v (X))T . (5)

Here Jv
θ ∈ RP×m compose the so-called Path Kernel ma-

trix Πθ ∈ RP×P which is symmetric positive semi-definite
and depends solely on the initialization and the network’s
architecture. The eigenvectors of the Path Kernel can be de-
scribed as a collection of paths where the eigenvector as-
sociated with the largest eigenvalue represents the set of
paths that maximize the flow within the network [15]. On
the other hand, the matrix Jf

v (X) ∈ RNK×P , which we
renamed, Path Activation Matrix, represents the change in
output with respect to path values and entirely captures the
dependence of f on the inputs by reweighting the paths
within the network based on the training data.

1We use the terms “parameters” and “weights” interchangeably to re-
fer to the network’s parameters θ, as paths within a neural network are
weighted by the value of each parameter.

Considering the eigenvalues πi, νi and λi respectively
of Πθ, Jf

v (X) and Θ(X,X), it was demonstrated that
Tr[Θ(X,X)] =

∑NK
i λi ≤

∑NK
i νiπi [15]. Previous

works mentioning this upper bound [15, 37], end up focus-
ing only on the Path Kernel of the pruned networks and
maximize its trace Tr(Πθ) =

∑
i πi to preserve the largest

NTK eigenvalue of the original network, which produces
the highest flow through the network and hence, similar
training dynamics. However, this might be misleading as
the data-dependent term Jf

v (X) is neglected.
In the following, we present a new upper bound for

the NTK’s trace that considers both the Path Kernel and
the Path Activation Matrix, along with an exact calculation
method, forming the core of our novel Path eXclusion ap-
proach for pruning.

3.4. Foresight Pruning via Path eXclusion

Starting from the decomposition of the NTK in Eq. (5)
and from the definition of the Frobenius norm ∥A∥F =√

Tr(AAT ) it is possible to write

Tr[Θ(X,X)] = Tr[∇θf(X,θ)∇θf(X,θ)T ]

= ∥∇θf(X,θ)∥2F
= ∥Jf

v (X)Jv
θ ∥2F

≤ ∥Jf
v (X)∥2F · ∥Jv

θ ∥2F , (6)

where the last inequality arises from the submultiplicative
property of the matrix norm. It is easy to show that

∥Jf
v (X)∥2F =

N∑
n=1

K∑
k=1

P∑
p=1

(
d∑

s=1

I[p ∈ Ps→k]ap(xn,θ)xns

)2

=

N∑
n=1

K∑
k=1

P∑
p=1

ap(xn,θ)x
2
ns|s∈p

, (7)

where xns
is the s-th component of the n-th sample vector

x. This term captures the dependence of the NTK’s trace
on the input data by choosing which paths are active and
re-weighting by the input activations. The second term of
the upper bound relates to the Path Kernel and as already
discussed in [15], it holds

∥Jv
θ ∥2F =

P∑
p=1

m∑
j=1

(
vp(θ)

θj

)2

. (8)

Both Eq. (7) and (8) can be calculated efficiently by exploit-
ing the implicit computation of the network’s gradients via
automatic differentiation. To do that we introduce two aux-
iliary networks h and g which have the same architecture
as the original f and are described by the input data x, their
parameters θ, and the status a of their ReLU activations.
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Using 1 to indicate a vector of 1’s, the k-th component of
the output for each of these networks is defined as

hk(1,θ2,1) =

P∑
p=1

vp(θ
2) =

P∑
p=1

v2
p(θ) ,

gk(x2,1,a) =

P∑
p=1

ap(x,θ)x
2
s|s∈p .

Here h takes simplified data 1 as input, with squared param-
eters, and a vector of activations that are all one. Instead g
takes the squared data as input, the parameters are all one,
and the activations status is an exact copy of that of f . Fi-
nally, we consider these two networks working jointly with
the overall behavior described by

R(x,θ,a) =

N∑
n=1

K∑
k=1

gk(x2
n,1,an) · hk(1,θ2,1) .

We can compute the gradient of this function via backprop-
agation obtaining

m∑
j=1

∂R(x,θ,a)

∂θ2
j

=

=
∂

∂θ2
j

N∑
n=1

K∑
k=1

m∑
j=1

gk(x2
n,1,an) · hk(1,θ2,1)

=

N∑
n=1

K∑
k=1

gk(x2
n,1,an) ·

m∑
j=1

∂hk(1,θ2,1)

∂θ2
j

=

N∑
n=1

K∑
k=1

P∑
p=1

ap(xn,θ)x
2
ns|s∈p

·
P∑

p=1

m∑
j=1

v2
p(θ)

θ2
j

= ∥Jf
v (X)∥2F · ∥Jv

θ ∥2F .

Thus we are able to explicitly compute the upper bound in
Eq. (6) and the value of each of the m components of the
gradient ∂R(x,θ,a)/∂θ2

j is our saliency score indicating
the importance of each parameter θj in composing the trace
of the NTK. To summarize, the final PX saliency score is:

SPX(x,θ,a) =
∂R(x,θ,a)

∂θ2
⊙ θ2. (9)

As we perform global masking, we can observe from Eq.
(7), (8) and (9) that our saliency function yields only pos-
itive scores which means that the saliency among layers is
conserved. Combined with the iterative application of our
pruning procedure, we satisfy the hypotheses of the Theo-
rem of Maximal Critical Compression [44], which allows us
to avoid layer collapse, namely pruning all neurons within
one layer and preventing the information flow.

The full PX algorithm pseudocode is provided in the sup-
plementary material.

4. Experiments
In this section, we describe the results of our experi-

mental analysis that thoroughly compares our PX with sev-
eral baseline methods. In terms of datasets, tasks, and
architectures we align with the literature and adopt well-
established setups that are briefly summarized in the fol-
lowing [6,13,14,30,44]. Moreover, we investigate whether
PaI can be applied to pre-trained models without damaging
their downstream transferability. Our empirical evaluation
provides a positive answer to this new research question.
Datasets & Tasks. For the classification experiments, we
use CIFAR-10, CIFAR-100 [27], Tiny-ImageNet and Ima-
geNet [10]. For the segmentation experiments we follow [6]
and use the training and validation splits of Pascal VOC
2012 [12] for model learning and evaluation.
Architectures. As done by [44, 49], for the classification
experiments we use ResNet-20 [20] on CIFAR-10, VGG-
16 [40] on CIFAR-100. ResNet-18 on Tiny-ImageNet and
ResNet50 on the ImageNet dataset. By following [6], on the
segmentation task we use DeepLabV3+ [5] with ResNet-50.
Initialization. As in [14] we initialize each model using
Kaiming normal initialization [19]. Furthermore, we assess
how pre-trained parameters affect the foresight pruning pro-
cedure. For this analysis we adopt a setting analogous to
that in [6] that originally considered only iterative unstruc-
tured magnitude pruning. Specifically, we use a ResNet-
50 pre-trained on ImageNet as well as two self-supervised
models obtained with MoCov2 [7] and CLIP [38].
Implementation details. Regarding the training procedure
we follow [14] and [6] when assessing respectively our
PX with respect to the PaI state-of-the-art methods and the
pre-training transferability. We evaluate each algorithm on
trivial (36.00%, 59.04%, 73.80%), mild (83.22%, 89.30%,
93.12%) and extreme (95.60%, 97.17%, 98.20%) sparsity
ratios as [49]. We use 100 rounds for iterative PaI methods
adopting an exponential schedule as [14, 44]. Full imple-
mentation details can be found in the supplementary.

4.1. Classification with Random Initialization

To provide an empirical evaluation of the strengths and
effectiveness of our method, we compare PX with state-of-
the-art foresight pruning algorithms. These include both
data-driven methods like SNIP [30] and GraSP [48], as well
as data-agnostic techniques such as SynFlow [44] and NTK-
SAP [49]. We also include two common baselines in PaI
which are Random pruning and Magnitude-based pruning.
CIFAR-10, CIFAR-100 & Tiny-ImageNet. In Fig. 2.
we report the classification results when using ResNet-
20, VGG-16 and ResNet-18 on CIFAR-10, CIFAR-100
and Tiny-Imagenet, respectively. For low sparsity levels,
most techniques exhibit strong performance. On ResNet-
20 (CIFAR-10), the performance gap across techniques is
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Figure 2. Average classification accuracy at different sparsity levels on CIFAR-10 using ResNet-20, CIFAR-100 using VGG-16 and Tiny-
ImageNet using ResNet-18, respectively. Each experiment is repeated three times. We report in shaded colors the standard deviation.

low, albeit being slightly higher for random pruning and
GraSP. On VGG-16 (CIFAR-100) and ResNet-18 (Tiny-
ImageNet), a comparable pattern emerges, but the disparity
in performance widens noticeably. In all three cases, our ap-
proach consistently delivers the highest results. At moder-
ate sparsity levels, PX and NTK-SAP start to emerge as the
top performers across all three experiments. Specifically,
on VGG-16 (CIFAR-100), these two methods showcase
competitive performance, with NTK-SAP being slightly
ahead. The ranking of the other techniques remains con-
sistent at these levels. Finally, at extreme levels of spar-
sity, PX clearly outperforms all the competitors. In partic-
ular, on VGG-16 (CIFAR-100), there is a considerable dis-
parity between PX and all other methods, including NTK-
SAP. Notably, there’s a substantial decline in NTK-SAP’s
performance at 98.20% sparsity on ResNet-20 (CIFAR-
10). Across all three experiments, GraSP, despite initially
exhibiting lower performance, demonstrates commendable
consistency in maintaining its results.

ImageNet. We conducted a comprehensive assessment of
PX on larger-scale datasets, specifically ImageNet, employ-
ing ResNet-50 as the backbone model. In line with [49], we
examined two sparsity levels (89.26% and 95.60%). Our
findings, detailed in Table 1., reveal that PX, NTK-SAP, and
GraSP get top results, with PX exhibiting a slight advan-
tage. Magnitude pruning surprisingly demonstrates greater
competitiveness compared to SNIP, which performed well
on smaller-scale datasets but ranks last in this evaluation.

4.2. Starting From Pre-Trained Parameters

Within this section, we examine the impact of initializa-
tion from pre-trained models: we aim at gaining insights
into how we can leverage PaI algorithms to efficiently trans-
fer knowledge to downstream tasks.

Classification. Fig. 3. presents our findings on classi-
fication results across CIFAR-10, CIFAR-100, and Tiny-
ImageNet using ResNet-50 initialized from ImageNet, Mo-
Cov2 on ImageNet, and CLIP pre-trainings. We do not re-
port SynFlow here as it produces exploding gradients while

Classification on ImageNet - ResNet-50
Pruning Method 89.26% 95.60%

SynFlow [44] 66.48 ± 0.12 59.41 ± 0.19

SNIP [30] 60.50 ± 0.34 45.82 ± 0.35

NTK-SAP [49] 67.98 ± 0.31 59.84 ± 0.30

GraSP [48] 67.21 ± 0.52 60.01 ± 0.16

Random 64.97 ± 0.27 56.79 ± 0.44

Magnitude 66.56 ± 0.23 47.80 ± 0.21

PX (Ours) 68.11 ± 0.29 60.28 ± 0.32

Table 1. Average classification accuracy at different sparsity ra-
tios on the ImageNet dataset, using Kaiming normal initialized
ResNet-50 as backbone. Each experiment is repeated three times.
We report also the standard deviation. Bold indicates the best re-
sult. Underline the second best.

estimating saliency scores. This issue has been also ob-
served in contexts like Neural Architecture Search [4].

Until reaching extreme sparsity, most methods closely
align with the performance of the dense baseline, underlin-
ing that employing PaI in this context serves as a viable,
cost-free alternative to Iterative Magnitude Pruning (IMP).
At extreme sparsity levels across all experiments, PX con-
sistently outperforms other methods maintaining proxim-
ity to the dense baseline on simpler tasks (CIFAR-10) and
showing a clear advantage over the competitors on more
complex tasks (CIFAR-100 and TinyImageNet).

We remark that, while NTK-SAP stands as a state-of-
the-art method, its performance drastically diminishes at ex-
treme sparsity levels when initialized from pre-trained pa-
rameters. We attribute this decline to the interference of
random mini-batches with the batch normalization statis-
tics of the pre-trained model during its saliency estimation.
This provides clear evidence of the limitations of data-free
PaI methods.

Segmentation. In Fig. 4., we present the semantic seg-
mentation results on the Pascal VOC2012 datasets, em-
ploying DeepLabV3+ on ResNet-50 initialized with Mo-
Cov2 on ImageNet (further results with other initialization
in the supplementary). Here we report only the results for
our method, SNIP, Random, and Magnitude-based pruning.
This selective reporting stems from issues encountered with
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Figure 3. Average classification accuracy at different sparsity levels on CIFAR-10, CIFAR-100 and Tiny-ImageNet using pre-trained
ResNet-50 as architecture. The first column reports the results of starting from the supervised ImageNet pre-training. The second column
reports the performance when starting from the MoCov2 pre-training on ImageNet. Finally, in the third column we report the results when
starting from CLIP. Each experiment is repeated three times. We report in shaded colors the standard deviation.

Figure 4. Average mean Intersection over Union (mIoU) at differ-
ent sparsity levels on Pascal VOC2012 using DeepLabV3+ with
pre-trained ResNet-50 as the backbone. Each experiment is re-
peated three times. Standard deviations are in shaded colors.

other methodologies: SynFlow faced again challenges with
exploding gradients, NTK-SAP resulted in layer collapse
within the segmentation head due to the potential absence of
positive saliency scores, a crucial factor in preventing such
collapses. Similarly, GraSP, relying on a single round of
pruning, encountered limitations in its applicability.

PX confirms its superiority to the other methods even
for semantic segmentation. We also note that SNIP consis-
tently demonstrates good performance and it appears as a
remarkable result in comparison to the failure of NTK-SAP.
Overall, despite the encouraging results, it is apparent that
significant effort needs to be directed toward PaI techniques
specifically tailored for more complex vision tasks such as
semantic segmentation. As of now, PaI methods only ap-
proximate the dense network results at trivial sparsity lev-
els. Surprisingly, Magnitude-based pruning also finds com-
petitive subnetworks, comparable to other PaI methods, but
only at trivial and moderate sparsity levels.

4.3. Spectral Analysis of the Fixed-Weight-NTK

We designed PX to preserve the parameters that mostly
influence the eigenspectrum of the NTK. To verify this be-
havior we visualize in Fig. 5. the eigenvalues distributions
of the Fixed-Weight-NTK2. Our investigation focuses on
pruned ResNet-20 subnetworks on CIFAR-10, at 93.12%

2Note that in the limit of infinite width the Fixed-Weight-NTK [49]
approaches the Analytic NTK [23].
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Figure 5. Fixed-Weight-NTK spectrum of ResNet-20 on the
CIFAR-10 dataset at 93.12% sparsity ratio.

Figure 6. Active output units at 98.20% sparsity in VGG-16. For
SNIP and PX data mini-batches are sampled from CIFAR-100.

sparsity. Notably, even at this substantial level of spar-
sity, our approach closely mirrors the eigenspectrum of the
original dense network confirming the expectations. To
make our argument even more solid, we disregarded the
data-dependent term in PX which implies falling back to
SynFlow-L2. As can be observed, data play a central role
when preserving the eigenspectrum of the NTK. This abla-
tion study further reinforces our claims.

4.4. Layer Width

As discussed earlier, the integration of iterative pruning
rounds and the layer-wise preservation of saliency are piv-
otal in preventing layer collapse using saliency functions
[44]. However, [37] observed that iterative PaI methods suf-
fer a sudden reduction in the number of output units, leading
to narrow layers and bottlenecks. Recent investigations [16]
highlighted a correlation between network performance and
higher output width when fixing a certain number of param-
eters in an architecture. Motivated by this, we investigate
more in-depth the behavior of PX.

For fully connected layers every neuron constitutes an
output unit. For convolutional layers, we follow [37] and
consider each kernel as an output unit. If all parameters
within a convolutional kernel are pruned, the layer’s output
unit count is reduced by one. In Figure 6, we conduct the
analysis on the number of output units that each iterative
PaI method preserves after pruning. Despite being iterative,
PX is not affected by the issues mentioned in [37] and con-
sistently preserves the output width of each layer.

ResNet-20 (CIFAR-10) - 98.20% Sparsity
T = 1 T = 2 T = 10 T = 100 T = 200 Epochs = 960

Acc T ime Acc T ime Acc T ime Acc T ime Acc T ime Acc T ime

IMP - - - - - - - - - - 77.38 13708.80
Single-shot PaI methods

Random 72.31 0.0003 - - - - - - - - - -
Magnitude 76.12 0.0006 - - - - - - - - - -
SNIP [30] 75.39 0.17 - - - - - - - - - -
GraSP [48] 76.30 0.39 - - - - - - - - - -

Iterative PaI methods
SynFlow [44] 10.00 0.13 71.20 0.27 73.98 1.34 75.19 13.40 75.67 26.81 - -

NTK-SAP [49] 18.85 0.21 55.87 0.42 72.21 2.09 74.55 20.92 75.06 41.85 - -
PX (Ours) 76.15 0.14 76.47 0.28 77.04 1.41 77.08 14.13 77.39 28.27 - -

Table 2. Comparison of the accuracy and execution time (in sec-
onds) when varying the number of pruning rounds T , starting from
ResNet-20 on CIFAR-10. The timings reported refer to the 95th
percentile of 100 measurements.

4.5. Execution Time Analysis
In Table 2, we show the effect of changing the number

of pruning rounds T , presenting accuracy and total execu-
tion time of the pruning procedures in seconds. Here we
include IMP to offer a broader context to our study. We ran
our evaluation on NVIDIA Titan Xp GPU, Intel i7-9800X
CPU, and using the perf counter clock from Python’s
time module. IMP (Epochs = 960) takes nearly 4 hours
to outperform PX (T = 10). GraSP leads at T = 1, but
PX surpasses GraSP at T = 2 without exceeding its time
cost. Increasing T beyond 100 marginally improves results
but does not alter conclusions, in line with [44, 49]. More
discussions about the computational cost of PX and its com-
petitors are provided in the supplementary.

5. Conclusion
Pruning at initialization offers the attractive possibility of

reducing the number of parameters in a neural network, by-
passing the need for training to identify the pruning mask.
The NTK and its pathwise decomposition provide a pow-
erful proxy for identifying parameters that are important
for preserving training dynamics after pruning. While most
methods consider only the data-independent component, we
propose a new upper bound on the trace of the NTK which
led to Path eXclusion (PX), that allows us to preserve its
spectrum and consider the data-dependent component as
well. We show experimentally that PX is not only robust to
different architectures and tasks but can also be effectively
used to search for subnetworks in large pre-trained models
that retain almost intact transferability.
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